Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (3): 311-324.doi: 10.17521/cjpe.2016.0267

• Research Articles • Previous Articles     Next Articles

Effects of microorganism on carbon, nitrogen and phosphorus of Dodonaea viscosa and the soils from different elevations in Yuanmou, Yunnan, China

Xue-Mei WANG1,2, Bang-Guo YAN1,2,3, Guang ZHAO1,2, Liang-Tao SHI3, Gang-Cai LIU1, Hai-Dong FANG3,*()   

  1. 1Key Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Conservancy, Chengdu 610041, China

    2University of Chinese Academy of Sciences, Beijing 100049, China
    and
    3Institute of Tropical Eco-Agriculture, Yunnan Academy of Agricultural Sciences, Yuanmou, Yunnan 651300, China
  • Online:2017-04-12 Published:2017-03-10
  • Contact: Hai-Dong FANG E-mail:rqsfhd@163.com
  • About author:

    KANG Jing-yao(1991-), E-mail: kangjingyao_nj@163.com

Abstract:

Aims Understanding the effects of soil microorganism at different elevations on plant C:N:P stoichiometry can help us to understand the plant-soil interactions in the context of climate change. Our aim was to quantify the independent and interactive effects of soil microbial communities and temperatures on the C, N, and P in the leaves of Dodonaea viscosa—a global widespread species. Methods Rhizosphere soils of D. viscosa were collected from two elevation zones in Yuanmou County, Yunnan Province. A 2 × 3 factorial experiment with six replications was conducted using climate chambers. The leaf C, N and P contents and the soil properties were measured after three months of the treatments. Important findings Compared with the autoclaved treatment, inoculated rhizosphere soils from both high and low elevations had higher nutrient absorption, especially P uptake. Temperature produced no significant effect on leaf C:N:P stoichiometry, but the interactive effect of temperature and microbial treatment appeared significant. For inoculated rhizosphere soils from high elevation, temperature had no significant effect on leaf C:N:P stoichiometry. For inoculated rhizosphere soils from low elevation, leaf N and P contents under low temperature were significantly lower than those with warmer soils. The promoting effect of soil microorganisms on nutrient uptake may be due to the direct effect of beneficial microorganisms (e.g., mycorrhizal fungi), but not through the alteration of nutrient cycling process. Because D. viscosa in the inoculated rhizosphere soils absorbed more N and P from the soil than those in autoclaved soil, the available N and P in inoculated rhizosphere soils were lower than those in autoclaved soils. As predicted future temperature will be lower in the studied region, the growth of D. viscosa may be negatively affected through plant-microbe feedbacks.

Key words: ecological stoichiometry, soil microorganisms, plant-soil feedback, climate change, Dodonaea viscosa

Table 1

Abundant of main microbial communities varieties phospholipid fatty acid (PLFA) in the rhizosphere soils of Dodonaea viscosa at two elevation zones (nmol·g-1)"

序号
No.
微生物标记
Sign of microorganism
高海拔区
High elevation
低海拔区
Low elevation
序号
No.
微生物标记
Sign of microorganism
高海拔区
High elevation
低海拔区
Low elevation
1 13:0 0 0.144 3 20 16:0 iso 0.725 0 0.601 9
2 14:0 0.176 6 0.193 1 21 16:1 2OH 0.237 6 0.247 6
3 16:0 1.990 0 1.078 4 22 16:1 iso G 0.079 4 0
4 17:0 0.133 7 0 23 16:1 w5c 0.349 2 0.099 7
5 18:0 0.506 1 0.276 7 24 16:1 w9c 0.074 1 0
6 19:0 1.250 0 1.250 0 25 17:0 10-methyl 0.235 5 0.249 9
7 20:0 0.065 0 0 26 17:0 anteiso 0.353 3 0.281 5
8 10:0 2OH 0.098 0 0 27 17:0 cyclo 0.299 3 0.127 2
9 11:0 iso 0.101 3 0 28 17:0 iso 0.299 1 0.230 2
10 11:0 iso 3OH 0 0.508 3 29 17:1 w8c 0.141 5 0
11 12:0 iso 3OH 0 0.148 5 30 17:1 w9c 0 0.115 3
12 13:0 iso 0.139 4 0 31 18:0 10-methyl, TBSA 0.470 5 0.302 5
13 14:0 iso 0.038 8 0 32 18:0 iso 0 0.118 3
14 14:1 w5c 0.085 5 0 33 18:1 w5c 0.289 0 0
15 15:0 3OH 0.114 8 0 34 18:1 w7c 11-methyl 0.143 1 0
16 15:0 anteiso 0.482 6 0.250 1 35 18:1 w9c 1.157 0 0.648 0
17 15:0 iso 1.107 4 0.531 1 36 18:3 w6c (6,9,12) 0.096 0 0
18 15:1 iso G 0.060 3 0 37 19:0 cyclo w8c 0.636 1 0.264 8
19 16:0 2OH 0.060 2 0

