Chin J Plant Ecol ›› 2017, Vol. 41 ›› Issue (8): 840-849.DOI: 10.17521/cjpe.2017.0060
Special Issue: 碳储量
• Research Articles • Previous Articles Next Articles
Juan XING, Cheng-Yang ZHENG*(), Chan-Ying FENG, Fa-Xu ZENG
Online:
2017-08-10
Published:
2017-09-29
Contact:
Cheng-Yang ZHENG
About author:
KANG Jing-yao(1991-), E-mail: Juan XING, Cheng-Yang ZHENG, Chan-Ying FENG, Fa-Xu ZENG. Change of growth characters and carbon stocks in plantations of Pinus sylvestris var. mongolica in Saihanba, Hebei, China[J]. Chin J Plant Ecol, 2017, 41(8): 840-849.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2017.0060
树种 Species | 器官 Organ | 生物量方程 Formulate for biomass |
---|---|---|
樟子松 | 树干 Stem | W = 0.039 × (D2H)0.888 |
Pinus sylvestris var. mongolica | 树枝 Branch | W = 0. 047 × (D2H)0.705 |
树叶 Foliage | W = 0.075 × (D2H)0.404 | |
树根 Root | W = 0.012 × (D2H)0.873 | |
落叶松 | 树干 Stem | W = 0.065 × (D2H)0793 |
Larix principis-rupprechtii | 树枝 Branch | W = 0.052 × (D2H)0.679 |
树叶 Foliage | W = 0.139 × (D2H)0.457 | |
树根 Root | W = 0.023 × (D2H)0.75 |
Table 1 Formulae for biomass in different components of Pinus sylvestris var. mongolica and Larix principis-rupprechtii
树种 Species | 器官 Organ | 生物量方程 Formulate for biomass |
---|---|---|
樟子松 | 树干 Stem | W = 0.039 × (D2H)0.888 |
Pinus sylvestris var. mongolica | 树枝 Branch | W = 0. 047 × (D2H)0.705 |
树叶 Foliage | W = 0.075 × (D2H)0.404 | |
树根 Root | W = 0.012 × (D2H)0.873 | |
落叶松 | 树干 Stem | W = 0.065 × (D2H)0793 |
Larix principis-rupprechtii | 树枝 Branch | W = 0.052 × (D2H)0.679 |
树叶 Foliage | W = 0.139 × (D2H)0.457 | |
树根 Root | W = 0.023 × (D2H)0.75 |
树种 Species | 2006年 | 2016年 | 年均增幅 Annual increment rate (%) | |||||
---|---|---|---|---|---|---|---|---|
密度 Density (stems?hm-2) | 胸径 DBH (cm) | 树高 Tree height (m) | 密度 Density (stems?hm-2) | 胸径 DBH (cm) | 树高 Tree height (m) | 胸径 DBH | 树高 Tree height (m) | |
樟子松 Pinus sylvestris var. mongolica | 2 900 | 10.95 ± 3.53 | 8.74 ± 1.54 | 2 625 | 15.56 ± 6.29 | 10.62 ± 2.22 | 4.21 | 2.15 |
落叶松 Larix principis-rupprechtii | 669 | 12.29 ± 4.34 | 9.49 ± 2.08 | 650 | 17.18 ± 6.54 | 10.67 ± 2.66 | 3.98 | 1.24 |
林分 Stand | 3 569 | 11.19 ± 3.73 | 8.88 ± 1.68 | 3 275 | 15.88 ± 6.37 | 10.63 ± 2.37 | 4.19 | 1.97 |
Table 2 Stand characteristics of Pinus sylvestris var. mongolica plantations (mean ± SD)
树种 Species | 2006年 | 2016年 | 年均增幅 Annual increment rate (%) | |||||
---|---|---|---|---|---|---|---|---|
密度 Density (stems?hm-2) | 胸径 DBH (cm) | 树高 Tree height (m) | 密度 Density (stems?hm-2) | 胸径 DBH (cm) | 树高 Tree height (m) | 胸径 DBH | 树高 Tree height (m) | |
樟子松 Pinus sylvestris var. mongolica | 2 900 | 10.95 ± 3.53 | 8.74 ± 1.54 | 2 625 | 15.56 ± 6.29 | 10.62 ± 2.22 | 4.21 | 2.15 |
落叶松 Larix principis-rupprechtii | 669 | 12.29 ± 4.34 | 9.49 ± 2.08 | 650 | 17.18 ± 6.54 | 10.67 ± 2.66 | 3.98 | 1.24 |
林分 Stand | 3 569 | 11.19 ± 3.73 | 8.88 ± 1.68 | 3 275 | 15.88 ± 6.37 | 10.63 ± 2.37 | 4.19 | 1.97 |
树种 Species | 年份 Year | 胸径 DBH (cm) | 树高 Tree height (m) | ||
---|---|---|---|---|---|
总生长量 Total increment | 年生长量 Annual increment | 总生长量 Total increment | 年生长量 Annual increment | ||
樟子松 Pinus sylvestris var. mongolica | 2006 | 10.95 | 0.456 | 8.74 | 0.257 |
2016 | 15.56 | 0.458 | 10.62 | 0.312 | |
落叶松 Larix principis- rupprechtii | 2006 | 12.29 | 0.512 | 9.49 | 0.279 |
2016 | 17.18 | 0.505 | 10.67 | 0.314 | |
林分 Stand | 2006 | 11.19 | 0.466 | 8.88 | 0.261 |
2016 | 15.88 | 0.467 | 10.63 | 0.313 |
Table 3 Dynamics of annual tree growth
树种 Species | 年份 Year | 胸径 DBH (cm) | 树高 Tree height (m) | ||
---|---|---|---|---|---|
总生长量 Total increment | 年生长量 Annual increment | 总生长量 Total increment | 年生长量 Annual increment | ||
樟子松 Pinus sylvestris var. mongolica | 2006 | 10.95 | 0.456 | 8.74 | 0.257 |
2016 | 15.56 | 0.458 | 10.62 | 0.312 | |
落叶松 Larix principis- rupprechtii | 2006 | 12.29 | 0.512 | 9.49 | 0.279 |
2016 | 17.18 | 0.505 | 10.67 | 0.314 | |
林分 Stand | 2006 | 11.19 | 0.466 | 8.88 | 0.261 |
2016 | 15.88 | 0.467 | 10.63 | 0.313 |
Fig. 2 Decadal increment of diameter at breast height (DBH), tree height and basal area in different DBH-class. Lowercase letter represent the significant level of multiple comparisons of decadal increment of DBH, tree height and basal area in different DBH-class (mean ± SE).
径级 DBH-class (cm) | 2006年 | 2016年 | 10年间死亡率 Decadal mortality (%) | |||
---|---|---|---|---|---|---|
樟子松 Pinus sylvestris var. mongolica | 落叶松 Larix principis- rupprechtii | 樟子松 Pinus sylvestris var. mongolica | 落叶松 Larix principis- rupprechtii | 樟子松 Pinus sylvestris var. mongolica | 落叶松 Larix principis- rupprechtii | |
0-5 | 29 | 5 | 8 | 4 | 72.4 | 20.0 |
5-10 | 404 | 67 | 330 | 63 | 18.3 | 5.9 |
10-15 | 466 | 107 | 460 | 105 | 1.3 | 1.9 |
15-20 | 143 | 47 | 143 | 47 | 0.0 | 0.0 |
20-25 | 4 | 15 | 4 | 15 | 0.0 | 0.0 |
Table 4 Mortality of forest stand in different DBH-class
径级 DBH-class (cm) | 2006年 | 2016年 | 10年间死亡率 Decadal mortality (%) | |||
---|---|---|---|---|---|---|
樟子松 Pinus sylvestris var. mongolica | 落叶松 Larix principis- rupprechtii | 樟子松 Pinus sylvestris var. mongolica | 落叶松 Larix principis- rupprechtii | 樟子松 Pinus sylvestris var. mongolica | 落叶松 Larix principis- rupprechtii | |
0-5 | 29 | 5 | 8 | 4 | 72.4 | 20.0 |
5-10 | 404 | 67 | 330 | 63 | 18.3 | 5.9 |
10-15 | 466 | 107 | 460 | 105 | 1.3 | 1.9 |
15-20 | 143 | 47 | 143 | 47 | 0.0 | 0.0 |
20-25 | 4 | 15 | 4 | 15 | 0.0 | 0.0 |
[1] |
Alvarez S, Ortiz C, Díaz-Pinés E, Rubio A (2016). Influence of tree species composition, thinning intensity and climate change on carbon sequestration in Mediterranean mountain forests: A case study using the CO2 fix model.Mitigation and Adaptation Strategies for Global Change, 21, 1045-1058.
DOI URL |
[2] |
Chen DX, Li YD, Xu H, Xiao WF, Luo TS, Zhou Z, Lin MX (2010). Biomass and carbon dynamics of a tropical mountain rain forest in China.Science China: Life Science, 40, 596-609.(in Chinese)[陈德祥, 李意德, 许涵, 肖文发, 骆土寿, 周璋, 林明献 (2010). 尖峰岭热带山地雨林生物量及碳库动态. 中国科学: 生命科学,40, 596-609.]
DOI URL |
[3] |
Coomes DA, Allen RB (2007). Mortality and tree-size distributions in natural mixed-age forests.Journal of Ecology, 95, 27-40.
DOI URL |
[4] | Dai JX (2002). Afforestation Techniques of Pinus sylvestris var. mongolica China. Forestry Publishing House, Beijing.(in Chinese)[戴继先 (2002). 樟子松造林技术. 中国林业出版社, 北京.] |
[5] |
Dobbertin M, Eilmann B, Bleuler P, Giuggiola A, Graf Pannatier E, Landolt W, Schleppi P, Rigling A (2010). Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest.Tree Physiology, 30, 346-360.
DOI URL PMID |
[6] | Eilmann B, Buchmann N, Siegwolf R, Saurer M, Cherubini P, Rigling A (2010). Fast response of Scots pine to improved water availability reflected in tree-ring width and delta 13C.Plant, Cell & Environment, 33, 1351-1360. |
[7] |
Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001). Changes in forest biomass carbon storage in China between 1949 and 1998.Science, 292, 2320-2322.
DOI URL PMID |
[8] |
Fedrigo M, Kasel S, Bennett LT, Roxburgh SH, Nitschke CR (2014). Carbon stocks in temperate forests of south-eastern Australia reflect large tree distribution and edaphic conditions.Forest Ecology and Management, 334, 129-143.
DOI URL |
[9] | Gerile, Siqinbilige, Jin R (2004). Research on the growth characteristics of the introduced Pinus sylvestris var. mongolica in Maowusu sandy land.Journal of Arid Land Resources and Environment, 18(5), 159-162.[格日勒, 斯琴毕力格, 金荣 (2004). 毛乌素沙地引种樟子松生长特性的研究. 干旱区资源与环境, 18(5), 159-162.] |
[10] |
Guo ZD, Hu HF, Li P, Li NY, Fang JY (2013). Spatio-temporal changes in biomass carbon sinks in China’s forests from 1977 to 2008.Science China: Life Sciences, 56, 661.
DOI URL PMID |
[11] | Han MN, Wei YW, Qin SJ, Deng LP, Zhou YB (2015). Carbon storage dynamics and its distribution pattern in Pinus sylvestris var. mongolica plantation in sandy land.Chinese Journal of Ecology, 34, 1798-1803.(in Chinese with English abstract)[韩美娜, 魏亚伟, 秦胜金, 邓莉萍, 周永斌 (2015). 沙地樟子松人工林碳库动态及其分配特征. 生态学杂志 34, 1798-1803.] |
[12] | Hu HQ, Luo BZ, Wei SJ, Wei SW, Sun L, Luo SS, Ma HB (2015). Biomass carbon density and carbon sequestration capacity in seven typical forest types of the Xiaoxing’an Mountains China. Chinese Journal of Plant Ecology, 39, 140-158.(in Chinese with English abstract)[胡海清, 罗碧珍, 魏书精, 魏书威, 孙龙, 罗斯生, 马洪斌 (2015). 小兴安岭7种典型林型林分生物量碳密度与固碳能力., 植物生态学报,39, 140-158.] |
[13] | Jia WW, Li FR, Dong LH, Zhao X (2012). Carbon density and storage for Pinus sylvestris var. mongolica plantation based on compatible biomass models.Journal of Beijing Forestry University, 34(1), 6-13.(in Chinese with English abstract)[贾炜玮, 李凤日, 董利虎, 赵鑫 (2012). 基于相容性生物量模型的樟子松林碳密度与碳储量研究, 北京林业大学学报,34(1), 6-13.] |
[14] | Jiang FQ, Zeng DH, Fan ZP, Zhu JJ (1996). Simulation of individual tree growth of Mongolian pine forest in sandy land.Chinese Journal of Applied Ecology, 7, 1-5.(in Chinese with English abstract)[姜凤岐, 曾德慧, 范志平, 朱教君 (1996). 沙地樟子松林单木生长的研究, 应用生态学报,7, 1-5.] |
[15] | Lang JM, Song TM (1993). Effects of root treatment and packaging methods on afforestation of seedling of Pinus sylvestris var.mongolica. Journal of Beijing Forestry University, 15(2), 203-206.[郎建民, 宋廷茂 (1993). 根系处理及包装方法对樟子松苗木造林效果的影响. 北京林业大学学报, 15(2), 203-206.] |
[16] |
Lee J, Tolunay D, Makineci E, ??mez A, Son YM, Kim R, Son Y (2016). Estimating the age-dependent changes in carbon stocks of Scots pine (Pinus sylvestris L.) stands in Turkey. Annals of Forest Science, 73, 523-531.
DOI URL |
[17] |
Li LL, Li LG, Chen ZJ, Zhou YB, Zhang XL, Bai XP, Chang YX, Xiao JQ (2015). Responses of Pinus sylvestris var. mongolica to gradient change of hydrothermal in plantations in Liaoning Province.Acta Ecologica Sinica, 35, 4508-4517.(in Chinese with English abstract)[李露露, 李丽光, 陈振举, 周永斌, 张先亮, 白学平, 常永兴, 肖建强 (2015). 辽宁省人工林樟子松径向生长对水热梯度变化的响应, 生态学报,35, 4508-4517.]
DOI URL |
[18] |
Li Q, Zhu JH, Feng Y, Xiao WF (2016). Carbon stocks and carbon sequestration of the main plantation in China.Journal of Northwest Forestry University, 31, 1-6.(in Chinese with English abstract)[李奇, 朱建华, 冯源, 肖文发 (2016). 中国主要人工林碳储量与固碳能力, 西北林学院学报,31, 1-6.]
DOI URL |
[19] |
Liu F, Zhang YX, Ma YB, Dong LL, Yu XC, Huang YR (2015). Growth rhythm of Pinus sylvestris var. mongolica in the Ulan Buh Desert.Journal of Desert Research, 35, 1234-1238.[刘芳, 章尧想, 马迎宾, 董礼隆, 余新春, 黄雅茹 (2015). 乌兰布和沙漠绿洲樟子松(Pinus sylvestris var. mongolica)生长规律初探. 中国沙漠, 35, 1234-1238.]
DOI URL |
[20] | Liu HM, Lü SJ, Lui QQ, Lui LY, Wang YJ, Zhang BH (2013). Biomass and carbon storage of the Pinus sylvestris var. mongolica plantation in the Duolun County.Journal of Inner Mongolia Agricultural University, 34, 49-53.(in Chinese with English abstract)[刘红梅, 吕世杰, 刘清泉, 刘丽英, 王玉芝, 章海波 (2013). 多伦县樟子松人工林生物量及碳储量研究, 内蒙古农业大学学报,34, 49-53.] |
[21] |
Lui XP, He YH, Wei SL, Zhao XY, Zhang TH, Yue XF (2016). Growth response of Pinus sylvestris var. mongolica to precipitation and air temperature in the Horqin Sandy Land.Journal of Desert Research, 36(1), 57-63.[刘新平, 何玉惠, 魏水莲, 赵学勇, 张铜会, 岳祥飞 (2016). 科尔沁沙地樟子松(Pinus sylvestris var. mongolica)生长对降水和温度的响应. 中国沙漠, 36(1), 57-63.]
DOI |
[22] |
Martin-Benito D, Beeckman H, Ca?ellas I (2013). Influence of drought on tree rings and tracheid features of Pinus nigra and Pinus sylvestris in a mesic Mediterranean forest.European Journal of Forest Research, 132, 33-45.
DOI URL |
[23] |
Michelot A, Simard S, Rathgeber C, Dufrene E, Damesin C (2012). Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics.Tree Physiology, 32, 1033-1045.
DOI URL PMID |
[24] |
Muller-Landau HC, Condit, RS, Chave J, Thomas SC, Bohlman SA, Bunyavejchewin S, Davies S, Foster R, Gunatilleke S, Gunatilleke N, Harms KE, Hart T, Hubbell SP, Itoh A, Kassim AR, LaFrankie JV, Lee HS, Losos E, Makana JR, Ohkubo T, Sukumar R, Sun IF, Nur Supardi MN, Tan S, Thompson J, Valencia R, Mu?oz GV, Wills C, Yamakura T, Chuyong G, Dattaraja HS, Esufali S, Hall P, Hernandez C, Kenfack D, Kiratiprayoon S, Suresh HS, Thomas D, Vallejo MI, Ashton P (2006). Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests.Ecology Letters, 9, 575-588.
DOI URL PMID |
[25] |
Runkle JR (2013). Thirty-two years of change in an old-growth Ohio beech-maple forest.Ecology, 94, 1165-1175.
DOI URL PMID |
[26] |
Song L, Zhu J, Li M, Yu Z (2014). Water utilization of Pinus sylvestris var. mongolica in a sparse wood grassland in the semiarid sandy region of Northeast China.Trees, 28, 971-982.
DOI URL |
[27] |
Song L, Zhu J, Li M, Zhang J (2016). Water use patterns of Pinus sylvestris var. mongolica trees of different ages in a semiarid sandy lands of Northeast China.Environmental and Experimental Botany, 129, 94-107.
DOI URL |
[28] |
Song L, Zhu J, Yan Q, Li M, Yu G (2015). Comparison of intrinsic water use efficiency between different aged Pinus sylvestris var. mongolica wide windbreaks in semiarid sandy land of northern China.Agroforestry Systems, 89, 477-489.
DOI URL |
[29] |
Stephenson NL, Das AJ, Condit R, Russo SE, Baker PJ, Beckman NG, Coomes DA, Lines ER, Morris WK, Ruger N, Alvarez E, Blundo C, Bunyavejchewin S, Chuyong G, Davies SJ, Duque A, Ewango CN, Flores O, Franklin JF, Grau HR, Hao Z, Harmon ME, Hubbell SP, Kenfack D, Lin Y, Makana JR, Malizia A, Malizia LR, Pabst RJ, Pongpattananurak N, Su SH, Sun IF, Tan S, Thomas D, Mantgem PJ, Wang X, Wiser SK, Zavala MA (2014). Rate of tree carbon accumulation increases continuously with tree size.Nature, 507, 90.
DOI URL PMID |
[30] |
Vucetich JA, Reed DD, Breymeyer A, Degórski M, Mroz GD, Solon J, Roo-Zielinska E, Noble R (2000). Carbon pools and ecosystem properties along a latitudinal gradient in northern Scots pine (Pinus sylvestris) forests.Forest Ecology and Management, 136, 135-145.
DOI URL |
[31] |
Wang D, Wang B, Niu X (2014). Forest carbon sequestration in China and its benefits.Scandinavian Journal of Forest Research, 29, 51-59.
DOI URL |
[32] | Wang NH, Gao M, Li D (2014). Tree layer biomass distribution and carbon storage capacity of Larix olgensis plantation.Bulletin of Botanical Research, 34, 554-558.(in Chinese with English abstract)[王霓虹, 高萌, 李丹 (2014). 长白落叶松人工林乔木层生物量分布特征及其固碳能力研究, 植物研究,34, 554-558.] |
[33] |
Williams CA, Collatz GJ, Masek J, Goward SN (2012). Carbon consequences of forest disturbance and recovery across the conterminous United States. Global Biogeochemical Cycles, 26, 1005-1017.
DOI URL |
[34] |
Xu B, Pan Y, Plante AF, Johnson A, Cole J, Birdsey R (2016). Decadal change of forest biomass carbon stocks and tree demography in the Delaware River Basin.Forest Ecology and Management, 374, 1-10.
DOI URL |
[35] |
Yuan LM, Yan DR, Wang YQ, Jiang P, Liu Y (2015). Carbon storage of Pinus sylvestris var. mongolica plantation in sandy land.Journal of Inner Mongolia Forestry Science and Technology, 37, 9-13.(in Chinese with English abstract)[袁立敏, 闫德仁, 王熠青, 姜鹏, 刘阳 (2011). 沙地樟子松人工林碳储量研究, 内蒙古林业科技,37, 9-13.]
DOI URL |
[36] |
Zeng DH, Hu YL, Chang SX, Fan ZP (2000). Land cover change effects on soil chemical and biological properties after planting Mongolian pine (Pinus sylvestris var. mongolica) in sandy lands in Keerqin, northeastern China.Plant and Soil, 317, 121-133.
DOI URL |
[37] |
Zeng DH, Jiang FQ, Fan ZP, Du XJ (2010). Self-thinning of even-aged pure plantations of Pinus sylvestris var. mongolica on sandy soil.Acta Ecologica Sinica, 20, 235-242.(in Chinese with English abstract)[曾德慧, 姜凤岐, 范志平, 杜晓军 (2000). 沙地樟子松人工林自然稀疏规律, 生态学报,20, 235-242.]
DOI URL |
[38] | Zeng DH, Jiang FQ, Fan ZP, Zhu JJ (1996). Stability of Mongolian pine plantations on sandy land.Journal of Applied Ecology, 7, 337-343.(in Chinese with English abstract)[曾德慧, 姜凤岐, 范志平, 朱教君 (1996). 樟子松人工固沙林稳定性的研究, 应用生态学报,7, 337-343.] |
[39] |
Zhang JY, Zhao HL, Cui JY, Zhang TH, Zhao XY (2005). Community structure, soil water dynamics and community stability of Pinus sylvestris var. mongolica plantation in Horqin Sandy Land.Scientia Silvae Sinicae, 41(3), 1-6.(in Chinese with English abstract)[张继义, 赵哈林, 崔建垣, 张铜会, 赵学勇 (2005). 科尔沁沙地樟子松人工林土壤水分动态的研究, 林业科学,41(3), 1-6]
DOI |
[40] | Zhang RS (2016). Growth and maturity of Pinus sylvestris var. mongolica plantation on sandy land.Protection Forest Science and Technology, (11), 45-47.(in Chinese with English abstract)[张日升 (2016). 沙地樟子松人工林的生长与成熟. 防护林科技, (11), 45-47.] |
[41] | Zhao M (2004).Carbon Storage Dynamics and Its Distribution Pattern in Pinus sylvestris var. mongolica Plantation in Sandy Land. PhD dissertation, Institute of Botany, Chinese Academy of Sciences,Beijing.(in Chinese with English abstract)[赵敏 (2004). 中国主要森林生态系统碳储量和碳收支评估. 博士学位论文, 中国科学院植物研究所, 北京.] |
[42] |
Zhu JJ, Fan ZP, Zeng DH, Jiang FQ, Matsuzaki T (2003) Comparison of stand structure and growth between artificial and natural forests of Pinus sylvestiris var. mongolica on sandy land.Journal of Forestry Research, 14, 103-111.
DOI URL |
[43] |
Zhu JJ, Li FQ, Xu ML, Kang HZ, Wu XY (2008). The role of ectomycorrhizal fungi in alleviating pine decline in semiarid sandy soil of northern China: An experimental approach.Annals of Forest Science, 65, 1-12.
DOI URL |
[1] | FANG Jing-Yun. Ecological perspectives of carbon neutrality [J]. Chin J Plant Ecol, 2021, 45(11): 1173-1176. |
[2] | FENG Zhao-Zhong, YUAN Xiang-Yang, LI Pin, SHANG Bo, PING Qin, HU Ting-Jian, LIU Shuo. Progress in the effects of elevated ground-level ozone on terrestrial ecosystems [J]. Chin J Plant Ecol, 2020, 44(5): 526-542. |
[3] | FENG Zhao-Zhong, LI Pin, ZHANG Guo-You, LI Zheng-Zhen, PING Qin, PENG Jin-Long, LIU Shuo. Impacts of elevated carbon dioxide concentration on terrestrial ecosystems: problems and prospective [J]. Chin J Plant Ecol, 2020, 44(5): 461-474. |
[4] | WEI Hong, MAN Xiu-Ling. Carbon storage and its allocation in Betula platyphylla forests of different ages in cold temperate zone of China [J]. Chin J Plant Ecol, 2019, 43(10): 843-852. |
[5] | CHEN Ke-Yu, ZI Hong-Biao, ADE Luji, HU Lei, WANG Gen-Xu, WANG Chang-Ting. Current stocks and potential of carbon sequestration of the forest tree layer in Qinghai Province, China [J]. Chin J Plant Ecol, 2018, 42(8): 831-840. |
[6] | LI Yong-Qiang, DONG Zhi, DING Chen-Xi, WANG Ya-Mei, JIA Ji-Wen, ZHANG Jia-Nan, JIAO Shu-Ying. Carbon stock and seasonal dynamics of carbon flux in warm-temperature tussock ecosystem in Shandong Province, China [J]. Chin J Plant Ecol, 2018, 42(3): 277-287. |
[7] | Rui GUO, Ji ZHOU, Fan YANG, Feng LI. Metabolic responses of wheat roots to alkaline stress [J]. Chin J Plant Ecol, 2017, 41(6): 683-692. |
[8] | Wei-Feng WANG, Yu-Xi DUAN, Li-Xin ZHANG, Bo WANG, Xiao-Jing LI. Effects of different rotations on carbon sequestration in Chinese fir plantations [J]. Chin J Plant Ecol, 2016, 40(7): 669-678. |
[9] | Wei ZHAO, Zhong-Min HU, Hao YANG, Lei-Ming ZHANG, Qun GUO, Zhi-Yan WU, De-Yi LIU, Sheng-Gong LI. Carbon density characteristics of sparse Ulmus pumila forest and Populus simonii plantation in Onqin Daga Sandy Land and their relationships with stand age [J]. Chin J Plant Ecol, 2016, 40(4): 318-326. |
[10] | Yu-He JI, Ke GUO, Jian NI, Xiao-Niu XU, Zhi-Gao WANG, Shu-Dong WANG. Current forest carbon stocks and carbon sequestration potential in Anhui Province, China [J]. Chin J Plant Ecol, 2016, 40(4): 395-404. |
[11] | Yan-Long JIA, Qian-Ru LI, Zhong-Qi XU, Wei-Guo SANG. Carbon cycle of larch plantation based on CO2FIX model [J]. Chin J Plant Ecol, 2016, 40(4): 405-415. |
[12] | Jin-Hong GUAN, Sheng DU, Ji-Min CHENG, Chun-Rong WU, Guo-Qing LI, Lei DENG, Jian-Guo ZHANG, Qiu-Yue HE, Wei-Yu SHI. Current stocks and rate of sequestration of forest carbon in Gansu Province, China [J]. Chin J Plant Ecol, 2016, 40(4): 304-317. |
[13] | Jian WANG, Gen-Xu WANG, Chang-Ting WANG, Fei RAN, Rui-Ying CHANG. Carbon storage and potentials of the broad-leaved forest in alpine region of the Qinghai- Xizang Plateau, China [J]. Chin J Plant Ecol, 2016, 40(4): 374-384. |
[14] | Chun-Nan FAN, Shi-Jie HAN, Zhong-Ling GUO, Jin-Ping ZHENG, Yan CHENG. Present status and rate of carbon sequestration of forest vegetation in Jilin Province, Northeast China [J]. Chin J Plan Ecolo, 2016, 40(4): 341-353. |
[15] | Yu ZHANG, Guang-Ze JIN. Effects of decay classes and diameter classes on physico-chemical properties of Pinus koraiensis log in a typical mixed broadleaved-Korean pine forest [J]. Chin J Plant Ecol, 2016, 40(12): 1276-1288. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn