Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (6): 639-649.doi: 10.17521/cjpe.2016.0350

• Research Articles • Previous Articles     Next Articles

Effects of leachate from understory medicinal plants on litter decomposition and soil enzyme activities of Betula albo-sinensis and Eucommia ulmoides

Yu-Peng LU1, Ji-Yuan XU2, Xiao-Xi ZHANG2, Bo-Ya WANG3, Bo XIE3, Zeng-Wen LIU3,4,*()   

  1. 1College of Forestry, Northwest A & F University, Yangling, Shaanxi 712100, China;

    2Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, China;

    3College of Natural Resources and Environment , Northwest A & F University, Yangling, Shaanxi 712100, China;
    4Key Laboratory for Agricultural Resources and Environmental Remediation in Loess Plateau of Agriculture Ministry of China, Yangling, Shaanxi 712100, China
  • Received:2017-04-05 Accepted:2016-11-23 Online:2017-07-19 Published:2017-06-10
  • Contact: Zeng-Wen LIU
  • About author:

    KANG Jing-yao(1991-), E-mail:


Aims Forest litter decomposition is an important factor affecting nutrient cycling and ecosystem stability. In a complex system with forest and understory medicinal plants, leachate from the medicinal plants enriched in plant secondary metabolites (PSM) may inhibit litter decomposition and soil enzyme activity of forest trees. Thus, inspection on whether or not this phenomenon exits is one important basis for selecting understory medicinal plants.Methods In this paper, typical forest species Betula albo-sinensis and Eucommia ulmoides and six species of common medicinal plants (Corydalis bungeana, Mentha haplocalyx, Houttuynia cordata, Nepeta cataria, Gynostemma pentaphyllum and Prunella vulgaris) in Qinling Mountains area were taken as objects, and the litter decomposition experiment was carried out. The leachate (water-extraction solution) from the stems and leaves of the medicinal materials were sprayed onto the litter in order to study the effects of leachate from understory plants on forests litter decomposition, nutrient release (carbon, nitrogen and phosphorus) and soil enzyme activity.Important findings For litter of B. albo-sinensis, the decomposition half-life and the turnover period were extended by 76% and 4.3 times, respectively, under H. cordata leachate treatment and the inhibitory effects on the release of carbon and nitrogen were also significant. While under G. pentaphyllum leachate treatment, the half-life of litter decomposition and turnover period were extended by 35% and 2.7 times, respectively, and the inhibitory effects on the release of carbon, nitrogen and phosphorus were all significant. The leachate from these two species of medicinal plants displayed significant inhibitory effects on seven kinds of soil enzymes (invertase, carboxymethyl cellulase, β-glucosidase, dehydrogenase, polyphenol oxidase, protease and phosphatase) activity. For litter of E. ulmoides, the decomposition half-life and the turnover period were extended by 1.7 times and 4.2 times respectively, under H. cordata leachate treatment; while they were extended by 1 times and 9 times respectively, under G. pentaphyllum leachate treatment. The leachate from these two species of medicinal plants displayed significant inhibitory effects on the release of carbon, nitrogen and phosphorus from litter decomposition and the activities of all seven kinds of soil enzymes. Therefore, results suggested that H. cordata and G. pentaphyllum should not be planted under B. albo-sinensis and E. ulmoides forests, or the interplanting density must be low to reduce the inhibitory effects of litter decomposition.

Key words: compound system of forest-medicinal, plant secondary metabolites, litter decomposition, nutrients release, soil enzyme activity

Table 1

Initial nutrient contents of Betula albo-sinensis and Eucommia ulmoides litters (mean ± SD)"

枯落物来源 Litter source C (mg·g-1) N (mg·g-1) P (mg·g-1) C/N C/P N/P
红桦 B. albo-sinensis 407.69 ± 8.43a 20.35 ± 0.87a 8.61 ± 0.12a 20.03 47.35 2.36
杜仲 E. ulmoides 408.65 ± 4.25a 15.52 ± 0.69b 6.90 ± 0.15b 26.34 59.19 2.25

Table 2

Effects of different treatments on litter decomposition rates of Betula albo-sinensis and Eucommia ulmoides"