Table 2

Physical and chemical properties of the two inoculated rhizosphere soils and the potting medium of Dodonaea viscosa from high elevation and low elevation"

测定土壤
Measured soil
pH 碱解氮
Available nitrogen
(mg·kg-1)
有效磷
Available
phosphorus (mg·kg-1)
速效钾
Available potassium (mg·kg-1)
有机质
Organic matter (g·kg-1)
总氮
Total nitrogen (g·kg-1)
总磷Total phosphorus (g·kg-1) 总钾
Total potassium (g·kg-1)
低海拔根际土
Rhizosphere soil from
low elevation
7.26 46.603 21.909 86.731 9.352 0.198 0.268 22.961
高海拔根际土
Rhizosphere soil from
high elevation
6.69 97.184 24.309 123.600 17.580 0.517 0.287 20.934
盆栽基土
Potting medium
6.22 84.112 20.085 130.483 15.805 0.384 0.251 21.234

Table 3

Statistical results of a two-way analysis of variance (ANOVA) with temperature and soil microbial treatments on carbon (C), nitrogen (N), phosphorus (P) contents"

变量
Variables
微生物
Microorganism
温度
Temperature
微生物×温度
Microorganism × temperature
F p F p F p
C 3.611 0.039 4.620 0.040 7.789 0.002
N 4.396 0.021 0.673 0.418 5.557 0.009
P 9.353 0.001 0.065 0.801 46.909 <0.001
C:N 5.610 0.009 0.428 0.518 6.123 0.006
C:P 15.642 <0.001 2.168 0.151 47.482 <0.001
N:P 8.354 0.001 3.194 0.084 27.180 <0.001

Table 4

The carbon (C), nitrogen (N), phosphorus (P) contents and their stoichiometry under different treatments (mean ± SE, n = 6)"

温度
Temperature
微生物
Microorganism
C (mg·g-1) N (mg·g-1) P (mg·g-1) C:N C:P N:P
高温
High temperature
M0 589.39 ± 2.01 11.96 ± 0.84 0.33 ± 0.05 50.38 ± 3.198 1 974.60 ± 260.02 40.63 ± 6.84
ML 569.98 ± 8.14 12.82 ± 0.72 1.19 ± 0.09 45.26 ± 2.90 497.93 ± 46.54 11.00 ± 0.64
MH 561.17 ± 8.61 12.33 ± 0.51 0.85 ± 0.08 45.97 ± 2.30 691.80 ± 59.56 15.14 ± 1.35
低温
Low temperature
M0 543.07 ± 5.22 11.18 ± 0.61 0.95 ± 0.12 49.22 ± 2.53 617.88 ± 72.96 12.55 ± 1.42
ML 584.75 ± 8.96 10.31 ± 0.58 0.38 ± 0.03 57.69 ± 3.52 1 579.20 ± 118.97 27.62 ± 2.01
MH 551.70 ± 10.60 14.26 ± 0.72 1.09 ± 0.06 39.22 ± 2.24 516.02 ± 33.55 13.26 ± 0.77

Fig. 1

Total biomass of Dodonaea viscosa under different treatments (mean ± SE, n = 6). M0, autoclaved treatment; ML, inoculated rhizosphere soil from low elevation; MH, inoculated rhizosphere soil from high elevation."

Table 5

Statistical results of a two-way analysis of variance (ANOVA) with temperature and soil microbial treatments on soil properties"

变量
Variables
微生物
Microorganism
温度
Temperature
微生物×温度
Microorganism × temperature
F p F p F p
pH值
pH value
103.493 <0.001 0.688 0.413 4.071 0.027
微生物生物量C
Microbial biomass C
68.654 <0.001 2.326 0.138 15.937 <0.001
微生物生物量N
Microbial biomass N
449.038 <0.001 0.323 0.574 31.891 <0.001
铵态氮
Ammonium N
213.066 <0.001 29.048 <0.001 30.128 <0.001
硝态氮
Nitrate N
106.857 <0.001 0.182 0.673 6.240 0.005
有效磷
Available P
170.607 <0.001 5.110 0.031 57.256 0.001
有效钾
Available K
26.448 <0.001 68.391 <0.001 6.154 0.006

Fig. 2

Changes in soil pH value in different treatments (mean ± SE, n = 6). M0, autoclaved treatment; ML, inoculated rhizosphere soil from low elevation; MH, inoculated rhizosphere soil from high elevation."

