Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (7): 729-737.doi: 10.17521/cjpe.2016.0270

• Research Articles • Previous Articles     Next Articles

Diversity of dark septate endophyte in the roots of Ammopiptanthus mongolicus and its companion plants

Qian SUN, Zi-Ke XUE, Lin-Lin XIE, Xue-Li HE*(), Li-Li ZHAO   

  1. College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
  • Received:2016-08-29 Accepted:2017-04-05 Online:2017-08-21 Published:2017-07-10
  • Contact: Xue-Li HE
  • About author:

    KANG Jing-yao(1991-), E-mail:


Aims Dark septate endophytes (DSE) extensively colonize in plant root tissues in different ecosystems. However, our understanding of the ecological significance of DSE in semiarid and arid lands is limited. The main objective of this study was to compare the community composition and species diversity of DSE in Ammopiptanthus mongolicus and its companion plants in desert habitats. Methods Healthy root samples of Ammopiptanthus mongolicus’s companion plants, Artemisia desertorum, Caragana rosea, Nitraria tangutorum and Caragana korshinskii, were collected separately from four main locations of Ammopiptanthus mongolicus plantation in Dengkou of Nei Mongol, Minqin of Gansu, Yinchuan and Shapotou of Ningxia in July 2013. Important findings A total of 103 strains belonging to seven species (i.e Alternaria, Curvularia, Embellisia, Phialocephala, Phoma, Podospora and Pleosporales) of DSE were isolated from the four types of companion plants by means of morphological identification and molecular identification. Among the seven genera, Alternaria, Embellisia, Curvularia and Podospora are found for the first time in desert ecosystems. Ammopiptanthus mongolicus and its companion plants at the same site had significantly different community composition of DSE. Ammopiptanthus mongolicus and its companion plants at different sites had significantly different DSE diversity index. The colonization and species richness of DSE, especially the species and the quantity of spores were higher in roots of Ammopiptanthus mongolicus than in its companion plants. This study supports the results that DSE can form a better symbiotic relationship with the roots of Ammopiptanthus mongolicus than with its companion plants, and can enhance the ecological adaptability of Ammopiptanthus mongolicus to the extreme desert environment.

Key words: dark septate endophyte, community composition, species diversity, Ammopiptanthus mongolicus, companion plants

Table 1

Sampling site characteristics of companion plants of Ammopiptanthus mongolicus"

Companion plant
Latitude and
Mean annual
precipitation (mm)
Mean air
temperature (℃)
Soil type
Vegetation type
Dengkou, Nei Mongol
Artemisia desertorum
40.43° N, 106.52° E 1 043 145 7.6 流动沙丘
Moving dune
旱生灌木, 半灌木
Desert shrub, subshrub
Minqin, Gansu
Caragana rosea
38.58° N, 102.93° E 1 350 113 9.6 荒漠沙质
Sandy desert
旱生灌木, 半灌木
Desert shrub, subshrub
Yinchuan, Ningxia
Nitraria tangutorum
38.6° N, 106.57° E 1 169 203 8.5 石质为主
Stony mainly
荒漠草地, 荒漠灌木
Desert grassland,
desert shrub
Shapotou, Ningxia
Caragana korshinskii
37.57° N, 104.97° E 1 298 186 9.5 沙土为主
Sand mainly
旱生灌木, 半灌木
Desert shrub, subshrub

Table 2

Isolation rate of dark septate endophyte in the companion plants of Ammopiptanthus mongolicus"

Companion plant
Number of strains
Isolation rate (%)
Artemisia desertorum
49 12.37
Caragana rosea
11 3.83
Nitraria tangutorum
26 9.11
Caragana korshinskii
17 4.59

Fig. 1

The morphological characteristics of sporulating dark septate endophyte. A, E, DK-1. B, F, MQ-4. C, G, YC-2-1. D, H, SPT-1."

Fig. 2

The morphological characteristics of sterile dark septate endophyte. A, F, DK-0-10. B, G, DK-4. C, H, MQ-1. D, I, YC-2-1. E, J, YC-2-3."

