Chin J Plant Ecol ›› 2017, Vol. 41 ›› Issue (11): 1149-1156.DOI: 10.17521/cjpe.2016.0321
• Research Articles • Previous Articles Next Articles
Ling-Zhao TAN1, Chun-Yu FAN1, Xiu-Hua FAN2,*
Received:
2016-10-17
Accepted:
2017-10-23
Online:
2017-11-10
Published:
2017-11-10
Contact:
Xiu-Hua FAN
Ling-Zhao TAN, Chun-Yu FAN, Xiu-Hua FAN. Relationships between species diversity or community structure and productivity of woody-plants in a broad-leaved Korean pine forest in Jiaohe, Jilin, China[J]. Chin J Plant Ecol, 2017, 41(11): 1149-1156.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0321
变量 Variables | 范围 Range | 平均值 Mean | 标准偏差 Standard deviation |
---|---|---|---|
胸高断面积年均增长量 Annual growth of basal area (cm2·a-1) | 76.53-543.60 | 272.22 | 83.62 |
林冠开阔度 Canopy openness | 1.12-3.99 | 1.87 | 0.38 |
土壤全氮 Soil total nitrogen (g·kg-1) | 0.65-1.60 | 0.95 | 0.16 |
土壤全磷 Soil total phosphorus (g·kg-1) | 0.33-1.09 | 0.79 | 0.12 |
土壤全钾 Soil total potassium (g·kg-1) | 20.40-20.90 | 20.70 | 0.01 |
土壤速效氮 Soil available nitrogen (mg·kg-1) | 29.93-68.81 | 53.65 | 8.48 |
土壤速效磷 Soil available phosphorus (mg·kg-1) | 0.09-22.01 | 11.94 | 5.59 |
土壤速效钾 Soil available potassium (mg·kg-1) | 206.80-236.20 | 226.30 | 5.74 |
土壤有机碳 Soil organic carbon (%) | 5.51-13.33 | 9.64 | 1.60 |
土壤pH值 Soil pH value | 4.38-5.32 | 4.88 | 0.25 |
胸高断面积密度 Basal area density (cm2·m-2) | 9.73-46.31 | 27.97 | 5.96 |
Table 1 The statistical information of basic variables in the sampling plot
变量 Variables | 范围 Range | 平均值 Mean | 标准偏差 Standard deviation |
---|---|---|---|
胸高断面积年均增长量 Annual growth of basal area (cm2·a-1) | 76.53-543.60 | 272.22 | 83.62 |
林冠开阔度 Canopy openness | 1.12-3.99 | 1.87 | 0.38 |
土壤全氮 Soil total nitrogen (g·kg-1) | 0.65-1.60 | 0.95 | 0.16 |
土壤全磷 Soil total phosphorus (g·kg-1) | 0.33-1.09 | 0.79 | 0.12 |
土壤全钾 Soil total potassium (g·kg-1) | 20.40-20.90 | 20.70 | 0.01 |
土壤速效氮 Soil available nitrogen (mg·kg-1) | 29.93-68.81 | 53.65 | 8.48 |
土壤速效磷 Soil available phosphorus (mg·kg-1) | 0.09-22.01 | 11.94 | 5.59 |
土壤速效钾 Soil available potassium (mg·kg-1) | 206.80-236.20 | 226.30 | 5.74 |
土壤有机碳 Soil organic carbon (%) | 5.51-13.33 | 9.64 | 1.60 |
土壤pH值 Soil pH value | 4.38-5.32 | 4.88 | 0.25 |
胸高断面积密度 Basal area density (cm2·m-2) | 9.73-46.31 | 27.97 | 5.96 |
指数 Index | 计算公式 Formula | 平均值 Mean value | 范围 Range | |
---|---|---|---|---|
物种多样性 Species diversity | 物种丰富度 Species richness | $S=Ns$ | 8.34 | 4-15 |
物种香农指数 Species Shannon index | $Hs=-\sum\limits_{i=1}^{Ns}{\frac{{{n}_{i}}}{N}\ \times \ ln\left( \frac{{{n}_{i}}}{N} \right)}$ | 1.81 | 1.18-2.55 | |
物种均匀度 Species evenness | $Es={Hs}/{ln\left( Ns \right)}\;$ | 0.87 | 0.65-0.97 | |
群落结构变异 Variation of community structure | 胸径香农指数 DBH Shannon index | $Hd=-\sum\limits_{j=1}^{Nd}{\frac{{{n}_{j}}}{N}\ \times \ ln\left( \frac{{{n}_{j}}}{N} \right)}$ | 2.77 | 2.24-3.11 |
胸径均匀度 DBH evenness | $Es={Hd}/{\text{l}n\left( Nd \right)}\;$ | 0.94 | 0.70-1.11 | |
胸径变异系数 Coefficient of DBH variation | $VarD\,=\,100%\,\ \times \ \frac{\sqrt{\frac{1}{N}{{\left( DB{{H}_{k}}-\mu \right)}^{2}}}}{\mu }$ | 77.36 | 44.14-112.70 | |