Fig. 3

Characteristics of soil microbial biomass by treatments (mean ± SE, n = 6). A, Microbial biomass carbon. B, Microbial biomass nitrogen. M0, autoclaved treatment; ML, inoculated rhizosphere soil from low elevation; MH, inoculated rhizosphere soil from high elevation."

Fig. 4

Amount of available nutrient in soils under different treatments (mean ± SE, n = 6). A, Ammonium nitrogen. B, Nitrate nitrogen. C, Available phosphorus. D, Available potassium. M0, autoclaved treatment; ML, inoculated rhizosphere soil from low elevation; MH, inoculated rhizosphere soil from high elevation."

Table 6

Correlation coefficients between leaf nitrogen (N), phosphorus (P) concentration and soil properties under two temperatures (n = 18)"

温度
Temperature
叶片养分
Leaf nutrient
pH 微生物生物量C
Microbial biomass C
微生物生物量N
Microbial biomass N
铵态氮
Ammonium N
硝态氮
Nitrate N
有效磷
Available P
速效钾
Available K
高温
High temperature
叶片N Leaf N -0.065 -0.182 -0.184 -0.061 -0.077 -0.217 0.289
叶片P Leaf P -0.555* -0.730** -0.825*** -0.735** -0.725** -0.734** 0.870***
低温
Low temperature
叶片N Leaf N -0.638** -0.196 -0.221 -0.320 -0.186 -0.235 -0.165
叶片P Leaf P -0.176 0.367 0.319 0.199 0.304 0.288 -0.366
[1] Ågren GI (2008). Stoichiometry and nutrition of plant growth in natural communities. Annual Review of Ecology Evolution and Systematics, 39, 153-170.
[2] Alphei J, Scheu S (1993). Effects of biocidal treatments on biological and nutritional properties of a mull-structured woodland soil. Geoderma, 56, 435-448.
[3] Averill C, Hawkes CV (2016). Ectomycorrhizal fungi slow soil carbon cycling. Ecology Letters, 19, 937.
[4] Bardgett RD, Manning P, Morriën E, Vries FTD (2013). Hierarchical responses of plant-soil interactions to climate change: Consequences for the global carbon cycle. Journal of Ecology, 101, 334-343.
[5] Bardgett RD, Streeter TC, Cole L, Hartley IR (2002). Linkages between soil biota, nitrogen availability, and plant nitrogen uptake in a mountain ecosystem in the Scottish Highlands. Applied Soil Ecology, 19, 121-134.
[6] Bell C, Carrillo Y, Boot CM, Rocca JD, Pendall E, Wallenstein MD (2014). Rhizosphere stoichiometry: Are C: N: P ratios of plants, soils, and enzymes conserved at the plant species-level? New Phytologist, 201, 505-517.
[7] Berns AE, Philipp H, Narres HD, Burauel P, Vereecken H, Tappe W (2008). Effect of gamma-sterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy. European Journal of Soil Science, 59, 540-550.
[8] Bi YL, Chen SL, Kong WP, Feng YB (2014). Effects of microorganism inoculation on growth of soybean and its rhizosphere soil. Ecological Science, 33, 121-126. (in Chinese with English abstract)[毕银丽, 陈书琳, 孔维平, 冯颜博 (2014). 接种微生物对大豆生长及其根际土壤的影响. 生态科学, 33, 121-126.]
[9] Bin ZJ, Zhang RY, Zhang WP, Xu DH (2015). Effects of nitrogen, phosphorus and silicon addition on leaf carbon, nitrogen, and phosphorus concentration of Elymus nutans of alpine meadow on Qinghai-Tibetan Plateau, China. Acta Ecologica Sinica, 35, 4699-4706. (in Chinese with English abstract)[宾振钧, 张仁懿, 张文鹏, 徐当会 (2015). 氮磷硅添加对青藏高原高寒草甸垂穗披碱草叶片碳氮磷的影响. 生态学报, 35, 4699-4706.]
[10] Bowman WD, Damm M (2015). Alpine landscape variation in foliar nitrogen and phosphorus concentrations and the relation to soil nitrogen and phosphorus availability. Arctic, Antarctic, and Alpine Research, 35, 144-149.