Table 3

The results of sequence Blast"

样地 Site 分离菌株编号 Number of strains 参考物种(登录号) Reference taxa (accession number) 序列相似性 Similarity of sequence (%)
磴口 Dengkou DK-1 Podospora sp. (JQ354914.1) 97%
DK-0-10 Alternaria alternate (KF731832.1) 99%
DK-4 Alternaria sp. (KC584231.1) 99%
民勤 Minqin MQ-1 Pleosporales sp. (JN859354.1) 97%
MQ-4 Curvularia sp. (JF742784.1) 99%
银川 Yinchuan YC-1 Alternaria japonica (FJ477839.1) 97%
YC-2-1 Embellisia sp. (JN859366.1) 99%
YC-3 Phialocephala fluminis (AF486124.1) 100%
沙坡头 Shapotou SPT-1 Phoma medicaginis (FJ224118.1) 99%

Fig. 3

Neighbor-Joining tree of dark septate endophyte in the roots of the companion plants of Ammopiptanthus mongolicus. DK-1, DK-0-10, DK-4 represent the sequence numbers of ITS1-5.8S-ITS2 form three kinds of dark septate endophyte in the roots of the companion plants of Ammopiptanthus mongolicus in Dengkou; MQ-1, MQ-4, represent the sequence numbers of ITS1-5.8S-ITS2 form two kinds of dark septate endophyte in the roots of the companion plants of Ammopiptanthus mongolicus in Minqin; YC-1, YC- 2-1, YC-3, represent the sequence numbers of ITS1-5.8S-ITS2 form three kinds of dark septate endophyte in the roots of the companion plants of Yinchuan; SPT-1 represents the sequence numbers of ITS1-5.8S-ITS2 form dark septate endophyte in the roots of the companion plants of Ammopiptanthus mongolicus in Shapotou. Other accession numbers in the figure are homologous sequence of dark septate endophyte in the roots of the companion plants of Ammopiptanthus mongolicus.obtained by Blast."

Table 4

Isolation frequency of dark septate endophyte in Ammopiptanthus mongolicus and its companion plants"

样地 Site 植物 Plant 菌株编号
Number of strains
Quantity of strains
Isolation frequency (%)
DK-S Cladosporium sp. 16 5.61
DK-1 Podospora sp. 16 5.61
Artemisia desertorum
DK-0-10 Alternaria alternate 23 8.07
DK-4 Alternaria sp. 10 3.51
总菌株数 Total strains 65 22.74
0-10MQ1217-2-2 Paraphoma chrysanthemicola 30 10.53
2MQ0-10 Phoma sp. 23 8.07
MQ1125 Pleosporales sp. 12 4.21
0-10MQ1217-3 Cladosporium sphaerospermum 16 5.61
Caragana rosea
MQ-1 Pleosporales sp. 6 2.11
MQ-4 Curvularia eragrostidis 5 1.75
总菌株数 Total strains 92 32.29
8YC Exophiala cancerae 8 2.81
4YC Phoma sp. 9 3.16
Nitraria tangutorum
YC-1 Alternaria japonica 8 2.81
YC-2-1 Embellisia sp. 15 5.26
YC-3 Phialocephala fluminis 3 1.06
总菌株数 Total strains 43 15.08
2SPT1218 Cladosporium cladosporioides 12 4.21
3ASPT1218 Exophiala sp. 28 9.83
6SPT Phialophora mustea 13 4.56
SPT-1125 Exophiala salmonis 15 5.26
Caragana korshinskii
SPT-1 Phoma medicaginis 17 5.96
总菌株数 Total strains 85 29.89
合计 Total 285 100

Table 5

The comparison between dark septate endophyte in roots of Ammopiptanthus mongolicus and that in A. mongolicus’s companion plants from different sampling sites"

Species of dark
septate endophyte
Ammopiptanthus mongolicus
磴口 Dengkou 民勤 Minqin 银川 Yinchuan 沙坡头 Shapotou 磴口 Dengkou 民勤 Minqin 银川 Yinchuan 沙坡头 Shapotou
Alternaria sp. - - - - + - + -
Embellisia sp. - - - - - - + -
Phialocephala sp. - - - - - - + -
Pleosporales sp. - + - - - + - -
Podospora sp. - - - - + - - -
Curvularia sp. - - - - - + - -
Phoma sp. - + + - - - - +
Paraphoma sp. - + - - - - - -
Exophiala sp. - - + + - - - -
Cladosporium sp. + + - + - - - -
Phialophora sp. - - - + - - - -

Table 6

Species diversity of dark septate endophyte in the roots of Ammopiptanthus mongolicus and its companion plants"

样地 Sampling sites 植物 Plant 多样性指数 Diversity index 优势度 Dominance 均匀度 Uniformity
磴口 Dengkou 沙冬青 Ammopiptanthus mongolicus 0.161 6b 0.996 8a -
沙蒿 Artemisia desertorum 0.482 3a 0.989 1a 0.439 0
民勤 Minqin 沙冬青 Ammopiptanthus mongolicus 0.735 1a 0.977 5a 0.530 3a
红花锦鸡儿 Caragana rosea 0.152 2b 0.999 2a 0.219 6b
银川 Yinchuan 沙冬青 Ammopiptanthus mongolicus 0.209 5b 0.998 2a 0.302 3a
白刺 Nitraria tangutorum 0.303 4a 0.996 3a 0.276 2b
沙坡头 Shapotou 沙冬青 Ammopiptanthus mongolicus 0.657 1a 0.983 7a 0.474 0
柠条锦鸡儿 Caragana korshinskii 0.168 1b 0.996 4a -
[1] Ban Y, Tang M, Chen H, Xu Z, Zhang H, Yang Y (2012). The response of dark septate endophytes (DSE) to heavy metals in pure culture.PLOS ONE, 7, e47968. doi: 10.1371/journal.pone.0047968.
[2] Bonfim JA, Vasconcellos RLF, Baldesin LF, Sieber TN, Cardoso EJBN (2016). Dark septate endophytic fungi of native plants along an altitudinal gradient in the Brazilian Atlantic forest.Fungal Ecology, 20, 202-210.
[3] Chen YY, He XL, Li BK, Cheng CQ, Jiang Q, Chen WY (2014). The symbiotic and isolated culture characteristics of DSE in root ofAmmopiptanthus mongolicus. Journal of Agricultural University of Hebei, 37, 18-24. (in Chinese with English abstract)[陈严严, 贺学礼, 李宝库, 程春泉, 姜桥, 陈伟燕 (2014). 沙冬青根系深色有隔内生真菌共生及分离培养特征研究. 河北农业大学学报, 37, 18-24.]
[4] Deng X, Song XS, Yin DC, Song RQ (2015). Effects of salt stress on growth and nutritional metabolism of two dark septate endophyte.Journal of Central South University of Forestry & Technology, 35(5), 1-7. (in Chinese with English abstract)[邓勋, 宋小双, 尹大川, 宋瑞清 (2015). 盐胁迫对2株深色有隔内生真菌(DSE)生长及营养代谢的影响. 中南林业科技大学学报, 35(5), 1-7.]
[5] Grünig CR, Queloz V, Sieber TN, Holdenrieder O (2008). Dark septate endophytes (DSE) of the Phialocephala fortinii-Acephala applanata species complex in tree roots: Classification, population biology, and ecology.Botany-Botanique, 86, 1355-1369.
[6] Jiang Q, He XL, Chen WY, Zhang YJ, Rong XR, Wang L (2014). Spatial distribution of AM and DSE fungi in the rhizosphere of Ammopiptanthus nanus.Acta Ecologica Sinica, 34, 2929-2937. (in Chinese with English abstract)[姜桥, 贺学礼, 陈伟燕, 张玉洁, 荣心瑞, 王雷 (2014).新疆沙冬青AM和DSE真菌的空间分布. 生态学报, 34, 2929-2937.]
[7] Jumpponen A (2001). Dark septate endophytes—Are they mycorrhizal?Mycorrhiza, 11, 207-211.
[8] Kauppinen M, Raveala K, Wäli PR, Ruotsalainen AL (2014). Contrasting preferences of arbuscular mycorrhizal and dark septate fungi colonizing boreal and subarctic Avenella flexuosa.Mycorrhiza, 24, 171-177.
[9] Knapp DG, Pintye A, Kovacs GM (2012). The dark side is not fastidious-dark septate endophytic fungi of native and invasive plants of semiarid sandy areas.PLOS ONE, 7, e32570. doi: 10.1371/journal.pone.0032570.
[10] Li BK, He XL, He C, Chen YY, Wang XQ (2015). Spatial dynamics of dark septate endophytes and soil factors in the rhizosphere of Ammopiptanthus mongolicus in Inner Mongolia, China.Symbiosis, 65, 75-84.
[11] Likar M, Regvar M (2013). Isolates of dark septate endophytes reduce metal uptake and improve physiology of Salix caprea L.Plant and Soil, 370, 593-604.
[12] Lugo MA, Reinhart KO, Menoyo E, Crespo EM, Urcelay C (2015). Plant functional traits and phylogenetic relatedness explain variation in associations with root fungal endophytes in an extreme arid environment.Mycorrhiza, 25, 85-95.
[13] Mahmoud RS, Narisawa K (2013). A new fungal endophyte, Scolecobasidium humicola, promotes tomato growth under organic nitrogen conditions. PLOS ONE, 8, e78746. doi: 10.1371/journal.pone.0078746.
[14] Mandyam K, Fox C, Jumpponen A (2012). Septate endophyte colonization and host responses of grasses and forbs native to a tallgrass prairie.Mycorrhiza, 22, 109-119.
[15] Mandyam K, Jumpponen A (2005). Seeking the elusive function of the root-colonising dark septate endophytic fungi.Studies in Mycology, 53, 173-189.
[16] Mandyam K, Jumpponen A (2008). Seasonal and temporal dynamics of arbuscular mycorrhizal and dark septate endophytic fungi in a tallgrass prairie ecosystem are minimally affected by nitrogen enrichment.Mycorrhiza, 18, 145-155.
[17] Mandyam K, Jumpponen A (2015). Mutualism-parasitism paradigm synthesized from results of root-endophyte models.Frontiers in Microbiology, 5, 1-13.
[18] Muthukumar T, Senthilkumar M, Rajangam M (2006). Arbuscular mycorrhizal morphology and dark septate fungal associations in medicinal and aromatic plants of Western Ghats, Southern India.Mycorrhiza, 17, 11-24.
[19] Porras-Alfaro A, Herrera J, Sinsabaugh RL, Odenbach KJ, Lowrey T, Natvig DO (2008). Novel root fungal consortium associated with a dominant desert grass.Applied and Environment Microbiology, 74, 2805-2813.
[20] Postma JWM, Olsson PA, Kalkengren-Grerup U (2007). Root colonization by arbuscular mycorrhizal, fine endophytic and dark septate fungi across a pH gradient in acid beech forests.Soil Biology & Biochemistry, 39, 400-408.
[21] Rudgers JA, Clay K (2007). Endophyte symbiosis with tall fescue: How strong are the impacts on communities and ecosystems?Fungal Biology Reviews, 21, 107-124.
[22] Scervino JM, Gottlieb A, Silvani VA (2009). Exudates of dark septate endophyte (DSE) modulate the development of the arbuscular mycorrhizal fungus (AMF) Gigaspora rosea.Soil Biology & Biochemistry, 41, 1753-1756.
[23] Sieber TN, Grünig CR (2013). Fungal root endophytes. In: Eshel A, Beeckman T eds. Plant Roots—The Hidden Half. 4th edn. CRC Press, Florida, USA. 38-49.
[24] Sun Q, He C, He XL, Zhao LL (2015). Colonization of dark septate endophytes in roots of Ammopiptanthus mongolicus and its associated plants as influenced by soil properties.Chinese Journal of Plant Ecology, 39, 878-889. (in Chinese with English abstract)[孙茜, 贺超, 贺学礼, 赵丽莉 (2015). 沙冬青与伴生植物深色有隔内生真菌定殖规律及其与土壤因子的相关性. 植物生态学报, 39, 878-889.]
[25] Usuki F, Narisawa K (2007). A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage.Mycorrhiza, 99, 175-184.
[26] Wu L, Guo S (2008). Interaction between an isolate of dark- septate fungi and its host plant Saussurea involucrata.Mycorrhiza, 18, 79-85.
[27] Yadav M, Yadav A, Kumar S, Yadav JP (2016). Spatial and seasonal influences on culturable endophytic mycobiota associated with different tissues of Eugenia jambolana Lam. and their antibacterial activity against MDR strains. BMC Microbiology, 16, 1-12.
[28] Yan J, He XL, Zhang YJ, Xu W, Zhang J, Zhao LL (2014). Colonization of arbuscular mycorrhizal fungi and dark septate endophytes in roots of desert Salix psammophila.Chinese Journal of Plant Ecology, 38, 949-958. (in Chinese with English abstract)[闫姣, 贺学礼, 张亚娟, 许伟, 张娟, 赵丽莉 (2014). 荒漠北沙柳根系丛枝菌根真菌和黑隔内生真菌定殖状况. 植物生态学报, 38, 949-958.]
[29] Yang QH, Ge XJ, Ye WH, Deng X, Liao FL (2004). Characteristics of Ammopiptanthus nanus seed and factors affecting its germination.Acta Phytoecologica Sinica, 28, 651-656. (in Chinese with English abstract)[杨期和, 葛学军, 叶万辉, 邓雄, 廖富林 (2004). 矮沙冬青种子特性和萌发影响因素的研究. 植物生态学报, 28, 651-656.]
[30] Yu ZS, Zhang BH, Sun W, Zhang FL, Li ZY (2013). Phylogenetically diverse endozoic fungi in the South China Sea sponges and their potential in synthesizing bioactive natural products suggested by PKS gene and cytotoxic activity analysis.Fungal Diversity, 58, 127-141.
[31] Zhan FD, He YM, Li T, Yang YY, Gurpal ST, Zhao ZW (2015). Tolerance and antioxidant response of a dark septate endophyte (DSE), Exophiala pisciphila, to cadmium stress.Bulletin Environmental Contamination Toxicology, 94, 96-102.
[32] Zhang J, He XL, Zhao LL, Xu W, Yan J (2015). Responses of desert soil factors and dark septate endophytes colonization to clonal plants invasion.Acta Ecologica Sinica, 35, 1095-1103. (in Chinese with English abstract)[张娟, 贺学礼, 赵丽莉, 许伟, 闫娇 (2015). 荒漠土壤因子和DSE定殖对克隆植物入侵的响应. 生态学报, 35, 1095-1103.]
[33] Zhang SR, He XL, Xu HB, Liu CM, Niu K (2013). Correlation study of AM and DSE fungi and soil factors in the rhizosphere of Ammopiptanthus mongolicus.Acta Botanica Boreali-Occidentalia Sinica, 33, 1891-1897. (in Chinese with English abstract)[张淑容, 贺学礼, 徐浩博, 刘春卯, 牛凯 (2013). 蒙古沙冬青根围AM和DSE真菌与土壤因子的相关性研究. 西北植物学报, 33, 1891-1897.]
[34] Zhao D, Tao L, Shen M, Wang J, Zhao Z (2015). Diverse strategies conferring extreme cadmium (Cd) tolerance in the dark septate endophyte (DSE), Exophiala pisciphila: Evidence from RNA-seq data.Microbiological Research, 170, 27-35.
[1] Hu Yifeng, Yu Wenhua, Yue Yang, Huang Zhenglanyi, Li Yuchun, Wu Yi. Species diversity and potential distribution of Chiroptera on Hainan Island, China [J]. Biodiv Sci, 2019, 27(4): 400-408.
[2] Yan Wenbo,Ji Shengnan,Shuai Lingying,Zhao Leigang,Zhu Dapeng,Zeng Zhigao. Spatial distribution patterns of mammal diversity in Yangxian County of Shaanxi Province on the southern slope of the Qinling Mountains [J]. Biodiv Sci, 2019, 27(2): 177-185.
[3] Chen Zuoyi, Xu Xiaojing, Zhu Suying, Zhai Mengyi, Li Yang. Species diversity and geographical distribution of the Chaetoceros lorenzianus complex along the coast of China [J]. Biodiv Sci, 2019, 27(2): 149-158.
[4] Bo Wang,Yong Huang,Jiatang Li,Qiang Dai,Yuezhao Wang,Daode Yang. Amphibian species richness patterns in karst regions in Southwest China and its environmental associations [J]. Biodiv Sci, 2018, 26(9): 941-950.
[5] Dexin Sun, Xiang Liu, Shurong Zhou. Dynamical changes of diversity and community assembly during recovery from a plant functional group removal experiment in the alpine meadow [J]. Biodiv Sci, 2018, 26(7): 655-666.
[6] Yu Zhang, Gang Feng. Distribution pattern and mechanism of insect species diversity in Inner Mongolia [J]. Biodiv Sci, 2018, 26(7): 701-706.
[7] Xiaqiu Tao,Shaopeng Cui,Zhigang Jiang,Hongjun Chu,Na Li,Daode Yang,Chunwang Li. Reptilian fauna and elevational patterns of the reptile species diversity in Altay Prefecture in Xinjiang, China [J]. Biodiv Sci, 2018, 26(6): 578-589.
[8] Cheng Tian,Junqing Li,Xuyu Yang,Lin Yu,Dan Yuan,Yunxi Li. Preliminary surveys of wild animals using infrared camera in Wanglang National Nature Reserve, Sichuan Province [J]. Biodiv Sci, 2018, 26(6): 620-626.
[9] Han-Dong WEN, Lu-Xiang LIN, Jie YANG, Yue-Hua HU, Min CAO, Yu-Hong LIU, Zhi-Yun LU, You-Neng XIE. Species composition and community structure of a 20 hm2 plot of mid-mountain moist evergreen broad-leaved forest on the Mts. Ailaoshan, Yunnan Province, China [J]. Chin J Plan Ecolo, 2018, 42(4): 419-429.
[10] Qian YANG, Wei WANG, Hui ZENG. Effects of nitrogen addition on the plant diversity and biomass of degraded grasslands of Nei Mongol, China [J]. Chin J Plan Ecolo, 2018, 42(4): 430-441.
[11] LIU Hai-Yue, LI Xin-Mei, ZHANG Lin-Lin, WANG Jiao-Jiao, HE Xue-Li. Eco-geographical distribution of arbuscular mycorrhizal fungi associated with Hedysarum scoparium in the desert zone of northwestern China [J]. Chin J Plan Ecolo, 2018, 42(2): 252-260.
[12] Yiming Hu,Jianchao Liang,Kun Jin,Zhifeng Ding,Zhixin Zhou,Huijian Hu,Zhigang Jiang. The elevational patterns of mammalian richness in the Himalayas [J]. Biodiv Sci, 2018, 26(2): 191-201.
[13] Tianqi Shang, Nuonan Ye, Haiqing Gao, Hongdi Gao, Lita Yi. Community Structure Analysis of a Public Welfare Forest Based on Multivariate Regression Trees [J]. Chin Bull Bot, 2018, 53(2): 238-249.
[14] Zihong Chen, Xiaona Yang, Ningjing Sun, Ling Xu, Yuan Zheng, Yuming Yang. Species diversity and vertical distribution characteristics of Metarhizium in Gaoligong Mountains, southwestern China [J]. Biodiv Sci, 2018, 26(12): 1308-1317.
[15] Lisha Lü, Hongyu Cai, Yong Yang, Zhiheng Wang, Hui Zeng. Geographic patterns and environmental determinants of gymnosperm species diversity in China [J]. Biodiv Sci, 2018, 26(11): 1133-1146.
Full text