枯落物 Litters 药用植物 Medicinal plants 枯落物分解模型 Model of litter decomposition R2 T0.95 (a) T0.50 (a)
红桦 B. albo-sinensis 地丁草 Corydalis bungeana R = 0.3194e-7.2672t + 0.6801e-0.2996t 0.965β9 8.712β3bc 1.028β0a
薄荷 Mentha haplocalyx R = 0.2870e-12.9332t + 0.7200e-0.4001t 0.961β3 6.666β4bc 0.911β4a
蕺菜 Houttuynia cordata R = 0.4209e-9.7308t + 0.5834e-0.1114t 0.935β1 22.054β3a 1.384β8a
荆芥 Nepeta cataria R = 0.2370e-11.4407t + 0.7674e-0.3988t 0.952β7 6.848β0bc 1.074β2a
绞股蓝 Gynostemma pentaphyllum R = 0.4270e-7.2586t + 0.5936e-0.1614t 0.937β9 15.329β5b 1.065β5a
夏枯草 Prunella vulgaris R = 0.1490e-13.7989t + 0.8500e-0.564t 0.963β3 5.023β4bc 0.940β8a
CK R = 0.1411e-301.3496t + 0.8589e-0.6864t 0.849β9 4.142β8c 0.788β2b
杜仲 E. ulmoides 地丁草 Corydalis bungeana R = 0.1973e-558.9289t + 0.8027e-0.8954t 0.911β5 3.100β2c 0.528β7b
薄荷 Mentha haplocalyx R = 0.1339e-75.016t + 0.8661e-1.2611t 0.960β3 2.261β5c 0.435β6b
蕺菜 Houttuynia cordata R = 0.3395e-14.7065t + 0.6613e-0.2285t 0.950β1 11.300β6b 1.223β6a
荆芥 Nepeta cataria R = 0.1409e-14184.4866t + 0.8591e-1.3367t 0.949β7 2.127β5c 0.404β9b
绞股蓝 Gynostemma pentaphyllum R = 0.4582e-9.5318t + 0.5494e-0.1114t 0.953β8 21.515β3a 0.848β3a
夏枯草 Prunella vulgaris R = 0.1463e-24.2668t + 0.8542e-1.3354t 0.961β7 2.125β3c 0.401β1b
CK R = 0.1156e-53.1005t + 0.8844e-1.3324t 0.962β7 2.156β2c 0.428β0b

Fig. 1

Multiple comparisons of nutrient release under different treatments were conducted in the early (first month), middle (second to third months) and late (fourth to sixth months) stages of litter decomposition of Betula albo-sinensis and Eucommia ulmoides. Different lowercase letters indicate significant differences (p < 0.05)."

Fig. 2

Multiple comparisons of soil enzyme activities under different treatments were conducted in the early (first month), middle (second to third months) and late (fourth to sixth months) stages of litter decomposition of Betula albo-sinensis. Different lowercase letters indicate significant differences (p < 0.05)."

Fig. 3

Multiple comparisons of soil enzyme activities under different treatments were conducted in the early (first month), middle (second to third months) and late (fourth to sixth months) stages of litter decomposition of Eucommia ulmoides. Different lowercase letters indicate significant differences (p < 0.05)."

Table 3

Chemicals of different medicinal plants extracts"