[11] Brinkman EP, Putten WHVD, Bakker EJ, Verhoeven KJF (2010). Plant-soil feedback: Experimental approaches, statistical analyses and ecological interpretations. Journal of Ecology, 98, 1063-1073.
[12] Brown ME (2003). Seed and root bacterization. Annual Review of Phytopathology, 12, 181-197.
[13] Chapman SK, Langley JA, Hart SC, Koch GW (2006). Plants actively control nitrogen cycling: Uncorking the microbial bottleneck. New Phytologist, 169, 27-34.
[14] Defossez E, Courbaud B, Marcais B, Thuiller W, Granda E, Kunstler G (2011). Do interactions between plant and soil biota change with elevation? A study on Fagus sylvatica. Biology Letters, 7, 699-701.
[15] Ding WR, Lü XX, Ming QZ (2011). Hydrothermal analysis of environment of Yuanmou dry-hot river valley in Jinsha River, upper Yangtze River, China. China Rural Water and Hydropower, (2), 39-42. (in Chinese with English abstract)[丁文荣, 吕喜玺, 明庆忠 (2011). 变化环境下的元谋干热河谷区水热响应分析. 中国农村水利水电, (2), 39-42.]
[16] Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003). Growth rate-stoichiometry couplings in diverse biota. Ecology Letters, 6, 936-943.
[17] Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LW (2000). Biological stoichiometry from genes to ecosystems. Ecology Letters, 3, 540-550.
[18] Fan H, Wu J, Liu W, Yuan Y, Hu L, Cai Q (2015). Linkages of plant and soil C:N:P stoichiometry and their relationships to forest growth in subtropical plantations. Plant and Soil, 392, 127-138.
[19] Farzaneh M, Vierheilig H, Lössl A, Kaul HP (2011). Arbuscular mycorrhiza enhances nutrient uptake in chickpea. Plant, Soil & Environment, 57, 465-470.
[20] Güsewell S (2004). N:P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 164, 243-266.
[21] Han W, Fang J, Guo D, Zhang Y (2005). Leaf N and P stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
[22] Harrington MG, Gadek PA (2009). A species well travelled — The Dodonaea viscosa (Sapindaceae) complex based on phylogenetic analyses of nuclear ribosomal ITS and ETSf sequences. Journal of Biogeography, 36, 2313-2323.
[23] Huang JY, Song CC, Song YY, Liu DY, Wan ZM, Liao YJ (2008). Influence of freshwater marsh tillage on microbial biomass and dissolved organic carbon and nitrogen. Environmental Science, 29, 1380-1387. (in Chinese with English abstract)[黄靖宇, 宋长春, 宋艳宇, 刘德燕, 万忠梅, 廖玉静 (2008). 湿地垦殖对土壤微生物量及土壤溶解有机碳、氮的影响. 环境科学, 29, 1380-1387.]
[24] Jaeger CH, Monson RK, Fisk MC, Schmidt SK (1999). Seasonal partitioning of nitrogen by plants and soil microorganisms in an alpine ecosystem. Ecology, 80, 1883-1891.
[25] Jiang J, Song MH (2010). Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling. Chinese Journal of Plant Ecology, 34, 979-988. (in Chinese with English abstract)[蒋婧, 宋明华 (2010). 植物与土壤微生物在调控生态系统养分循环中的作用. 植物生态学报, 34, 979-988.]
[26] Jonasson S, Michelsen A, Schmidt IK, Nielsen EV (1999). Responses in microbes and plants to changed temperature, nutrient, and light regimes in the Arctic. Ecology, 80, 1828-1843.
[27] Lau JA, Lennon JT (2011). Evolutionary ecology of plant-microbe interactions: Soil microbial structure alters selection on plant traits. New Phytologist, 192, 215-224.
[28] Lau JA, Lennon JT (2012). Rapid responses of soil microorganisms improve plant fitness in novel environments. Proceedings of the National Academy of Sciences of the United States of America, 109, 14058-14062.
[29] Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 32, 1768-1771.
[30] Li JP, Li T, Zhao ZW (2003). Diversity of arbuscular mycorrhizal fungi in the hot-dry valley of Jinsha River. Mycosystema, 22, 604-612. (in Chinese with English abstract)[李建平, 李涛, 赵之伟 (2003). 金沙江干热河谷 (元谋段)丛枝菌根真菌多样性研究. 菌物学报, 22, 604-612.]
[31] Li K (1993). Yuanmou County Annals. The Peoples Press of Yunnan, Kunming.(in Chinese) [李坤 (1993). 元谋县志. 云南人民出版社, 昆明.]
[32] Liang Y, Jiang Y, Wang F, Wen C, Deng Y, Xue K, Qin Y, Yang Y, Wu L, Zhou J, Sun B (2015). Long-term soil transplant simulating climate change with latitude significantly alters microbial temporal turnover. The ISME Journal, 9, 2561-2572.
[33] Liu YF, Chen SL, Li YC, Chen S, Guo ZW, Yang QP (2015). Effect of long-term flooded conditions on nutrient stoi¬chiometric characteristics of Phyllostachys rivalis rhizome roots. Acta Botanica Boreali-Occidentalia Sinica, 35, 350-355. (in Chinese with English abstract)[刘玉芳, 陈双林, 李迎春, 陈珊, 郭子武, 杨清平 (2015). 长期淹水对河竹鞭根养分化学计量特征的影响. 西北植物学报, 35, 350-355.]
[34] Lu RK (2000). Analysis Methods of Soil Agricultural Chemistry. China Agricultural Science and Technology Press, Beijing, (in Chinese)[鲁如坤 (2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京.]
[35] Miransari M (2011). Soil microbes and plant fertilization. Applied Microbiology and Biotechnology, 92, 875-885.
[36] Niu DC, Dong XY, Fu H (2011). Seasonal dynamics of carbon, nitrogen and phosphorus stoichiometry in Stipa bungeana. Pratacultural Science, 28, 915-920. (in Chinese with English abstract)[牛得草, 董晓玉, 傅华 (2011). 长芒草不同季节碳氮磷生态化学计量特征. 草业科学, 28, 915-920.]
[37] Olander L, Vitousek P (2000). Regulation of soil phosphatase and chitinase activity by N and P availability. Biog¬eo¬chemistry, 49, 175-191.
[38] Peng SL (2014). Responses of Soil Microbial Communities to Water and Temperature Changes in Yuanmou Dry-Hot Valley. PhD dissertation, University of Chinese Academy of Sciences, Beijing. 111-113. (in Chinese with English abstract)[彭思利 (2014). 元谋干热河谷土壤微生物群落对水热变化的响应. 博士学位论文, 中国科学院大学, 北京. 111-113.]
[39] Pernilla Brinkman E, van der Putten WH, Bakker EJ, Verhoeven KJ (2010). Plant-soil feedback: Experimental approaches, statistical analyses and ecological interpretations. Journal of Ecology, 98, 1063-1073.
[40] Qi SH, Wang JB (2007). The primary analysis of climate change in dry-hot valley of Yuanmou, China. Journal of Meteorological Research and Application, 28, 125-127. (in Chinese with English abstract)[起树华, 王建彬 (2007). 元谋干热河谷气候生态环境变化的初步分析. 气象研究与应用, 28, 125-127.]
[41] Qu L, Huang Y, Ma K, Zhang Y, Bierec A (2015). Effects of plant cover on properties of rhizosphere and inter-plant soil in a semiarid valley, SW China. Soil Biology & Biochemistry, 94, 1-9.
[42] Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
[43] Sardans J, Peñuelas J, Estiarte M (2008). Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Applied Soil Ecology, 39, 223-235.
[44] Sardans J, Rivas-Ubach A, Peñuelas J (2012). Factors affecting nutrient concentration and stoichiometry of forest trees in Catalonia (NE Spain). Forest Ecology and Management, 262, 2024-2034.
[45] Shaw LJ, Beatonb Y, Glover LA, Killham K, Meharg AA (1999). Re-inoculation of autoclaved soil as a non-sterile treatment for xenobiotic sorption and biodegradation studies. Applied Soil Ecology, 11, 217-226.
[46] Shen RF, Zhao XQ (2015). Role of soil microbes in the acquisition of nutrients by plants. Acta Ecologica Sinica, 35, 6584-6591. (in Chinese with English abstract)[沈仁芳, 赵学强 (2015). 土壤微生物在植物获得养分中的作用. 生态学报, 35, 6584-6591.]