[1] Jian-Guo Chen, Yang Yang, Song-Wei Wang, Jürg Stöcklin, De-Li Peng, and Hang Sun. Recruitment of the high elevation cushion plant Arenaria polytrichoides is limited by competition, thus threatened by currently established vegetation[J]. J Syst Evol, 0, (): 1 -10 .
[3] Xiao-Hong YU;,Yi-Bo LUO,;,Ming DONG. Pollination biology of Cymbidium goeringii (Orchidaceae) in China[J]. J Syst Evol, 2008, 46(2): 163 -174 .
[4] Yi Wang. Practice and innovation for overarching institution design of China’s
national park
[J]. Biodiv Sci, 2017, 25(10): 1037 -1039 .
[5] HE Tong-Xin,LI Yan-Peng,ZHANG Fang-Yue,WANG Qing-Kui. Effects of understory removal on soil respiration and microbial community composition structure in a Chinese fir plantation[J]. Chin J Plan Ecolo, 2015, 39(8): 797 -806 .
[6] Lin Wan-Tao. New Taxa and Combinations of Bambusoideae from China[J]. J Syst Evol, 1988, 26(2): 144 -149 .
[7] Chang Wen-Jin. A new species of Hemsleya[J]. J Syst Evol, 1979, 17(4): 97 -98 .
[8] . [J]. Chin Bull Bot, 1999, 16(增刊): 45 -46 .
[9] YAN Kai, FU Deng-Gao, HE Feng, DUAN Chang-Qun. Leaf nutrient stoichiometry of plants in the phosphorus-enriched soils of the Lake Dianchi watershed, southwestern China[J]. Chin J Plan Ecolo, 2011, 35(4): 353 -361 .
[10] HOU Xue-Liang, LI Ping-Tao. Three synonyms of Annonaceae in China[J]. J Syst Evol, 2007, 45(3): 369 -375 .