药材植物 Medicinal plants 化学物质 Chemicals
地丁草 Corydalis bungeana 邻苯二甲酸正丁异辛酯, 叶绿醇, 1,2-环氧十八烷, β-谷甾醇, (Z)-9-十六碳烯醛
Octyl butyl phthalate, Phytol, 1,2-Epoxyoctadecan-e, β-Sitosterol, (Z)-9-Hexadecena
薄荷 Mentha haplocalyx 薄荷醇, 香芹酮, (1S)-(+)-10-樟脑磺哑嗪, 石竹素, 新癸酸, 邻苯二甲酸二丁酯, 绿花白千层醇, 穿心莲内酯, 喇叭茶醇, 维生素 A 醋酸酯
Menthol, DL-carvone, (1S)-(+)-(Camphorylsulfonyl)oxaziridine, Caryophylene oxide, Neodecanoic acid, Dibutyl phthalate, Himbaccol, Andrographolide,Palustrol, Retinyl acetate
蕺菜 Houttuynia cordata 邻苯二甲酸二丁酯, 正三十六烷, 溴代三十烷, 癸醚, 1-氯二十二烷, 正三十五烷
Dibutyl phthalate, Hexatriacontane, 1-Bromotriaco-ntane, 1-(Decyloxy)decane, 1-Chlorodocosane, N-pentatriacontane
荆芥 Nepeta cataria 薄荷酮, 胡薄荷酮, 邻苯二甲酸二丁酯, β-谷甾醇, 正二十一烷, 辛酸异辛酯, 棕榈酸, 邻苯二甲酸二异辛酯, 十四酸十四酯
Menthone, P-menthone, Dibutyl phthalate, β-Sitosterol, N-heneicosane, 2-Ethylhexyl octanoate, Palmitic acid, Diisoctyl phthalate, Myristyl myristate
Gynostemma pentaphyllum
叶绿醇, 十五醛, 十二烯基丁二酸酐, 胆固醇, 油醇, 角鲨烯, 棕榈酸, 十五烷酸, 油酸酰胺, 环鸦片甾烯醇, 二十酸, 二十七烷醇, 生育酚, 亚麻酸甲酯, β-谷甾醇
Phytol, Pentadecanal, Dodeceny succinicanhydride,Cholesterol, Oleyl alcohol, Squalene, Palmitic acid, Pentadecanoic acid, Oleamide, Cyclolaudenol, Eicosanoic acid, Heptacosanol, Tocopherol, Methyl linolenate, β-Sitosterol
夏枯草 Prunella vulgaris 邻苯二甲酸二丁酯, 环阿屯醇, 环鸦片甾烯醇, 环桉树醇, 叶绿醇, 十五醛, 角鲨烯, β-谷甾醇, β-扶桑甾醇氧化物, 油醇, (Z)-9-十六碳烯醛, 二十七烷醇
Dibutyl phthalate, Cycloartenol, Cyclolaudenol, Cycloeucalenol, Phytol, Pentadecanal, Squalene, β-Sitosterol, β-Sitostenone, Oleyl alcohol, (Z)-9-Hexa-decena, Heptacosanol
[1] Aderiye BI, Ogundana SK, Adesanya SA, Roberts MF (1989). The effect of β-sitosterol on spore germination and germ-tube elongation of Aspergillus niger and Botryodiplodia theobromae. International Journal of Food Microbiology, 8, 73-78.
[2] Aggarwal KK, Khanuja SPS, Ahmad A, Santha Kumar TR, Gupta VK, Kumar S (2002). Antimicrobial activity profiles of the two enantiomers of limonene and carvone isolated from the oils of Mentha spicata and Anethum sowa . Flavour and Fragrance Journal, 17, 59-63.
[3] Batish DR, Singh HP, Pandher JK, Arora V, Kohli RK (2002). Phytotoxic effect of Parthenium residues on the selected soil properties and growth of chickpea and radish. Weed Biology and Management, 2, 73-78.
[4] Berg B (2000). Litter decomposition and organic matter turnover in northern forest soils.Forest Ecology and Management, 133, 13-22.
[5] Chen ZJ, He JF, Tang DR, Li QX, Heng ZZ, Li H, Li MS, Chen DW, Luo JM, Liu WY (2002). Nutrients in forest soils of Eucommia ulmoides Oliv and its responses to fertilization in south of Shaanxi Province. Journal of Soil and Water Conservation, 16(4), 94-97. (in Chinese with English abstract)[ 陈竹君, 何景峰, 唐德瑞, 李群学, 衡智州, 李宏, 李孟生, 陈登位, 罗建民, 刘文英 (2006).陕南杜仲林地土壤营养状况及施肥效应. 水土保持学报, 16(4), 94-97.]
[6] Chomel M, Fernandez C, Bousquet-Mélou A, Gers C, Monnier Y, Santonja M, Gauquelin T, Gros R, Lecareux C, Baldy V (2014). Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones. Journal of Ecology, 102, 411-424.
[7] Chomel M, Guittonny-Larchevêque M, Fernandez C, Gallet C, DesRochers A, Paré D, Jackson BG, Baldy V (2016). Plant secondary metabolites: A key driver of litter decomposition and soil nutrient cycling.Journal of Ecology, 104, 1527-1541.
[8] Guo YX, Kang B, Li G, Wang DX, Yang GH, Wang DW (2011). Species composition and point pattern analysis of standing trees in secondary Betula albo-sinensis forest in Xiaolongshan of west Qinling Mountains. Chinese Journal of Applied Ecology, 22, 2574-2580. (in Chinese with English abstract)[ 郭垚鑫, 康冰, 李刚, 王德祥, 杨改河, 王大伟 (2011). 小陇山红桦次生林物种组成与立木的点格局分析. 应用生态学报, 22, 2574-2580.]
[9] Hättenschwiler S, Vitousek PM (2000). The role of polyphenols in terrestrial ecosystem nutrient cycling.Trends in Ecology & Evolution, 15, 238-243.
[10] Hu X, Wu N, Wu Y, Zuo WQ, Guo HX, Wang JN (2012). Effects of snow cover on the decomposition and nutrient dynamics ofSibiraea angustata leaf litter in western Sichuan plateau, Southwest China. Chinese Journal of Applied Ecology, 23, 1226-1232. (in Chinese with English abstract)[ 胡霞, 吴宁, 吴彦, 左万庆, 郭海霞, 王金牛 (2012). 川西高原季节性雪被覆盖对窄叶鲜卑花凋落物分解和养分动态的影响. 应用生态学报, 23, 1226-1232.]
[11] Koukol O, Novák F, Hrabal R, Vosátka M (2006). Saprotrophic fungi transform organic phosphorus from spruce needle litter.Soil Biology & Biochemistry, 38, 3372-3379.
[12] Lin Y, Ren JY, Yue M (2008). Population structure and spatial analysis ofBetula albo-sinensis at Taibai Mountain, Northwestern China. Journal of Plant Ecology (Chinese Version), 32, 1335-1345. (in Chinese with English abstract)[ 林玥, 任坚毅, 岳明(2008).太白山红桦种群结构与空间分析. 植物生态学报, 32, 1335-1345.]
[13] Liu XY, Cheng S (1992). A preliminary study on the artificial forest-medicinal plant complex ecosystem.Journal of Beijing Forestry University, 14(2), 65-71. (in Chinese with English abstract)[ 刘晓鹰, 程颂 (1992). 林药人工复合生态系统的初步研究. 北京林业大学学报, 14(2), 65-71.]
[14] Manzoni S, Trofymow JA, Jackson RB, Porporato A (2010). Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter.Ecological Monographs, 80, 89-106.
[15] Mierziak J, Kostyn K, Kulma A (2014). Flavonoids as important molecules of plant interactions with the environment.Molecules, 19, 16240-16265.
[16] Mimica-Dukic N, Bozin B, Sokovic M, Simin N (2004). Antimicrobial and antioxidant activities of Melissa officinalis L.(Lamiaceae) essential oil. Journal of Agricultural and Food Chemistry, 52, 2485-2489.
[17] Niu XY, Sun XM, Chen DS, Zhang SG (2015). Soil enzyme activities of the litter inLarix kaempferi plantation. Scientia Silvae Sinicae, 51(4), 16-25. (in Chinese with English abstract)[ 牛小云, 孙晓梅, 陈东升, 张守攻 (2015). 日本落叶松人工林枯落物土壤酶活性. 林业科学, 51(4), 16-25.]
[18] Özer H, Sökmen M, Güllüce M, Adigüzel A, Sahin F, Sökmen A, Kiliç H, Baris Ö (2007). Chemical composition and antimicrobial and antioxidant activities of the essential oil and methanol extract of Hippomarathrum microcarpum (Bieb.) from Turkey. Journal of Agricultural and Food Chemistry, 55, 937-942.
[19] Purahong W, Hyde KD (2011). Effects of fungal endophytes on grass and non-grass litter decomposition rates.Fungal Diversity, 47, 1-7.
[20] Roy RN, Laskar S, Sen SK (2006). Dibutyl phthalate, the bioactive compound produced byStreptomyces albidoflavus 321.2. Microbiological Research, 161, 121-126.
[21] Sellamuthu PS, Sivakumar D, Soundy P (2013). Antifungal activity and chemical composition of thyme, peppermint and citronella oils in vapor phase against avocado and peach postharvest pathogens.Journal of Food Safety, 33, 86-93.
[22] Tian XJ, Takeishi T (2002). Relative roles of microorganisms and soil animals on needle litter decomposition in a subalpine coniferous forest.Acta Phytoecologica Sinica, 26, 257-263.