[47] Shi XM, Qi JH, Song L, Liu WY, Huang JB, Li S, Lu HZ, Chen X (2015). C, N and P stoichiometry of two dominant seedlings and their responses to nitrogen additions in the montane moist evergreen broad-leaved forest in Ailao Mountains, Yunnan. Chinese Journal of Plant Ecology, 39, 962-970. (in Chinese with English abstract)[石贤萌, 杞金华, 宋亮, 刘文耀, 黄俊彪, 李苏, 卢华正, 陈曦 (2015). 哀牢山中山湿性常绿阔叶林两种优势幼苗C、N、P化学计量特征及其对N沉降增加的响应. 植物生态学报, 39, 962-970.]
[48] Song YT, Zhou DW, Li Q, Wang P, Huang YX (2012). Leaf nitrogen and phosphorus stoichiometry in 80 herbaceous plant species of Songnen grassland in Northeast China. Chinese Journal of Plant Ecology, 36, 222-230. (in Chinese with English abstract)[宋彦涛, 周道玮, 李强, 王平, 黄迎新 (2012). 松嫩草地80种草本植物叶片氮磷化学计量特征. 植物生态学报, 36, 222-230.]
[49] Steinauer K, Tilman D, Wragg PD, Cesarz S, Cowles JM, Pritsch K, Reich PB, Weisser WW, Eisenhauer N (2015). Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment. Ecology, 96, 99-112.
[50] Tessier JT, Raynal DJ (2003). Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 40, 523-534.
[51] Treseder KK, Vitousek PM (2001). Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology, 82, 946-954.
[52] Van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, Suding KN, Van de Voorde TFJ, Wardle DA (2013). Plant-soil feedbacks: The past, the present and future challenges. Journal of Ecology, 101, 265-276.
[53] van Grunsven RHA, van der Putten WH, Bezemer TM, Berendse F, Veenendaal EM (2010). Plant-soil interactions in the expansion and native range of a poleward shifting plant species. Global Change Biology, 16, 380-385.
[54] Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5-15.
[55] Wang GB, Ruan HH, Tang YF, He R (2009). A review on the dynamics of soil microbial biomass in forest ecosystems. Journal of Anhui Agricultural University, 36, 100-104. (in Chinese with English abstract)[王国兵, 阮宏华, 唐燕飞, 何容 (2009). 森林土壤微生物生物量动态变化研究进展. 安徽农业大学学报, 36, 100-104.]
[56] Wang XM, Yan BG, Liu GC, Fang HD (2016). Spatial variation in seed dormancy and germination of Dodonaea viscose in Yuanmou dry-hot valley, China. Journal of Tropical and Subtropical Botany, 24, 375-380. (in Chinese with English abstract)[王雪梅, 闫帮国, 刘刚才, 方海东 (2016). 元谋干热河谷车桑子种子休眠与萌芽的空间变异特征研究. 热带亚热带植物学报, 24, 375-380.]
[57] Wang ZN, Yang HM (2013). Responses of ecological stoi¬chiometry of carbon, nitrogen and phosphorus in plants to abiotic environmental factors. Pratacultural Science, 30, 927-934. (in Chinese with English abstract)[王振南, 杨惠敏 (2013). 植物碳氮磷生态化学计量对非生物因子的响应. 草业科学, 30, 927-934.]
[58] Wu TG, Wu M, Liu L, Xiao JH (2010). Seasonal variations of leaf nitrogen and phosphorus stoichiometry of three herbaceous species in Hangzhou Bay coastal wetlands, China. Chinese Journal of Plant Ecology, 34, 23-28. (in Chinese with English abstract)[吴统贵, 吴明, 刘丽, 萧江华 (2010). 杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化. 植物生态学报, 34, 23-28.]
[59] Wu Y, Yu X, Wang H, Ding N, Xu J (2010). Does history matter? Temperature effects on soil microbial biomass and community structure based on the phospholipid fatty acid (PLFA) analysis. Journal of Soils and Sediments, 10, 223-230.
[60] Xu X, Ouyang H, Richter A, Wanek W, Cao G, Kuzyakov Y (2011). Spatio-temporal variations determine plant-micr¬obe competition for inorganic nitrogen in an alpine meadow. Journal of Ecology, 99, 563-571.
[61] Yan K, Fu DG, He F, Duan CQ (2011). Leaf nutrient stoichiometry of plants in the phosphorus-enriched soils of the Lake Dianchi watershed, southwestern China. Chinese Journal of Plant Ecology, 35, 353-361. (in Chinese with English abstract)[阎凯, 付登高, 何峰, 段昌群 (2011). 滇池流域富磷区不同土壤磷水平下植物叶片的养分化学计量特征. 植物生态学报, 35, 353-361.]
[62] Yan ZB, Kim NY, Han TS, Fang JY, Han WX (2013). Effects of nitrogen and phosphorus fertilization on leaf carbon, nitrogen and phosphorus stoichiometry of Arabidopsis thaliana. Chinese Journal of Plant Ecology, 37, 551-557. (in Chinese with English abstract)[严正兵, 金南瑛, 韩廷申, 方精云, 韩文轩 (2013). 氮磷施肥对拟南芥叶片碳氮磷化学计量特征的影响. 植物生态学报, 37, 551-557.]
[63] Zeng DH, Chen GS (2005). Ecological stoichiometry: A science to explore the complexity of living systems. Acta Phytoecologica Sinica, 29, 1007-1019. (in Chinese with English abstract)[曾德慧, 陈广生 (2005). 生态化学计量学: 复杂生命系统奥秘的探索. 植物生态学报, 29, 1007-1019.]
[64] Zhan XH, Jiang YH (1999). Advances in researches on mechanism of microbial inoculants on promoting plant growth. Plant Nutrition and Fertilizer Science, 5, 97-105. (in Chinese with English abstract)[占新华, 蒋延惠 (1999). 微生物制剂促进植物生长机理的研究进展. 植物营养与肥料学报, 5, 97-105.]
[65] Zhang AM, Li NK, Zhao GY, Zhang SF (2015). Research progress on the phosphate-solubilizing and potassium-solubilizing microorganisms. Journal of Hebei University (Natural Science Edition), 35, 442-448. (in Chinese with English abstract)[张爱民, 李乃康, 赵钢勇, 张双凤 (2015). 土壤中解磷、解钾微生物研究进展. 河北大学学报(自然科学版), 35, 442-448.]
[66] Zhang QY, Sun HL, Li SC, Hu X, Pang L (2013). Different environmental conditions on germination characteristics of Dodonaea viscosa (L.) Jacq. Seed, 32, 12-14. (in Chinese with English abstract)[张琼瑛, 孙海龙, 李绍才, 胡兴, 庞亮 (2013). 不同环境条件对车桑子萌发的影响. 种子, 32, 12-14.]
[67] Zhang W, Zhao J, Pan F, Li D, Chen H, Wang K (2015). Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China. Plant and Soil, 391, 77-91.
[68] Zhao ZW, Ren LC, Li T, Li JP (2003). Arbuscular mycorrhizas in the dry-hot valley of Jinsha River. Acta Botanica Yunnanica, 25, 199-204. (in Chinese with English abstract)[赵之伟, 任立成, 李涛, 李建平 (2003). 金沙江干热河谷(元谋段)的丛枝菌根. 云南植物研究, 25, 199-204.]
[1] JIA Bing-Rui. Litter decomposition and its underlying mechanisms [J]. Chin J Plant Ecol, 2019, 43(8): 648-657.
[2] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606.
[3] HUANG Mei, WANG Na, WANG Zhao-Sheng, GONG He. Modeling phosphorus effects on the carbon cycle in terrestrial ecosystems [J]. Chin J Plant Ecol, 2019, 43(6): 471-479.
[4] WANG Pan, ZHU Wan-Wan, NIU Yu-Bin, FAN Jin, YU Hai-Long, LAI Jiang-Shan, HUANG Ju-Ying. Effects of nitrogen addition on plant community composition and microbial biomass ecological stoichiometry in a desert steppe in China [J]. Chin J Plant Ecol, 2019, 43(5): 427-436.
[5] ZHANG Fu-Guang, ZENG Biao, YANG Tai-Bao. Spatiotemporal distribution changes in alpine desert belt in Qilian Mountains under climate changes in past 30 years [J]. Chin J Plant Ecol, 2019, 43(4): 305-319.
[6] LIU Xiao-Tong, YUAN Quan, NI Jian. Research advances in modelling plant species distribution in China [J]. Chin J Plant Ecol, 2019, 43(4): 273-283.
[7] JIAO Liang, WANG Ling-Ling, LI Li, CHEN Xiao-Xia, YAN Xiang-Xiang. Divergent responses of radial growth of Larix sibirica to climate change in Altay Mountains of Xinjiang, China [J]. Chin J Plant Ecol, 2019, 43(4): 320-330.
