Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (8): 840-849.doi: 10.17521/cjpe.2017.0060

• Research Articles • Previous Articles     Next Articles

Change of growth characters and carbon stocks in plantations of Pinus sylvestris var. mongolica in Saihanba, Hebei, China

Juan XING, Cheng-Yang ZHENG*(), Chan-Ying FENG, Fa-Xu ZENG   

  1. College of Urban and Environmental Science, Peking University, Beijing 100871, China
  • Online:2017-09-29 Published:2017-08-10
  • Contact: Cheng-Yang ZHENG
  • About author:

    KANG Jing-yao(1991-), E-mail:


Aims Pinus sylvestris var. mongolica is one of the main afforestation tree species in North China. It is important to study the characters of growth and carbon (C) sequestration, which can provide scientific basis for the sustainable management. Therefore, our study aims at quantifying the growth characters and C sequestration in these middle-aged plantations, and to investigate the effect of diameter at breast height (DBH) on those dynamics. Methods We selected a middle-aged P. sylvestris var. mongolica plantation as our permanent experimental plot, which is located in Saihanba, Hebei Province, China. DBH and height of all stands in this plot were measured in 2006 and 2016. Based on the anatomical trees and allometric equation, we calculated C density and sequestration from 2006 to 2016. We also analyzed C sequestration in different DBH groups in the study area. Important findings Our results showed that the carbon sink of those middle-age (age between 28 and 38 years old) plantation would be enhanced in future, and there were differences in characters of growth and C sequestration among DBH groups. The decadal increment rate of DBH and height were 4.19% and 1.97%, and the increment rate was the lowest in the 0-10 cm DBH class. The mortality rate of the plantation was 8.39%, with 7.82% mortality occurred in 0-10 cm tree size class. The forest stands biomass carbon stocks in 2006 and 2016 were 59.04 and 109.64 t?hm-2, respectively, and almost 87.1% of the carbon stocks were in the middle DBH-class, even though the number of trees only accounted for nearly 59.2%. The small class’s number of trees accounted for 39.1%, while the carbon stocks accounted for 8.3%. Our results also demonstrate that forests in Saihanba would continue to act as a carbon sink in the coming years. The variations among DBH groups highlights that the diameter class should be taken into consideration while assess the ecological efficiency and carbon sequestration capacity in a certain area.

Key words: Pinus sylvestris var. mongolica plantation, growth character, diameter class, carbon sequestration

Table 1

Formulae for biomass in different components of Pinus sylvestris var. mongolica and Larix principis-rupprechtii"

Formulate for biomass
樟子松 树干 Stem W = 0.039 × (D2H)0.888
Pinus sylvestris var. mongolica 树枝 Branch W = 0. 047 × (D2H)0.705
树叶 Foliage W = 0.075 × (D2H)0.404
树根 Root W = 0.012 × (D2H)0.873
落叶松 树干 Stem W = 0.065 × (D2H)0793
Larix principis-rupprechtii 树枝 Branch W = 0.052 × (D2H)0.679
树叶 Foliage W = 0.139 × (D2H)0.457
树根 Root W = 0.023 × (D2H)0.75

Table 2

Stand characteristics of Pinus sylvestris var. mongolica plantations (mean ± SD)"

2006年 2016年 年均增幅
Annual increment rate (%)
DBH (cm)
Tree height (m)
DBH (cm)
Tree height (m)
Tree height (m)
Pinus sylvestris var. mongolica
2 900 10.95 ± 3.53 8.74 ± 1.54 2 625 15.56 ± 6.29 10.62 ± 2.22 4.21 2.15
Larix principis-rupprechtii
669 12.29 ± 4.34 9.49 ± 2.08 650 17.18 ± 6.54 10.67 ± 2.66 3.98 1.24
3 569 11.19 ± 3.73 8.88 ± 1.68 3 275 15.88 ± 6.37 10.63 ± 2.37 4.19 1.97

Table 3

Dynamics of annual tree growth"

年份 Year 胸径 DBH (cm) 树高 Tree height (m)
总生长量 Total increment 年生长量 Annual increment 总生长量 Total increment 年生长量 Annual increment
Pinus sylvestris var.
2006 10.95 0.456 8.74 0.257
2016 15.56 0.458 10.62 0.312
Larix principis-
2006 12.29 0.512 9.49 0.279
2016 17.18 0.505 10.67 0.314
2006 11.19 0.466 8.88 0.261
2016 15.88 0.467 10.63 0.313

Fig. 1

Decadal increment of diameter at breast height (DBH) and tree height in Pinus sylvestris var. mongolica plantations in Saihanba (mean ± SE)."

Fig. 2

Decadal increment of diameter at breast height (DBH), tree height and basal area in different DBH-class. Lowercase letter represent the significant level of multiple comparisons of decadal increment of DBH, tree height and basal area in different DBH-class (mean ± SE)."

Table 4

Mortality of forest stand in different DBH-class"

DBH-class (cm)
2006年 2016年 10年间死亡率 Decadal mortality (%)
Pinus sylvestris
var. mongolica
Larix principis-
Pinus sylvestris
var. mongolica
Larix principis-
Pinus sylvestris
var. mongolica
Larix principis-
0-5 29 5 8 4 72.4 20.0
5-10 404 67 330 63 18.3 5.9
10-15 466 107 460 105 1.3 1.9
15-20 143 47 143 47 0.0 0.0
20-25 4 15 4 15 0.0 0.0

Fig. 3

Diameter at breast height (DBH) frequency distribution in Pinus sylvestris var. mongolica plantation in 2006 and 2016."

Fig. 4

Decadal variation and annual rate of change of tree carbon storage in different DBH-class. DBH, diameter at breast height."

[1] Alvarez S, Ortiz C, Díaz-Pinés E, Rubio A (2016). Influence of tree species composition, thinning intensity and climate change on carbon sequestration in Mediterranean mountain forests: A case study using the CO2 fix model.Mitigation and Adaptation Strategies for Global Change, 21, 1045-1058.
doi: 10.1007/s11027-014-9565-4
[2] Chen DX, Li YD, Xu H, Xiao WF, Luo TS, Zhou Z, Lin MX (2010). Biomass and carbon dynamics of a tropical mountain rain forest in China.Science China: Life Science, 40, 596-609.(in Chinese)[陈德祥, 李意德, 许涵, 肖文发, 骆土寿, 周璋, 林明献 (2010). 尖峰岭热带山地雨林生物量及碳库动态. 中国科学: 生命科学,40, 596-609.]
doi: 10.1007/s11766-010-2366-y
[3] Coomes DA, Allen RB (2007). Mortality and tree-size distributions in natural mixed-age forests.Journal of Ecology, 95, 27-40.
doi: 10.1111/j.1365-2745.2006.01179.x
[4] Dai JX (2002). Afforestation Techniques of Pinus sylvestris var. mongolica China. Forestry Publishing House, Beijing.(in Chinese)[戴继先 (2002). 樟子松造林技术. 中国林业出版社, 北京.]
[5] Dobbertin M, Eilmann B, Bleuler P, Giuggiola A, Graf Pannatier E, Landolt W, Schleppi P, Rigling A (2010). Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest.Tree Physiology, 30, 346-360.
doi: 10.1093/treephys/tpp123 pmid: 20067912
[6] Eilmann B, Buchmann N, Siegwolf R, Saurer M, Cherubini P, Rigling A (2010). Fast response of Scots pine to improved water availability reflected in tree-ring width and delta 13C.Plant, Cell & Environment, 33, 1351-1360.
[7] Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001). Changes in forest biomass carbon storage in China between 1949 and 1998.Science, 292, 2320-2322.
doi: 10.1126/science.1058629 pmid: 11423660
[8] Fedrigo M, Kasel S, Bennett LT, Roxburgh SH, Nitschke CR (2014). Carbon stocks in temperate forests of south-eastern Australia reflect large tree distribution and edaphic conditions.Forest Ecology and Management, 334, 129-143.
doi: 10.1016/j.foreco.2014.08.025
[9] Gerile, Siqinbilige, Jin R (2004). Research on the growth characteristics of the introduced Pinus sylvestris var. mongolica in Maowusu sandy land.Journal of Arid Land Resources and Environment, 18(5), 159-162.[格日勒, 斯琴毕力格, 金荣 (2004). 毛乌素沙地引种樟子松生长特性的研究. 干旱区资源与环境, 18(5), 159-162.]
[10] Guo ZD, Hu HF, Li P, Li NY, Fang JY (2013). Spatio-temporal changes in biomass carbon sinks in China’s forests from 1977 to 2008.Science China: Life Sciences, 56, 661.