胸径基尼系数 DBH Gini index | $GiniD=\frac{\sum\limits_{k=2}^{N}{\left( 2\times \ k-N-\ 1 \right)\,\ \times \ b{{a}_{k}}}}{\sum\limits_{k=2}^{N}{\left( N-\ 1 \right)\,\ \times \ b{{a}_{k}}}}$ | 0.39 | 0.24-0.51 |
Table 2 The formulas and results of species diversity and community structure of woody plants in the studied forest
指数 Index | 计算公式 Formula | 平均值 Mean value | 范围 Range | |
---|---|---|---|---|
物种多样性 Species diversity | 物种丰富度 Species richness | $S=Ns$ | 8.34 | 4-15 |
物种香农指数 Species Shannon index | $Hs=-\sum\limits_{i=1}^{Ns}{\frac{{{n}_{i}}}{N}\ \times \ ln\left( \frac{{{n}_{i}}}{N} \right)}$ | 1.81 | 1.18-2.55 | |
物种均匀度 Species evenness | $Es={Hs}/{ln\left( Ns \right)}\;$ | 0.87 | 0.65-0.97 | |
群落结构变异 Variation of community structure | 胸径香农指数 DBH Shannon index | $Hd=-\sum\limits_{j=1}^{Nd}{\frac{{{n}_{j}}}{N}\ \times \ ln\left( \frac{{{n}_{j}}}{N} \right)}$ | 2.77 | 2.24-3.11 |
胸径均匀度 DBH evenness | $Es={Hd}/{\text{l}n\left( Nd \right)}\;$ | 0.94 | 0.70-1.11 | |
胸径变异系数 Coefficient of DBH variation | $VarD\,=\,100%\,\ \times \ \frac{\sqrt{\frac{1}{N}{{\left( DB{{H}_{k}}-\mu \right)}^{2}}}}{\mu }$ | 77.36 | 44.14-112.70 | |
胸径基尼系数 DBH Gini index | $GiniD=\frac{\sum\limits_{k=2}^{N}{\left( 2\times \ k-N-\ 1 \right)\,\ \times \ b{{a}_{k}}}}{\sum\limits_{k=2}^{N}{\left( N-\ 1 \right)\,\ \times \ b{{a}_{k}}}}$ | 0.39 | 0.24-0.51 |
解释变量 Explanatory variables | 估计值 Estimate | ||
---|---|---|---|
物种多样性模型 Species diversity model | 群落结构变异模型 Community structural variation model | ||
A | B | ||
物种均匀度 Species evenness | -0.211* | - | - |
胸径香农指数 DBH Shannon index | - | 0.400*** | - |
胸径基尼系数 DBH Gini index | - | - | -0.337*** |
胸高断面积密度 Basal area density | 0.914*** | 0.756*** | 0.964*** |
林冠开阔度 Canopy openness | 0.289*** | 0.275** | 0.298*** |
有机碳 Soil organic carbon | 0.517*** | 0.221* | 0.293*** |
速效钾 Available potassium | 0.991*** | 0.193* | 0.241** |
速效氮 Available nitrogen | 0.413*** | - | - |
pH | -0.520*** | - | - |
速效磷 Available phosphorus | - | 0.413*** | - |
全磷 Total phosphorus | - | -0.244* | - |
调整决定系数 Adjusted R2 | 34.67% | 35.95% | 31.93% |
AIC值 AIC value | 1 080.385 | 1 074.56 | 1 090.52 |
Table 3 The correlation coefficient between the examined variables and forest productivity using different models
解释变量 Explanatory variables | 估计值 Estimate | ||
---|---|---|---|
物种多样性模型 Species diversity model | 群落结构变异模型 Community structural variation model | ||
A | B | ||
物种均匀度 Species evenness | -0.211* | - | - |
胸径香农指数 DBH Shannon index | - | 0.400*** | - |
胸径基尼系数 DBH Gini index | - | - | -0.337*** |
胸高断面积密度 Basal area density | 0.914*** | 0.756*** | 0.964*** |
林冠开阔度 Canopy openness | 0.289*** | 0.275** | 0.298*** |
有机碳 Soil organic carbon | 0.517*** | 0.221* | 0.293*** |
速效钾 Available potassium | 0.991*** | 0.193* | 0.241** |
速效氮 Available nitrogen | 0.413*** | - | - |
pH | -0.520*** | - | - |
速效磷 Available phosphorus | - | 0.413*** | - |
全磷 Total phosphorus | - | -0.244* | - |
调整决定系数 Adjusted R2 | 34.67% | 35.95% | 31.93% |
AIC值 AIC value | 1 080.385 | 1 074.56 | 1 090.52 |
Fig. 1 The impact paths of species diversity and community structure on productivity. Solid line indicates significant path, while dashed line indicates insignificant path. ***, p < 0.001.
[1] | Bertness MD, Leonard GH (1997). The role of positive interacttions in communities: Lessons from intertidal habitats.Ecology, 78, 1976-1989. |
[2] |
Bourdier T, Cordonnier T, Kunstler G, Piedallu C, Lagarrigues G, Courbaud B (2016). Tree size inequality reduces forest productivity: An analysis combining inventory data for ten European species and a light competition model.PLOS ONE, 11, e0151852. doi: 10.1371/journal.pone.0151852.
DOI URL PMID |
[3] | Box GEP, Cox DR (1964). An analysis of transformations.Journal of the Royal Statistical Society, 26, 211-252. |
[4] |
Chesson P (2000). Mechanisms of maintenance of species diversity.Annual Review of Ecology & Systematics, 31, 343-366.
DOI URL |
[5] |
Christopherm G, Christophs V, Brady H, Peters C (2010). Wood net primary production resilience in an unmanaged forest transitioning from early to middle succession.Forest Ecology & Management, 260, 36-41.
DOI URL |
[6] |
Clark JS (2010). Individuals and the variation needed for high species diversity in forest trees.Science, 327, 1129-1132.
DOI URL PMID |
[7] |
Coomes DA, Kunstler G, Canham CD, Wright E (2009). A greater range of shade-tolerance niches in nutrient-rich forests: An explanation for positive richness-productivity relationships?Journal of Ecology, 97, 705-717.
DOI URL |
[8] |
D?nescu A, Albrecht AT, Bauhus J (2016). Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany.Oecologia, 182, 319-333.
DOI URL PMID |
[9] |
Fahey RT, Fotis AT, Woods KD (2015). Quantifying canopy complexity and effects on productivity and resilience in late-successional hemlock-hardwood forests.Ecological Applications, 25, 834-847.
DOI URL PMID |
[10] |
Forrester DI, Bauhus J (2016). A review of processes behind diversity—Productivity relationships in forests.Current Forestry Reports, 2, 1-17.
DOI URL |
[11] | Fox J (2008). Applied Regression Analysis and Generalized Linear Models. 2nd edn. Sage Publications, Thousand Oaks, USA. |
[12] | Fox J, Monette G (1992). Generalized collinearity diagnostics.Journal of the American Statistical Association, 87, 178-183. |
[13] |
Hardiman BS, Bohrer G, Gough CM, Vogel CS, Curtisi PS (2011). The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest.Ecology, 92, 1818-1827.
DOI URL PMID |
[14] |
Hardiman BS, Gough CM, Halperin A, Hofmeister KL, Nave LE, Bohrer G, Curtis P (2013). Maintaining high rates of carbon storage in old forests: A mechanism linking canopy structure to forest function.Forest Ecology & Management, 298, 111-119.
DOI URL |
[15] |
He JS, Fang JY, Ma KP, Huang JH (2003). Biodiversity and ecosystem productivity: Why is there a discrepancy in the relationship between experimental and natural ecosystems?Acta Phytoecologica Sinica, 27, 835-843. (in Chinese with English abstract)[贺金生, 方精云, 马克平, 黄建辉 (2003). 生物多样性与生态系统生产力: 为什么野外观测和受控实验结果不一致? 植物生态学报, 27, 835-843.]
DOI URL |
[16] |
Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Set?l? H, Symstad AJ, Vandermeer J, Wardle DA (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge.Ecological Monographs, 75, 3-35.
DOI URL |
[17] | Kuehne C, Weiskittel AR, Fraver S, Puettmann KJ (2015). Effects of thinning-induced changes in structural heterogeneity on growth, ingrowth, and mortality in secondary coastal Douglas-fir forests.Canadian Journal of Forest Research, 45, 1448-1461. |
[18] |
Lei X, Wang W, Peng C (2008). Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada.Canadian Journal of Forest Research, 39, 1835-1847.
DOI URL |
[19] |
Liang J, Buongiorno J, Monserud RA, Kruger EL, Zhou Me (2007). Effects of diversity of tree species and size on forest basal area growth, recruitment, and mortality.Forest Ecology & Management, 243, 116-127.
DOI URL |
[20] |
Long JN, Shaw JD (2010). The influence of compositional and structural diversity on forest productivity.Forestry, 289, 121-128.
DOI URL |
[21] | Loreau M, Hector A (2001). Partitioning selection and complementarity in biodiversity experiments.Nature, 412, 72-76. |
[22] | Maire GL, Nouvellon Y, Christina M, Ponzoni FJ, Gon?alves JLM, Bouillet JP, Laclau JP (2013). Tree and stand light use efficiencies over a full rotation of single- and mixed- species Eucalyptus grandis, and Acacia mangium plantations. Forest Ecology & Management, 288, 31-42. |
[23] |
Morin X, Fahse L, Scherer-Lorenzen M, Bugmann H (2011). Tree species richness promotes productivity in temperate forests through strong complementarity between species.Ecology Letters, 14, 1211-1219.
DOI URL PMID |
[24] | Naeem S, Bunker DE, Hector A, Loreau M, Perrings C (2009). Biodiversity, Ecosystem Functioning, and Human Wellbeing. Oxford University Press, New York. |
[25] |
Parker GG, Davis MM, Chapotin SM (2002). Canopy light transmittance in Douglas-fir-western hemlock stands.Tree Physiology, 22, 147-157.
DOI URL PMID |
[26] |
Parker GG, Harmon ME, Lefsky MA, Chen J (2004). Three- dimensional structure of an old-growth Pseudotsuga- Tsuga, canopy and its implications for radiation balance, microclimate, and gas exchange.Ecosystems, 7, 440-453.
DOI URL |
[27] |
Pretzsch H (2014). Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures.Forest Ecology & Management, 327, 251-264.
DOI URL |
[28] |
Reich PB, Tilman D, Isbell F, Mueller K, Hobbie SE, Flynn DFB, Eisenhauer N (2012). Impacts of biodiversity loss escalate through time as redundancy fades.Science, 336, 589-592.
DOI URL PMID |
[29] |
Ruijven JV, Berendse F (2005). Diversity-productivity relationships: Initial effects, long-term patterns, and underlying mechanisms.Proceedings of the National Academy of Sciences of the United States of America, 102, 695-700.
DOI URL PMID |
[30] |
Ryan MG, Stape JL, Binkley D, Fonseca S, Loos RA, Takahashi EN, Silva CR, Silva SR, Hakamada RE, Ferreira JM, Lima AMN, Gava JL, Leite FP, Andrade HB, Alves JM, Silva GGC (2010). Factors controlling Eucalyptus productivity: How water availability and stand structure alter production and carbon allocation.Forest Ecology & Management, 259, 1695-1703.
DOI URL |
[31] | Tilman D, Lehman CL, Thomson KT (1997). Plant diversity and ecosystem productivity: Theoretical considerations.Proceedings of the National Academy of Sciences of the United States of America, 94, 1857-1861. |
[32] |
Tilman D, Reich PB, Knops JM (2006). Biodiversity and ecosystem stability in a decade-long grassland experiment.Nature, 441, 629-632.
DOI URL PMID |
[33] |
Tilman D, Wedin D, Knops J (1996). Productivity and sustainability influenced by biodiversity in grassland ecosystems.Nature, 379, 718-720.
DOI URL |
[34] |
Valladares F, Niinemets U (2008). Shade tolerance, a key plant feature of complex nature and consequences.Annual Review of Ecology Evolution & Systematics, 39, 237-257.
DOI URL |
[35] |
Yachi S, Loreau M (2007). Does complementary resource use enhance ecosystem functioning? A model of light competition in plant communities. Ecology Letters, 10, 54-62.
DOI URL PMID |
[36] |
Zhang Y, Chen HYH (2015). Individual size inequality links forest diversity and above-ground biomass.Journal of Ecology, 103, 1245-1252.
DOI URL |
[37] |
Zhang Y, Chen HYH, Reich PB (2012). Forest productivity increases with evenness, species richness and trait variation: A global meta-analysis.Journal of Ecology, 100, 742-749.