[8] YANG Wen-Gao, ZI Hong-Biao, CHEN Ke-Yu, ADE Lu-Ji, HU Lei, WANG Xin, WANG Gen-Xu, WANG Chang-Ting. Ecological stoichiometric characteristics of shrubs and soils in different forest types in Qinghai, China [J]. Chin J Plant Ecol, 2019, 43(4): 352-364.
[9] GAO Yu-Qiu, DAI Xiao-Qin, WANG Jian-Lei, FU Xiao-Li, KOU Liang, WANG Hui-Min. Characteristics of soil enzymes stoichiometry in rhizosphere of understory vegetation in subtropical forest plantations [J]. Chin J Plant Ecol, 2019, 43(3): 258-272.
[10] TANG Dan-Dan, WU Yi, LIU Wen-Yao, HU Tao, HUANG Jun-Biao, ZHANG Ting-Ting. Ecological stoichiometry of two common hemiparasite plants and their relationship with host trees in Ailao Mountain, Yunnan, China [J]. Chin J Plant Ecol, 2019, 43(3): 245-257.
[11] WEN Xiao-Shi, CHEN Bin-Hang, ZHANG Shu-Bin, XU Kai, YE Xin-Yu, NI Wei-Jie, WANG Xiang-Ping. Relationships of radial growth with climate change in larch plantations of different stand ages and species [J]. Chin J Plant Ecol, 2019, 43(1): 27-36.
[12] SHEN Fang-Fang, LI Yan-Yan, LIU Wen-Fei, DUAN Hong-Lang, FAN Hou-Bao, HU Liang, MENG Qing-Yin. Responses of nitrogen and phosphorus resorption from leaves and branches to long-term nitrogen deposition in a Chinese fir plantation [J]. Chin J Plan Ecolo, 2018, 42(9): 926-937.
[13] Anrong Liu,Teng Yang,Wei Xu,Zijian Shangguan,Jinzhou Wang,Huiying Liu,Yu Shi,Haiyan Chu,Jin-Sheng He. Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland [J]. Biodiv Sci, 2018, 26(9): 972-987.
[14] Xiuwei Liu, Douglas Chesters, Chunsheng Wu, Qingsong Zhou, Chaodong Zhu. A horizon scan of the impacts of environmental change on wild bees in China [J]. Biodiv Sci, 2018, 26(7): 760-765.
[15] ZHOU Tong,CAO Ru-Yin,WANG Shao-Peng,CHEN Jin,TANG Yan-Hong. Responses of green-up dates of grasslands in China and woody plants in Europe to air temperature and precipitation: Empirical evidences based on survival analysis [J]. Chin J Plan Ecolo, 2018, 42(5): 526-538.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . Studies on physiology of floral induction and zearalenone[J]. Chin Bull Bot, 1995, 12(专辑3): 18 -29 .
[2] Wu Jian-feng. Lichen Ptant in Langskan Area Nantong[J]. Chin Bull Bot, 1993, 10(01): 62 .
[3] . [J]. Chin Bull Bot, 1998, 15(专辑): 35 -38 .
[4] . [J]. Chin Bull Bot, 2000, 17(05): 478 .
[5] WANG Zheng-Feng ZHANG Jun-Li LI Ming-Guang WANG Bo-Sun HE Xing-Jin PENG Shao-Lin. Advances of Plant Molecular Ecology (Ⅰ)—— Genetic Structure and Hybridization[J]. Chin Bull Bot, 2001, 18(06): 635 -642 .
[6] Zhao Yu-hua. Effect of the Plant Cold-resister on Overcoming Rice Seedling Decay in Low Temperature Stress in our County[J]. Chin Bull Bot, 1994, 11(特辑): 97 -99 .
[7] . [J]. Chin Bull Bot, 2015, 50(6): 765 -767 .
[8] Danlong Jing, Jiang Ma, Bo Zhang, Yiyang Han, Zhixiong Liu, Faju Chen. Expression Analysis of MwAG in Different Organs and Developmental Stages of Magnolia wufengensis[J]. Chin Bull Bot, 2013, 48(2): 145 -150 .
[9] Li Xiang-gan. The Population Characteristics and determination of Biomass in the Quercus acutissima Forest Community on Mount Lao[J]. Chin J Plan Ecolo, 1987, 11(1): 21 -31 .
[10] MIAO Bao-He, LI Xiang-Dong, LIU Bo, HE Qi-Ping, ZHU Tao, LIU Xing-Tan, ZHU Qi-Yu, QIAO Guang-Fa, FAN Ting-An, CHEN Cheng-Jun, DONG Qing-Yu, YU Song-Lie. EFFECT OF WAVING-CANOPY CULTURAL TYPE ON ACTIVE OXYGEN AND MEMBRANE LIPID METABOLISM PEROXIDATION OF HIGH OIL SOYBEAN LEAVES[J]. Chin J Plan Ecolo, 2008, 32(3): 673 -680 .