doi: 10.1007/s11427-013-4492-2 pmid: 23722235
[11] Han MN, Wei YW, Qin SJ, Deng LP, Zhou YB (2015). Carbon storage dynamics and its distribution pattern in Pinus sylvestris var. mongolica plantation in sandy land.Chinese Journal of Ecology, 34, 1798-1803.(in Chinese with English abstract)[韩美娜, 魏亚伟, 秦胜金, 邓莉萍, 周永斌 (2015). 沙地樟子松人工林碳库动态及其分配特征. 生态学杂志 34, 1798-1803.]
[12] Hu HQ, Luo BZ, Wei SJ, Wei SW, Sun L, Luo SS, Ma HB (2015). Biomass carbon density and carbon sequestration capacity in seven typical forest types of the Xiaoxing’an Mountains China. Chinese Journal of Plant Ecology, 39, 140-158.(in Chinese with English abstract)[胡海清, 罗碧珍, 魏书精, 魏书威, 孙龙, 罗斯生, 马洪斌 (2015). 小兴安岭7种典型林型林分生物量碳密度与固碳能力., 植物生态学报,39, 140-158.]
[13] Jia WW, Li FR, Dong LH, Zhao X (2012). Carbon density and storage for Pinus sylvestris var. mongolica plantation based on compatible biomass models.Journal of Beijing Forestry University, 34(1), 6-13.(in Chinese with English abstract)[贾炜玮, 李凤日, 董利虎, 赵鑫 (2012). 基于相容性生物量模型的樟子松林碳密度与碳储量研究, 北京林业大学学报,34(1), 6-13.]
[14] Jiang FQ, Zeng DH, Fan ZP, Zhu JJ (1996). Simulation of individual tree growth of Mongolian pine forest in sandy land.Chinese Journal of Applied Ecology, 7, 1-5.(in Chinese with English abstract)[姜凤岐, 曾德慧, 范志平, 朱教君 (1996). 沙地樟子松林单木生长的研究, 应用生态学报,7, 1-5.]
[15] Lang JM, Song TM (1993). Effects of root treatment and packaging methods on afforestation of seedling of Pinus sylvestris var.mongolica. Journal of Beijing Forestry University, 15(2), 203-206.[郎建民, 宋廷茂 (1993). 根系处理及包装方法对樟子松苗木造林效果的影响. 北京林业大学学报, 15(2), 203-206.]
[16] Lee J, Tolunay D, Makineci E, ??mez A, Son YM, Kim R, Son Y (2016). Estimating the age-dependent changes in carbon stocks of Scots pine (Pinus sylvestris L.) stands in Turkey. Annals of Forest Science, 73, 523-531.
doi: 10.1007/s13595-016-0546-5
[17] Li LL, Li LG, Chen ZJ, Zhou YB, Zhang XL, Bai XP, Chang YX, Xiao JQ (2015). Responses of Pinus sylvestris var. mongolica to gradient change of hydrothermal in plantations in Liaoning Province.Acta Ecologica Sinica, 35, 4508-4517.(in Chinese with English abstract)[李露露, 李丽光, 陈振举, 周永斌, 张先亮, 白学平, 常永兴, 肖建强 (2015). 辽宁省人工林樟子松径向生长对水热梯度变化的响应, 生态学报,35, 4508-4517.]
doi: 10.5846/stxb201409231886
[18] Li Q, Zhu JH, Feng Y, Xiao WF (2016). Carbon stocks and carbon sequestration of the main plantation in China.Journal of Northwest Forestry University, 31, 1-6.(in Chinese with English abstract)[李奇, 朱建华, 冯源, 肖文发 (2016). 中国主要人工林碳储量与固碳能力, 西北林学院学报,31, 1-6.]
doi: 10.3969/j.issn.1001-7461.2016.04.01
[19] Liu F, Zhang YX, Ma YB, Dong LL, Yu XC, Huang YR (2015). Growth rhythm of Pinus sylvestris var. mongolica in the Ulan Buh Desert.Journal of Desert Research, 35, 1234-1238.[刘芳, 章尧想, 马迎宾, 董礼隆, 余新春, 黄雅茹 (2015). 乌兰布和沙漠绿洲樟子松(Pinus sylvestris var. mongolica)生长规律初探. 中国沙漠, 35, 1234-1238.]
doi: 10.7522/j.issn.1000-694X.2014.00119
[20] Liu HM, Lü SJ, Lui QQ, Lui LY, Wang YJ, Zhang BH (2013). Biomass and carbon storage of the Pinus sylvestris var. mongolica plantation in the Duolun County.Journal of Inner Mongolia Agricultural University, 34, 49-53.(in Chinese with English abstract)[刘红梅, 吕世杰, 刘清泉, 刘丽英, 王玉芝, 章海波 (2013). 多伦县樟子松人工林生物量及碳储量研究, 内蒙古农业大学学报,34, 49-53.]
[21] Lui XP, He YH, Wei SL, Zhao XY, Zhang TH, Yue XF (2016). Growth response of Pinus sylvestris var. mongolica to precipitation and air temperature in the Horqin Sandy Land.Journal of Desert Research, 36(1), 57-63.[刘新平, 何玉惠, 魏水莲, 赵学勇, 张铜会, 岳祥飞 (2016). 科尔沁沙地樟子松(Pinus sylvestris var. mongolica)生长对降水和温度的响应. 中国沙漠, 36(1), 57-63.]