DOI URL |
[1] | SONG Yuhan ZHANG Peng Guang-Ze JIN. Stoichiometric characteristics and influencing factors of C, N and P in shrub leaves in different successional stages of the mixed broadleaved-Korean pine forest [J]. Chin J Plant Ecol, 2021, 45(9): 0-0. |
[2] | Xiu-Qing NIE Dong Wang 周 国英 熊 丰. Microbial biomass carbon, nitrogen phosphorus and their stoichiometric characteristics in the Three Rivers Source Region alpine wetlands [J]. Chin J Plant Ecol, 2021, 45(9): 0-0. |
[3] | HE Zhong-Quan, LIU Chang-Cheng, CAI Xian-Li, GUO Ke. Types and community characteristics of karst mixed evergreen and deciduous broad-leaved forests in the central Guizhou Plateau, China [J]. Chin J Plant Ecol, 2021, 45(6): 670-680. |
[4] | CHUAN Hui-Yan, JIA Dong-Rui, PU Jiang, ZHANG Cui-Ping, LI Shu-Ying, ZHOU Yuan-Qing. Structural characteristics of Keteleeria davidiana forest communities in Xinping, Yunnan [J]. Chin J Plant Ecol, 2021, 45(2): 207-212. |
[5] | SHI Jiao-Xing, XU Ming-Shan, FANG Xiao-Chen, ZHENG Li-Ting, ZHANG Yu, BAO Di-Feng, YANG An-Na, YAN En-Rong. Latitudinal variability and driving factors of functional diversity in Pinus thunbergiicommunities across sea-islands in Eastern China [J]. Chin J Plant Ecol, 2021, 45(2): 163-173. |
[6] | YU Yan-Mei, HUANG Lin-Juan, XUE Yue-Gui. Characteristics of different plant communities in the Dashiwei Tiankeng group, Guangxi, China [J]. Chin J Plant Ecol, 2021, 45(1): 96-103. |
[7] | PEI Guang-Ting, SUN Jian-Fei, HE Tong-Xin, HU Bao-Qing. Effects of long-term human disturbances on soil microbial diversity and community structure in a karst grassland ecosystem of northwestern Guangxi, China [J]. Chin J Plant Ecol, 2021, 45(1): 74-84. |
[8] | YI Hai-Yan, ZENG Yuan, ZHAO Yu-Jin, ZHENG Zhao-Ju, XIONG Jie, ZHAO Dan. Forest species diversity mapping based on clustering algorithm [J]. Chin J Plant Ecol, 2020, 44(6): 598-615. |
[9] | WANG Yan-Hong, LI Shuai-Feng, LANG Xue-Dong, HUANG Xiao-Bo, LIU Wan-De, XU Chong-Hua, SU Jian-Rong. Effects of topographic heterogeneity on species diversity in a monsoon evergreen broad- leaved forest in Puʼer, Yunnan, China [J]. Chin J Plant Ecol, 2020, 44(10): 1015-1027. |
[10] | HU Hui, YANG Yu, BAO Wei-Kai, LIU Xin, LI Fang-Lan. Effects of microhabitat changes on seedling establishment of native plants in a dry valley [J]. Chin J Plant Ecol, 2020, 44(10): 1028-1039. |
[11] | WANG Yu-Bing,SUN Yi-Han,DING Wei,ZHANG En-Tao,LI Wen-Huai,CHI Yong-Gang,ZHENG Shu-Xia. Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe [J]. Chin J Plant Ecol, 2020, 44(1): 22-32. |
[12] | DING Wei,WANG Yu-Bing,XIANG Guan-Hai,CHI Yong-Gang,LU Shun-Bao,ZHENG Shu-Xia. Effects of Caragana microphylla encroachment on community structure and ecosystem function of a typical steppe [J]. Chin J Plant Ecol, 2020, 44(1): 33-43. |
[13] | FANG Wen-Jing, CAI Qiong, ZHU Jiang-Ling, JI Cheng-Jun, YUE Ming, GUO Wei-Hua, ZHANG Feng, GAO Xian-Ming, TANG Zhi-Yao, FANG Jing-Yun. Distribution, community structures and species diversity of larch forests in North China [J]. Chin J Plant Ecol, 2019, 43(9): 742-752. |
[14] | TANG Li-Li, YANG Tong, LIU Hong-Yan, KANG Mu-Yi, WANG Ren-Qing, ZHANG Feng, GAO Xian-Ming, YUE Ming, ZHANG Mei, ZHENG Pu-Fan, SHI Fu-Chen. Distribution and species diversity patterns of Vitex negundo var. heterophylla shrublands in North China [J]. Chin J Plant Ecol, 2019, 43(9): 825-833. |
[15] | WANG Pan, ZHU Wan-Wan, NIU Yu-Bin, FAN Jin, YU Hai-Long, LAI Jiang-Shan, HUANG Ju-Ying. Effects of nitrogen addition on plant community composition and microbial biomass ecological stoichiometry in a desert steppe in China [J]. Chin J Plant Ecol, 2019, 43(5): 427-436. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn