Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (11): 1149-1156.doi: 10.17521/cjpe.2016.0321

• Research Articles • Previous Articles     Next Articles

Relationships between species diversity or community structure and productivity of woody-plants in a broad-leaved Korean pine forest in Jiaohe, Jilin, China

Ling-Zhao TAN1, Chun-Yu FAN1, Xiu-Hua FAN2,*   

  1. 1Research Center of Forest Management Engineering of State Forestry Administration, Beijing Forestry University, Beijing 100083, China
    and
    2College of Science, Beijing Forestry University, Beijing 100083, China
  • Received:2016-10-17 Accepted:2017-10-23 Online:2017-11-10 Published:2017-11-10
  • Contact: Xiu-Hua FAN E-mail:blfanxh@bjfu.edu.cn

Abstract:

Aims Based on the dataset of a broad-leaved Korean pine forest in Jiaohe, Jilin Province, this research compared the influences of species diversity and community structure on productivity. We aim to explain the relationship between diversity and productivity for better forest management.
Methods We used the data of 10 973 woody-plants in a 11.76 hm2 large sample plot and analyzed the correlations between 7 different indices of species diversity or community structure and productivity. Structural equation model was used to compare the effects of species diversity and community structure on productivity.
Important findings The results showed that: (1) Both species diversity and community structure had significant effects on productivity when they were considered separately in linear regression analysis, i.e. species evenness was negatively correlated with productivity, the Shannon index of community structure was positively correlated with productivity and the Gini index was negatively correlated with productivity. (2) In the structural equation model, when simultaneously considered, community structure had stronger influence on productivity than species diversity. Our research suggests that, the effects of community structure on productivity are greater than species diversity and it is important to increase community structure complexity to improve forest productivity during forest management.

Key words: community structure, species diversity, forest productivity, large sample plot, structural equation model

Table 1

The statistical information of basic variables in the sampling plot"

变量 Variables 范围 Range 平均值 Mean 标准偏差 Standard deviation
胸高断面积年均增长量 Annual growth of basal area (cm2·a-1) 76.53-543.60 272.22 83.62
林冠开阔度 Canopy openness 1.12-3.99 1.87 0.38
土壤全氮 Soil total nitrogen (g·kg-1) 0.65-1.60 0.95 0.16
土壤全磷 Soil total phosphorus (g·kg-1) 0.33-1.09 0.79 0.12
土壤全钾 Soil total potassium (g·kg-1) 20.40-20.90 20.70 0.01
土壤速效氮 Soil available nitrogen (mg·kg-1) 29.93-68.81 53.65 8.48
土壤速效磷 Soil available phosphorus (mg·kg-1) 0.09-22.01 11.94 5.59
土壤速效钾 Soil available potassium (mg·kg-1) 206.80-236.20 226.30 5.74
土壤有机碳 Soil organic carbon (%) 5.51-13.33 9.64 1.60
土壤pH值 Soil pH value 4.38-5.32 4.88 0.25
胸高断面积密度 Basal area density (cm2·m-2) 9.73-46.31 27.97 5.96

Table 2

The formulas and results of species diversity and community structure of woody plants in the studied forest"

指数 Index 计算公式 Formula 平均值 Mean value 范围 Range
物种多样性
Species diversity
物种丰富度 Species richness $S=Ns$ 8.34 4-15
物种香农指数
Species Shannon index
$Hs=-\sum\limits_{i=1}^{Ns}{\frac{{{n}_{i}}}{N}\ \times \ ln\left( \frac{{{n}_{i}}}{N} \right)}$ 1.81 1.18-2.55
物种均匀度 Species evenness $Es={Hs}/{ln\left( Ns \right)}\;$ 0.87 0.65-0.97
群落结构变异
Variation of
community structure
胸径香农指数
DBH Shannon index
$Hd=-\sum\limits_{j=1}^{Nd}{\frac{{{n}_{j}}}{N}\ \times \ ln\left( \frac{{{n}_{j}}}{N} \right)}$ 2.77 2.24-3.11
胸径均匀度 DBH evenness $Es={Hd}/{\text{l}n\left( Nd \right)}\;$ 0.94 0.70-1.11
胸径变异系数
Coefficient of DBH variation
$VarD\,=\,100%\,\ \times \ \frac{\sqrt{\frac{1}{N}{{\left( DB{{H}_{k}}-\mu \right)}^{2}}}}{\mu }$ 77.36 44.14-112.70
胸径基尼系数
DBH Gini index
$GiniD=\frac{\sum\limits_{k=2}^{N}{\left( 2\times \ k-N-\ 1 \right)\,\ \times \ b{{a}_{k}}}}{\sum\limits_{k=2}^{N}{\left( N-\ 1 \right)\,\ \times \ b{{a}_{k}}}}$ 0.39 0.24-0.51

Table 3

The correlation coefficient between the examined variables and forest productivity using different models"

解释变量
Explanatory variables
估计值 Estimate
物种多样性模型
Species diversity model
群落结构变异模型
Community structural
variation model
A B
物种均匀度
Species evenness
-0.211* - -
胸径香农指数
DBH Shannon index
- 0.400*** -
胸径基尼系数
DBH Gini index
- - -0.337***
胸高断面积密度
Basal area density
0.914*** 0.756*** 0.964***
林冠开阔度
Canopy openness
0.289*** 0.275** 0.298***
有机碳
Soil organic carbon
0.517*** 0.221* 0.293***
速效钾
Available potassium
0.991*** 0.193* 0.241**
速效氮
Available nitrogen
0.413*** - -
pH -0.520*** - -
速效磷
Available phosphorus
- 0.413*** -
全磷
Total phosphorus
- -0.244* -
调整决定系数
Adjusted R2
34.67% 35.95% 31.93%
AICAIC value 1 080.385 1 074.56 1 090.52

Fig. 1

The impact paths of species diversity and community structure on productivity. Solid line indicates significant path, while dashed line indicates insignificant path. ***, p < 0.001."

[1] Bertness MD, Leonard GH (1997). The role of positive interacttions in communities: Lessons from intertidal habitats.Ecology, 78, 1976-1989.
[2] Bourdier T, Cordonnier T, Kunstler G, Piedallu C, Lagarrigues G, Courbaud B (2016). Tree size inequality reduces forest productivity: An analysis combining inventory data for ten European species and a light competition model.PLOS ONE, 11, e0151852. doi: 10.1371/journal.pone.0151852.
doi: 10.1371/journal.pone.0151852 pmid: 4801349
[3] Box GEP, Cox DR (1964). An analysis of transformations.Journal of the Royal Statistical Society, 26, 211-252.
[4] Chesson P (2000). Mechanisms of maintenance of species diversity.Annual Review of Ecology & Systematics, 31, 343-366.
doi: 10.1146/annurev.ecolsys.31.1.343
[5] Christopherm G, Christophs V, Brady H, Peters C (2010). Wood net primary production resilience in an unmanaged forest transitioning from early to middle succession.Forest Ecology & Management, 260, 36-41.
doi: 10.1016/j.foreco.2010.03.027
[6] Clark JS (2010). Individuals and the variation needed for high species diversity in forest trees.Science, 327, 1129-1132.
doi: 10.1126/science.1183506 pmid: 20185724
[7] Coomes DA, Kunstler G, Canham CD, Wright E (2009). A greater range of shade-tolerance niches in nutrient-rich forests: An explanation for positive richness-productivity relationships?Journal of Ecology, 97, 705-717.
doi: 10.1111/j.1365-2745.2009.01507.x
[8] D?nescu A, Albrecht AT, Bauhus J (2016). Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany.Oecologia, 182, 319-333.
doi: 10.1007/s00442-016-3623-4 pmid: 27059713
[9] Fahey RT, Fotis AT, Woods KD (2015). Quantifying canopy complexity and effects on productivity and resilience in late-successional hemlock-hardwood forests.Ecological Applications, 25, 834-847.
doi: 10.1890/14-1012.1 pmid: 26214927
[10] Forrester DI, Bauhus J (2016). A review of processes behind diversity—Productivity relationships in forests.Current Forestry Reports, 2, 1-17.
doi: 10.1007/s40725-016-0031-2
[11] Fox J (2008). Applied Regression Analysis and Generalized Linear Models. 2nd edn. Sage Publications, Thousand Oaks, USA.
[12] Fox J, Monette G (1992). Generalized collinearity diagnostics.Journal of the American Statistical Association, 87, 178-183.
[13] Hardiman BS, Bohrer G, Gough CM, Vogel CS, Curtisi PS (2011). The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest.Ecology, 92, 1818-1827.
doi: 10.2307/23034858 pmid: 21939078