doi: 10.7522/j.issn.1000-694X.2015.00105
[22] Martin-Benito D, Beeckman H, Ca?ellas I (2013). Influence of drought on tree rings and tracheid features of Pinus nigra and Pinus sylvestris in a mesic Mediterranean forest.European Journal of Forest Research, 132, 33-45.
doi: 10.1007/s10342-012-0652-3
[23] Michelot A, Simard S, Rathgeber C, Dufrene E, Damesin C (2012). Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics.Tree Physiology, 32, 1033-1045.
doi: 10.1093/treephys/tps052 pmid: 22718524
[24] Muller-Landau HC, Condit, RS, Chave J, Thomas SC, Bohlman SA, Bunyavejchewin S, Davies S, Foster R, Gunatilleke S, Gunatilleke N, Harms KE, Hart T, Hubbell SP, Itoh A, Kassim AR, LaFrankie JV, Lee HS, Losos E, Makana JR, Ohkubo T, Sukumar R, Sun IF, Nur Supardi MN, Tan S, Thompson J, Valencia R, Mu?oz GV, Wills C, Yamakura T, Chuyong G, Dattaraja HS, Esufali S, Hall P, Hernandez C, Kenfack D, Kiratiprayoon S, Suresh HS, Thomas D, Vallejo MI, Ashton P (2006). Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests.Ecology Letters, 9, 575-588.
doi: 10.1111/j.1461-0248.2006.00904.x pmid: 16643303
[25] Runkle JR (2013). Thirty-two years of change in an old-growth Ohio beech-maple forest.Ecology, 94, 1165-1175.
doi: 10.1890/11-2199.1 pmid: 23858656
[26] Song L, Zhu J, Li M, Yu Z (2014). Water utilization of Pinus sylvestris var. mongolica in a sparse wood grassland in the semiarid sandy region of Northeast China.Trees, 28, 971-982.
doi: 10.1007/s00468-014-1010-5
[27] Song L, Zhu J, Li M, Zhang J (2016). Water use patterns of Pinus sylvestris var. mongolica trees of different ages in a semiarid sandy lands of Northeast China.Environmental and Experimental Botany, 129, 94-107.
doi: 10.1016/j.envexpbot.2016.02.006
[28] Song L, Zhu J, Yan Q, Li M, Yu G (2015). Comparison of intrinsic water use efficiency between different aged Pinus sylvestris var. mongolica wide windbreaks in semiarid sandy land of northern China.Agroforestry Systems, 89, 477-489.
doi: 10.1007/s10457-014-9784-4
[29] Stephenson NL, Das AJ, Condit R, Russo SE, Baker PJ, Beckman NG, Coomes DA, Lines ER, Morris WK, Ruger N, Alvarez E, Blundo C, Bunyavejchewin S, Chuyong G, Davies SJ, Duque A, Ewango CN, Flores O, Franklin JF, Grau HR, Hao Z, Harmon ME, Hubbell SP, Kenfack D, Lin Y, Makana JR, Malizia A, Malizia LR, Pabst RJ, Pongpattananurak N, Su SH, Sun IF, Tan S, Thomas D, Mantgem PJ, Wang X, Wiser SK, Zavala MA (2014). Rate of tree carbon accumulation increases continuously with tree size.Nature, 507, 90.
doi: 10.1038/nature12914 pmid: 24429523
[30] Vucetich JA, Reed DD, Breymeyer A, Degórski M, Mroz GD, Solon J, Roo-Zielinska E, Noble R (2000). Carbon pools and ecosystem properties along a latitudinal gradient in northern Scots pine (Pinus sylvestris) forests.Forest Ecology and Management, 136, 135-145.
doi: 10.1016/S0378-1127(99)00288-1
[31] Wang D, Wang B, Niu X (2014). Forest carbon sequestration in China and its benefits.Scandinavian Journal of Forest Research, 29, 51-59.
doi: 10.1080/02827581.2013.856936
[32] Wang NH, Gao M, Li D (2014). Tree layer biomass distribution and carbon storage capacity of Larix olgensis plantation.Bulletin of Botanical Research, 34, 554-558.(in Chinese with English abstract)[王霓虹, 高萌, 李丹 (2014). 长白落叶松人工林乔木层生物量分布特征及其固碳能力研究, 植物研究,34, 554-558.]
[33] Williams CA, Collatz GJ, Masek J, Goward SN (2012). Carbon consequences of forest disturbance and recovery across the conterminous United States. Global Biogeochemical Cycles, 26, 1005-1017.
doi: 10.1029/2010GB003947
[34] Xu B, Pan Y, Plante AF, Johnson A, Cole J, Birdsey R (2016). Decadal change of forest biomass carbon stocks and tree demography in the Delaware River Basin.Forest Ecology and Management, 374, 1-10.
doi: 10.1016/j.foreco.2016.04.045
[35] Yuan LM, Yan DR, Wang YQ, Jiang P, Liu Y (2015). Carbon storage of Pinus sylvestris var. mongolica plantation in sandy land.Journal of Inner Mongolia Forestry Science and Technology, 37, 9-13.(in Chinese with English abstract)[袁立敏, 闫德仁, 王熠青, 姜鹏, 刘阳 (2011). 沙地樟子松人工林碳储量研究, 内蒙古林业科技,37, 9-13.]
doi: 10.3969/j.issn.1007-4066.2011.01.003
[36] Zeng DH, Hu YL, Chang SX, Fan ZP (2000). Land cover change effects on soil chemical and biological properties after planting Mongolian pine (Pinus sylvestris var. mongolica) in sandy lands in Keerqin, northeastern China.Plant and Soil, 317, 121-133.
doi: 10.1007/s11104-008-9793-z
[37] Zeng DH, Jiang FQ, Fan ZP, Du XJ (2010). Self-thinning of even-aged pure plantations of Pinus sylvestris var. mongolica on sandy soil.Acta Ecologica Sinica, 20, 235-242.(in Chinese with English abstract)[曾德慧, 姜凤岐, 范志平, 杜晓军 (2000). 沙地樟子松人工林自然稀疏规律, 生态学报,20, 235-242.]
doi: 10.3321/j.issn:1000-0933.2000.02.011
[38] Zeng DH, Jiang FQ, Fan ZP, Zhu JJ (1996). Stability of Mongolian pine plantations on sandy land.Journal of Applied Ecology, 7, 337-343.(in Chinese with English abstract)[曾德慧, 姜凤岐, 范志平, 朱教君 (1996). 樟子松人工固沙林稳定性的研究, 应用生态学报,7, 337-343.]
[39] Zhang JY, Zhao HL, Cui JY, Zhang TH, Zhao XY (2005). Community structure, soil water dynamics and community stability of Pinus sylvestris var. mongolica plantation in Horqin Sandy Land.Scientia Silvae Sinicae, 41(3), 1-6.(in Chinese with English abstract)[张继义, 赵哈林, 崔建垣, 张铜会, 赵学勇 (2005). 科尔沁沙地樟子松人工林土壤水分动态的研究, 林业科学,41(3), 1-6]
doi: 10.11707/j.1001-7488.20050301
[40] Zhang RS (2016). Growth and maturity of Pinus sylvestris var. mongolica plantation on sandy land.Protection Forest Science and Technology, (11), 45-47.(in Chinese with English abstract)[张日升 (2016). 沙地樟子松人工林的生长与成熟. 防护林科技, (11), 45-47.]
[41] Zhao M (2004).Carbon Storage Dynamics and Its Distribution Pattern in Pinus sylvestris var. mongolica Plantation in Sandy Land. PhD dissertation, Institute of Botany, Chinese Academy of Sciences,Beijing.(in Chinese with English abstract)[赵敏 (2004). 中国主要森林生态系统碳储量和碳收支评估. 博士学位论文, 中国科学院植物研究所, 北京.]
[42] Zhu JJ, Fan ZP, Zeng DH, Jiang FQ, Matsuzaki T (2003) Comparison of stand structure and growth between artificial and natural forests of Pinus sylvestiris var. mongolica on sandy land.Journal of Forestry Research, 14, 103-111.
doi: 10.1007/BF02856774
[43] Zhu JJ, Li FQ, Xu ML, Kang HZ, Wu XY (2008). The role of ectomycorrhizal fungi in alleviating pine decline in semiarid sandy soil of northern China: An experimental approach.Annals of Forest Science, 65, 1-12.
doi: 10.1051/forest:2008999
[1] Zhao-Zhong FENG Li Pin You GuoZhang Zheng-zhen Li Qin Ping Long JinPeng Shuo Liu. Impacts of elevated carbon dioxide concentration on terrestrial ecosystems: Problems and prospective [J]. Chin J Plant Ecol, 2020, 44(全球变化与生态系统专辑): 0-0.
[2] Zhao-Zhong FENG Xiangyang Yuan Li Pin Bo Shang Qin Ping Tingjian Hu Shuo Liu. Progress in the Effects of Elevated Ground-Level Ozone on Terrestrial Ecosystem [J]. Chin J Plant Ecol, 2020, 44(全球变化与生态系统专辑): 0-0.
[3] WEI Hong, MAN Xiu-Ling. Carbon storage and its allocation in Betula platyphylla forests of different ages in cold temperate zone of China [J]. Chin J Plant Ecol, 2019, 43(10): 843-852.
[4] CHEN Ke-Yu, ZI Hong-Biao, ADE Luji, HU Lei, WANG Gen-Xu, WANG Chang-Ting. Current stocks and potential of carbon sequestration of the forest tree layer in Qinghai Province, China [J]. Chin J Plan Ecolo, 2018, 42(8): 831-840.
[5] Wang Shitong, Wu Hao, Liu Mengting, Zhang Jiaxin, Liu Jianming, Meng Hongjie, Xu Yaozhan, Qiao Xiujuan, Wei Xinzeng, Lu Zhijun, Jiang Mingxi. Community structure and dynamics of a remnant forest dominated by a plant species with extremely small population (Sinojackia huangmeiensis) in central China [J]. Biodiv Sci, 2018, 26(7): 749-759.
[6] LI Yong-Qiang, DONG Zhi, DING Chen-Xi, WANG Ya-Mei, JIA Ji-Wen, ZHANG Jia-Nan, JIAO Shu-Ying. Carbon stock and seasonal dynamics of carbon flux in warm-temperature tussock ecosystem in Shandong Province, China [J]. Chin J Plan Ecolo, 2018, 42(3): 277-287.
[7] Shuyu Deng, Xiangzhong Dong, Mingzhe Ma, Zhenhua Zang, Wenting Xu, Changming Zhao, Zongqiang Xie, Guozhen Shen. Evaluating the effectiveness of Shennongjia National Nature Reserve based on the dynamics of forest carbon pools [J]. Biodiv Sci, 2018, 26(1): 27-35.
[8] Rui GUO, Ji ZHOU, Fan YANG, Feng LI. Metabolic responses of wheat roots to alkaline stress [J]. Chin J Plan Ecolo, 2017, 41(6): 683-692.
[9] Wei-Feng WANG, Yu-Xi DUAN, Li-Xin ZHANG, Bo WANG, Xiao-Jing LI. Effects of different rotations on carbon sequestration in Chinese fir plantations [J]. Chin J Plan Ecolo, 2016, 40(7): 669-678.
[10] Yu-He JI, Ke GUO, Jian NI, Xiao-Niu XU, Zhi-Gao WANG, Shu-Dong WANG. Current forest carbon stocks and carbon sequestration potential in Anhui Province, China [J]. Chin J Plan Ecolo, 2016, 40(4): 395-404.
[11] Yan-Long JIA, Qian-Ru LI, Zhong-Qi XU, Wei-Guo SANG. Carbon cycle of larch plantation based on CO2FIX model [J]. Chin J Plan Ecolo, 2016, 40(4): 405-415.
[12] Wei ZHAO, Zhong-Min HU, Hao YANG, Lei-Ming ZHANG, Qun GUO, Zhi-Yan WU, De-Yi LIU, Sheng-Gong LI. Carbon density characteristics of sparse Ulmus pumila forest and Populus simonii plantation in Onqin Daga Sandy Land and their relationships with stand age [J]. Chin J Plan Ecolo, 2016, 40(4): 318-326.
[13] Jin-Hong GUAN, Sheng DU, Ji-Min CHENG, Chun-Rong WU, Guo-Qing LI, Lei DENG, Jian-Guo ZHANG, Qiu-Yue HE, Wei-Yu SHI. Current stocks and rate of sequestration of forest carbon in Gansu Province, China [J]. Chin J Plan Ecolo, 2016, 40(4): 304-317.
[14] Jian WANG, Gen-Xu WANG, Chang-Ting WANG, Fei RAN, Rui-Ying CHANG. Carbon storage and potentials of the broad-leaved forest in alpine region of the Qinghai- Xizang Plateau, China [J]. Chin J Plan Ecolo, 2016, 40(4): 374-384.
[15] Chun-Nan FAN, Shi-Jie HAN, Zhong-Ling GUO, Jin-Ping ZHENG, Yan CHENG. Present status and rate of carbon sequestration of forest vegetation in Jilin Province, Northeast China [J]. Chin J Plan Ecolo, 2016, 40(4): 341-353.
Full text



[1] TANG Zhong-Hua YU Jing-Hua YANG Feng-Jian ZU Yuan-Gang. Metabolic Biology of Plant Alkaloids[J]. Chin Bull Bot, 2003, 20(06): 696 -702 .
[2] Chunlin Long;Meilan Li . Status and Conservation Strategies of Community Plant Genetic Resources—A Case Study in Manlun, a Dai Village in Xishuangbanna[J]. Chin Bull Bot, 2006, 23(2): 177 -185 .
[3] KONG Hai-Yan JIA Gui-Xia WEN Yue-Ge. The Role of Calcium in Flower Development[J]. Chin Bull Bot, 2003, 20(02): 168 -177 .
[4] CHEN Jian-San and ZHAO Shi-Xu. A Study Cell Embryology of Rice 84-15[J]. Chin Bull Bot, 1999, 16(03): 284 -287 .
[5] Yanqing Zhou, Wanshen Wang, Xiangnan Wang, Hongying Duan. Recent Progress in DNA Molecular Markers and Gene Functions of Rehmannia glutinosa[J]. Chin Bull Bot, 2015, 50(5): 665 -672 .
[6] Han Yeliang. A Discussion on the Northern Boundary of the Subtropical Evergreen Broad-leaf Forest Zone in Anhui Province (Abstract)[J]. Chin J Plan Ecolo, 1981, 5(1): 54 -57 .
[7] Li Yi-de, Zeng Qing-bo, Wu Zhong-min, Du Zhi-hu, Zhou Guang-yi, Chen Bu-feng, Zhang Zhen-cai, Chen Huan-qiang. Study on Biomass of Tropical Mountain Rain Forest in Jianfengling, Hainan Province[J]. Chin J Plan Ecolo, 1992, 16(4): 293 -300 .
[8] XIA Jiang-Bao, ZHANG Guang-Can, SUN Jing-Kuan, LIU Xia. Threshold effects of photosynthetic and physiological parameters in Prunus sibirica to soil moisture and light intensity[J]. Chin J Plan Ecolo, 2011, 35(3): 322 -329 .
[9] Deng Lianhe, Zhou Xincheng. Suggestion to Protect the Community Composed of Rare Tree Species of Houhe Forest Area in Wufeng County, Hubei Province[J]. Chin J Plan Ecolo, 1982, 6(1): 84 .
[10] JIANG Xiao-Jie, HU Yan-Ling, HAN Jian-Qiu, and ZHOU Yu-Mei. Effects of warming on carbon, nitrogen and phosphorus stoichiometry in tundra soil and leaves of typical plants[J]. Chin J Plan Ecolo, 2014, 38(9): 941 -948 .