[23] Wang H, Wang G, Huang YY, Chen J, Chen MM (2008). The effects of pH change on the activities of enzymes in an acid soil.Ecology and Environment, 17, 2401-2406. (in Chinese with English abstract)[ 王涵, 王果, 黄颖颖, 陈璟, 陈妹妹 (2008). pH变化对酸性土壤酶活性的影响. 生态环境, 17, 2401-2406.]
[24] Wang JY, Wang WQ, Liu Y (2003). Effects of tree and medicinal plant intercropping system on medicinal plants’ yield. Journal of Beijing Forestry University, 25(6), 55-59. (in Chinese with English abstract)[ 王继永, 王文全, 刘勇 (2003). 林药间作系统对药用植物产量的影响. 北京林业大学学报, 25(6), 55-59.]
[25] Wang ZG, Zhao XS, Xu WH, Su YP, You YM, Liu S, Hu Y, Hu YL, Zhang Y (2015). Response of microbial biomass and enzyme activities in black soil to di-n-butyl phthalate contamination. Asian Journal of Ecotoxicology, 10(6), 199-205. (in Chinese with English abstract)[ 王志刚, 赵晓松, 徐伟慧, 苏云鹏, 由义敏, 刘帅, 胡影, 胡云龙, 张颖 (2015). 黑土微生物量和酶活性对邻苯二甲酸二丁酯污染的响应. 生态毒理学报, 10(6), 199-205.]
[26] Wu CX, Liu SJ, Zhao GQ (2014). Isolation and identification of the potential allelochemicals in the aqueous extract of yellow sweet clover.Acta Prataculturae Sinica, 23(5), 184-192. (in Chinese with English abstract)[ 邬彩霞, 刘苏娇, 赵国琦 (2014). 黄花草木樨水浸提液中潜在化感物质的分离、鉴定. 草业学报, 23(5), 184-192.]
[27] Wu TG, Yu MK, Sun HJ, Li HX, Zhang C, Cheng XR (2011).Photosynthetic response to different irradiances of under-growth plants in tree-herb plantation.Chinese Journal of Eco-Agriculture, 19, 338-341. (in Chinese with English abstract)[ 吴统贵, 虞木奎, 孙海菁, 李会欣, 张翠, 成向荣 (2011).林药复合系统林下植物光合特性对生长光强的响应. 中国生态农业学报, 19, 338-341.]
[28] Yan HY, Gu XR, Shen H (2010). Microbial decomposition of forest litter.Chinese Journal of Ecology, 29, 1827-1835. (in Chinese with English abstract)[ 严海元, 辜夕容, 申鸿 (2010). 森林凋落物的微生物分解. 生态学杂志, 29, 1827-1835.]
[29] Yang MY, Tian J, Ma Y, Sun C, Huang JH (2012).Isolation, identification and antimicrobial activity of endophyte fungi from medicinal plant Eucommia ulmoides Oliv. in Qinling Mountains. Acta Botanica Boreali-Occidentalia Sinica, 32, 193-198. (in Chinese with English abstract)[ 杨明琰, 田稼, 马瑜, 孙超, 黄继红 (2012).杜仲内生真菌的分离鉴定及抗菌活性研究. 西北植物学报, 32, 193-198.]
[30] Zhang J, Salahuddin, Ji L, Yang LX, Wang HR, You LX (2016). Effects of larch (Larix gmelinii) phenolic acids on manchurian ash(Fraxinus mandshurica) soil microbial community structure. Allelopathy Journal, 37, 123-135.
[31] Zhang RQ, Sun ZJ, Wang C, Yuan TY (2008). Ecological process of leaf litter decomposition in tropical rainforest in Xishuangbanna, SW China. III. Enzyme dynamics. Journal of Plant Ecology (Chinese Version), 32, 622-631. (in Chinese with English abstract)[ 张瑞清, 孙振钧, 王冲, 袁堂玉 (2008). 西双版纳热带雨林凋落叶分解的生态过程. Ⅲ. 酶活性动态. 植物生态学报, 32, 622-631.]
[32] Zhou BL, Han L, Yin YL, Wu JX, Sun CQ, Ye XL, Bai LP (2010). Effects of allelochemicals hexadecanoic acid on soil microbial composition and biomass in rhizosphere of eggplant.Journal of Shenyang Agricultural University, 41(3), 275-278. (in Chinese with English abstract)[ 周宝利, 韩琳, 尹玉玲, 武建霞, 孙传奇, 叶雪凌, 白丽萍 (2010). 化感物质棕榈酸对茄子根际土壤微生物组成及微生物量的影响. 沈阳农业大学学报, 41, 275-278.]
[1] JIA Bing-Rui. Litter decomposition and its underlying mechanisms [J]. Chin J Plant Ecol, 2019, 43(8): 648-657.