[14] Hardiman BS, Gough CM, Halperin A, Hofmeister KL, Nave LE, Bohrer G, Curtis P (2013). Maintaining high rates of carbon storage in old forests: A mechanism linking canopy structure to forest function.Forest Ecology & Management, 298, 111-119.
doi: 10.1016/j.foreco.2013.02.031
[15] He JS, Fang JY, Ma KP, Huang JH (2003). Biodiversity and ecosystem productivity: Why is there a discrepancy in the relationship between experimental and natural ecosystems?Acta Phytoecologica Sinica, 27, 835-843. (in Chinese with English abstract)[贺金生, 方精云, 马克平, 黄建辉 (2003). 生物多样性与生态系统生产力: 为什么野外观测和受控实验结果不一致? 植物生态学报, 27, 835-843.]
doi: 10.17521/cjpe.2003.0120
[16] Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Set?l? H, Symstad AJ, Vandermeer J, Wardle DA (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge.Ecological Monographs, 75, 3-35.
doi: 10.1016/j.drugalcdep.2010.01.006
[17] Kuehne C, Weiskittel AR, Fraver S, Puettmann KJ (2015). Effects of thinning-induced changes in structural heterogeneity on growth, ingrowth, and mortality in secondary coastal Douglas-fir forests.Canadian Journal of Forest Research, 45, 1448-1461.
[18] Lei X, Wang W, Peng C (2008). Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada.Canadian Journal of Forest Research, 39, 1835-1847.
doi: 10.1139/X09-089
[19] Liang J, Buongiorno J, Monserud RA, Kruger EL, Zhou Me (2007). Effects of diversity of tree species and size on forest basal area growth, recruitment, and mortality.Forest Ecology & Management, 243, 116-127.
doi: 10.1016/j.foreco.2007.02.028
[20] Long JN, Shaw JD (2010). The influence of compositional and structural diversity on forest productivity.Forestry, 289, 121-128.
doi: 10.1093/forestry/cpp033
[21] Loreau M, Hector A (2001). Partitioning selection and complementarity in biodiversity experiments.Nature, 412, 72-76.
[22] Maire GL, Nouvellon Y, Christina M, Ponzoni FJ, Gon?alves JLM, Bouillet JP, Laclau JP (2013). Tree and stand light use efficiencies over a full rotation of single- and mixed- species Eucalyptus grandis, and Acacia mangium plantations. Forest Ecology & Management, 288, 31-42.
[23] Morin X, Fahse L, Scherer-Lorenzen M, Bugmann H (2011). Tree species richness promotes productivity in temperate forests through strong complementarity between species.Ecology Letters, 14, 1211-1219.
doi: 10.1111/j.1461-0248.2011.01691.x pmid: 21955682
[24] Naeem S, Bunker DE, Hector A, Loreau M, Perrings C (2009). Biodiversity, Ecosystem Functioning, and Human Wellbeing. Oxford University Press, New York.
[25] Parker GG, Davis MM, Chapotin SM (2002). Canopy light transmittance in Douglas-fir-western hemlock stands.Tree Physiology, 22, 147-157.
doi: 10.1093/treephys/22.2-3.147 pmid: 11830411
[26] Parker GG, Harmon ME, Lefsky MA, Chen J (2004). Three- dimensional structure of an old-growth Pseudotsuga- Tsuga, canopy and its implications for radiation balance, microclimate, and gas exchange.Ecosystems, 7, 440-453.
doi: 10.1007/s10021-004-0136-5
[27] Pretzsch H (2014). Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures.Forest Ecology & Management, 327, 251-264.
doi: 10.1016/j.foreco.2014.04.027
[28] Reich PB, Tilman D, Isbell F, Mueller K, Hobbie SE, Flynn DFB, Eisenhauer N (2012). Impacts of biodiversity loss escalate through time as redundancy fades.Science, 336, 589-592.
doi: 10.1126/science.1217909 pmid: 22556253
[29] Ruijven JV, Berendse F (2005). Diversity-productivity relationships: Initial effects, long-term patterns, and underlying mechanisms.Proceedings of the National Academy of Sciences of the United States of America, 102, 695-700.
doi: 10.1073/pnas.0407524102 pmid: 15640357
[30] Ryan MG, Stape JL, Binkley D, Fonseca S, Loos RA, Takahashi EN, Silva CR, Silva SR, Hakamada RE, Ferreira JM, Lima AMN, Gava JL, Leite FP, Andrade HB, Alves JM, Silva GGC (2010). Factors controlling Eucalyptus productivity: How water availability and stand structure alter production and carbon allocation.Forest Ecology & Management, 259, 1695-1703.
doi: 10.1016/j.foreco.2010.01.013
[31] Tilman D, Lehman CL, Thomson KT (1997). Plant diversity and ecosystem productivity: Theoretical considerations.Proceedings of the National Academy of Sciences of the United States of America, 94, 1857-1861.
[32] Tilman D, Reich PB, Knops JM (2006). Biodiversity and ecosystem stability in a decade-long grassland experiment.Nature, 441, 629-632.
doi: 10.1038/nature04742 pmid: 16738658
[33] Tilman D, Wedin D, Knops J (1996). Productivity and sustainability influenced by biodiversity in grassland ecosystems.Nature, 379, 718-720.
doi: 10.1038/379718a0
[34] Valladares F, Niinemets U (2008). Shade tolerance, a key plant feature of complex nature and consequences.Annual Review of Ecology Evolution & Systematics, 39, 237-257.
doi: 10.1016/S0376-7388(00)00448-8
[35] Yachi S, Loreau M (2007). Does complementary resource use enhance ecosystem functioning? A model of light competition in plant communities. Ecology Letters, 10, 54-62.
doi: 10.1111/j.1461-0248.2006.00994.x pmid: 17204117
[36] Zhang Y, Chen HYH (2015). Individual size inequality links forest diversity and above-ground biomass.Journal of Ecology, 103, 1245-1252.
doi: 10.1111/1365-2745.12425
[37] Zhang Y, Chen HYH, Reich PB (2012). Forest productivity increases with evenness, species richness and trait variation: A global meta-analysis.Journal of Ecology, 100, 742-749.
doi: 10.1111/j.1365-2745.2011.01944.x
[1] Dan Liu,Zhongling Guo,Xiaoyang Cui,Chunnan Fan. Comparison of five associations of Taxus cuspidata and their species diversity [J]. Biodiv Sci, 2020, 28(3): 340-349.
[2] Zhixia Zhao,Changming Zhao,Shuyu Deng,Guozhen Shen,Zongqiang Xie,Gaoming Xiong,Junqing Li. Community structure and dynamics of a remnant forest dominated by Thuja sutchuenensis after deforestation [J]. Biodiv Sci, 2020, 28(3): 333-339.
[3] Xia Li,Wanze Zhu,Shouqin Sun,Shumiao Shu,Zheliang Sheng,Jun Zhang,Ting Liu,Zhicai Zhang. Influence of habitat on the distribution pattern and diversity of plant community in dry and warm valleys of the middle reaches of the Dadu River, China [J]. Biodiv Sci, 2020, 28(2): 117-127.
[4] Minxia Liu,Quandi Li,Xiaoxuan Jiang,Sujuan Xia,Xiaoning Nan,Yaya Zhang,Bowen Li. Contribution of rare species to species diversity and species abundance distribution pattern in the Gannan subalpine meadow [J]. Biodiv Sci, 2020, 28(2): 107-116.
[5] Zhenyuan Liu,Xingliang Meng,Zhengfei Li,Junqian Zhang,Jing Xu,Senlu Yin,Zhicai Xie. Diversity assessment and protection strategies for the mollusk community in the southern Dongting Lake [J]. Biodiv Sci, 2020, 28(2): 155-165.
[6] WANG Yu-Bing,SUN Yi-Han,DING Wei,ZHANG En-Tao,LI Wen-Huai,CHI Yong-Gang,ZHENG Shu-Xia. Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe [J]. Chin J Plant Ecol, 2020, 44(1): 22-32.
[7] DING Wei,WANG Yu-Bing,XIANG Guan-Hai,CHI Yong-Gang,LU Shun-Bao,ZHENG Shu-Xia. Effects of Caragana microphylla encroachment on community structure and ecosystem function of a typical steppe [J]. Chin J Plant Ecol, 2020, 44(1): 33-43.
[8] Zihong Chen,Yuanbing Wang,Yongdong Dai,Kai Chen,Ling Xu,Qingcheng He. Species diversity and seasonal fluctuation of entomogenous fungi of Ascomycota in Taibaoshan Forest Park in western Yunnan [J]. Biodiv Sci, 2019, 27(9): 993-1001.
[9] Yibo Tan,Wenhui Shen,Zi Fu,Wei Zheng,Zhiyang Ou,Zhangqiang Tan,Yuhua Peng,Shilong Pang,Qinfei He,Xiaorong Huang,Feng He. Effect of environmental factors on understory species diversity in Southwest Guangxi Excentrodendron tonkinense forests [J]. Biodiv Sci, 2019, 27(9): 970-983.
[10] FANG Wen-Jing,CAI Qiong,ZHU Jiang-Ling,JI Cheng-Jun,YUE Ming,GUO Wei-Hua,ZHANG Feng,GAO Xian-Ming,TANG Zhi-Yao,FANG Jing-Yun. Distribution, community structures and species diversity of larch forests in North China [J]. Chin J Plant Ecol, 2019, 43(9): 742-752.
[11] TANG Li-Li,YANG Tong,LIU Hong-Yan,KANG Mu-Yi,WANG Ren-Qing,ZHANG Feng,GAO Xian-Ming,YUE Ming,ZHANG Mei,ZHENG Pu-Fan,SHI Fu-Chen. Distribution and species diversity patterns of Vitex negundo var. heterophylla shrublands in North China [J]. Chin J Plant Ecol, 2019, 43(9): 825-833.
[12] Tolgor Bau, Xueshan Wang, Peng Zhang. Floristic of agarics and boletus in the Greater and Lesser Khinggan Mountains [J]. Biodiv Sci, 2019, 27(8): 867-873.
[13] Sun Beibei, Yu Cungen, Liu Hui, Yan Wenchao, Zhang Wenjun, Dai Dongxu. Spring and autumn shrimp and crab biodiversity in the east Nanji Islands [J]. Biodiv Sci, 2019, 27(7): 787-795.
[14] Jiao Meng, Li Jing, Zhao Huifeng, Wu Chunsheng, Zhang Aibing. Species diversity and global distribution of Limacodidae (Lepidoptera) using online databases [J]. Biodiv Sci, 2019, 27(7): 778-786.
[15] Zhang Mingming,Yang Zhaohui,Wang Cheng,Wang Jiaojiao,Hu Canshi,Lei Xiaoping,Shi Lei,Su Haijun,Li Jiaqi. Camera-trapping survey on mammals and birds in Fanjingshan National Nature Reserve, Guizhou, China [J]. Biodiv Sci, 2019, 27(7): 813-818.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhang Zhen-jue. Some Principles Governing Shedding of Flowers and Fruits in Vanilla fragrans[J]. Chin Bull Bot, 1985, 3(05): 36 -37 .
[2] Qian Gao;Yuying Liu;Yinan Fei;Dapeng Li;Xianglin Liu* . Research Advances into the Root Radial Patterning Gene SHORT-ROOT[J]. Chin Bull Bot, 2008, 25(03): 363 -372 .
[3] Wang Bao-shan;Zou Qi and Zhao Ke-fu. Advances in Mechanism of Crop Salt Tolerance and Strategies for Raising Crop Salt Tolerance[J]. Chin Bull Bot, 1997, 14(增刊): 25 -30 .
[4] HE Feng WU Zhen-Bin. Application of Aquatic Plants in Sewage Treatment and Water Quality Improvement[J]. Chin Bull Bot, 2003, 20(06): 641 -647 .
[5] JIA Hu-Sen LI De-QuanHAN Ya-Qin. Cytochrome b-559 in Chloroplasts[J]. Chin Bull Bot, 2001, 18(02): 158 -162 .
[6] Wei Sun;Chonghui Li;Liangsheng Wang;Silan Dai*. Analysis of Anthocyanins and Flavones in Different-colored Flowers of Chrysanthemum[J]. Chin Bull Bot, 2010, 45(03): 327 -336 .
[7] . Phosphate_Stress Protein and Iron_Stress Protein in Plants[J]. Chin Bull Bot, 2001, 18(05): 571 -576 .
[8] ZHANG Da-Yong, JIANG Xin-Hua. An Ecological Perspective on Crop Prduction[J]. Chin J Plan Ecolo, 2000, 24(3): 383 -384 .
[9] Gui Ji-xun, Zhu Ting-cheng. Study of Energy Flow Between Litter and Decomposers in Aneurolepidium chinese Grassland[J]. Chin J Plan Ecolo, 1992, 16(2): 143 -148 .
[10] YAN Xiu-Feng. Ecology of Plant secondary Metabolism[J]. Chin J Plan Ecolo, 2001, 25(5): 639 -640 .