[2] YAN Peng-Fei, ZHAN Peng-Fei, XIAO De-Rong, WANG Yi, YU Rui, LIU Zhen-Ya, WANG Hang. Effects of simulated warming and decomposition interface on the litter decomposition rate of Zizania latifolia and its phyllospheric microbial community structure and function [J]. Chin J Plant Ecol, 2019, 43(2): 107-118.
[3] Wen-Jing CHEN, Lu GONG, Yu-Tong LIU. Effects of seasonal snow cover on decomposition and carbon, nitrogen and phosphorus release of Picea schrenkiana leaf litter in Mt. Tianshan, Northwest China [J]. Chin J Plan Ecolo, 2018, 42(4): 487-497.
[4] WANG Xiang, ZHU Ya-Qiong, ZHENG Wei, GUAN Zheng-Xuan, SHENG Jian-Dong. Soil respiration features of mountain meadows under four typical land use types in Zhaosu Basin [J]. Chin J Plan Ecolo, 2018, 42(3): 382-396.
[5] WU Qi-Qian, WANG Chuan-Kuan. Dynamics in foliar litter decomposition for Pinus koraiensis and Quercus mongolica in a snow-depth manipulation experiment [J]. Chin J Plan Ecolo, 2018, 42(2): 153-163.
[6] Li-Li YANG, Ji-Rui GONG, Min LIU, Bo YANG, Zi-He ZHANG, Qin-Pu LUO, Zhan-Wei ZHAI, Yan PAN. Advances in the effect of nitrogen deposition on grassland litter decomposition [J]. Chin J Plan Ecolo, 2017, 41(8): 894-913.
[7] Li-Li YANG, Ji-Rui GONG, Yi-Hui WANG, Min LIU, Qin-Pu LUO, Sha XU, Yan PAN, Zhan-Wei ZHAI. Effects of grazing intensity and grazing exclusion on litter decomposition in the temperate steppe of Nei Mongol, China [J]. Chin J Plan Ecolo, 2016, 40(8): 748-759.
[8] Shanshan Li,Zhengwen Wang,Junjie Yang. Changes in soil microbial communities during litter decomposition [J]. Biodiv Sci, 2016, 24(2): 195-204.
[9] WANG Yi-Hui,GONG Ji-Rui,LIU Min,HUANG Yong-Mei,YAN Xin,ZHANG Zi-Yu,XU Sha,LUO Qin-Pu. Effects of grassland-use on soil respiration and litter decomposition [J]. Chin J Plan Ecolo, 2015, 39(3): 239-248.
[10] HE Jie, YANG Wan-Qin, NI Xiang-Yin, LI Han, XU Li-Ya, and WU Fu-Zhong. Effects of snow patch on the dynamics of potassium and sodium during litter decomposition in winter in a subalpine forest of western Sichuan [J]. Chin J Plan Ecolo, 2014, 38(6): 550-561.
[11] WU Qi-Qian, WU Fu-Zhong, YANG Wan-Qin, XU Zhen-Feng, HE Wei, HE Min, ZHAO Ye-Yi, and ZHU Jian-Xiao. Effect of seasonal snow cover on litter decomposition in alpine forest [J]. Chin J Plan Ecolo, 2013, 37(4): 296-305.
[12] HE Wei, WU Fu-Zhong, YANG Wan-Qin, WU Qi-Qian, HE Min, and ZHAO Ye-Yi. Effect of snow patches on leaf litter mass loss of two shrubs in an alpine forest [J]. Chin J Plan Ecolo, 2013, 37(4): 306-316.
[13] LIU Rui-Long, YANG Wan-Qin, TAN Bo, WANG Wen-Jun, NI Xiang-Yin, and WU Fu-Zhong. Effects of soil fauna on N and P dynamics at different stages during the first year of litter decomposition in subalpine and alpine forests of western Sichuan [J]. Chin J Plan Ecolo, 2013, 37(12): 1080-1090.
[14] TU Li-Hua, HU Hong-Ling, HU Ting-Xing, ZHANG Jian, LUO Shou-Hua, and DAI Hong-Zhong. Response of Betula luminifera leaf litter decomposition to simulated nitrogen deposition in the Rainy Area of West China [J]. Chin J Plan Ecolo, 2012, 36(2): 99-108.
[15] HUANG Ju-Ying, YU Hai-Long, YUAN Zhi-You, and LI Ling-Hao. Effects of nitrogen, phosphorus and water supply on litter decomposition quality of senescing leaves of Leymus chinensis [J]. Chin J Plan Ecolo, 2011, 35(8): 808-815.
Full text



[1] Yu Feng-lan;Wang Jing-ping;Li Jing-min and Shan Xue-qin. The Isolation and Identification of Sterols and Other Constituents from Seed Fat of Sapium sebiferum[J]. Chin Bull Bot, 1989, 6(02): 121 -123 .
[2] LI Al-Fen;CHEN Min amd ZHOU Bai-Cheng. Advances and Problems in Studies of Photosynthetic Pigment-Protein Complexes of Brown Algae[J]. Chin Bull Bot, 1999, 16(04): 365 -371 .
[3] CHEN Xiao-Mei and GUO Shun-Xing. Research Advances in Plant Disease Resistive Material[J]. Chin Bull Bot, 1999, 16(06): 658 -664 .
[4] LI Ji-Quan JIN You-Ju SHEN Ying-Bai HONG Rong. The Effect of Environmental Factors on Emission of Volatile Organic Compounds from Plants[J]. Chin Bull Bot, 2001, 18(06): 649 -656 .
[5] . [J]. Chin Bull Bot, 2005, 22(增刊): 157 .
[6] Jianxia Li, Chulan Zhang, Xiaofei Xia, Liangcheng Zhao. Cryo-sectioning Conditions and Histochemistry Comparison with Paraffin Sectioning[J]. Chin Bull Bot, 2013, 48(6): 643 -650 .
[7] JIANG Yang-Ming, CUI Wei-Hong, and DONG Qian-Lin. Comprehensive evaluation and analysis of tobacco planting environment based on space technology[J]. Chin J Plan Ecolo, 2012, 36(1): 47 -54 .
[8] Hu Cheng-biao, Zhu Hong-guang, Wei Yuan-lian. A Study on Microorganism and Biochemical Activity of Chinese-fir Plantation on Different Ecological Area in Guangxi[J]. Chin J Plan Ecolo, 1991, 15(4): 303 -311 .
[9] Hong-Xin SU Fan BAI Guang-Qi LI. Seasonal dynamics in leaf area index in three typical temperate montane forests of China: a comparison of multi-observation methods[J]. Chin J Plan Ecolo, 2012, 36(3): 231 -242 .
[10] AN Ran, GONG Ji-Rui, YOU Xin, GE Zhi-Wei, DUAN Qing-Wei, YAN Xin. Seasonal dynamics of soil microorganisms and soil nutrients in fast-growing Populus plantation forests of different ages in Yili, Xinjiang, China[J]. Chin J Plan Ecolo, 2011, 35(4): 389 -401 .