Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (12): 1228-1238.doi: 10.17521/cjpe.2017.0115

• Research Articles • Previous Articles     Next Articles

Changes in leaf nitrogen and phosphorus stoichiometry of woody plants along an altitudinal gradient in Changbai Mountain, China

YANG Lei, SUN Han, FAN Yan-Wen, HAN Wei, ZENG Ling-Bing, LIU Chao, WANG Xiang-Ping*()   

  1. Key Laboratory for Forest Resources & Ecosystem Processes of Beijing, College of Forestry, Beijing Forestry University, Beijing 100083, China.
  • Online:2018-02-23 Published:2017-12-10
  • Contact: WANG Xiang-Ping E-mail:wangxiangping@bjfu.edu.cn

Abstract:

Aims Leaf is the organ of plant photosynthesis, and it is important to understand the drivers for the variations of leaf nitrogen (N) and phosphorus (P) stoichiometry along geographical and climatic gradients. Here we aimed to explore: 1) the changes in leaf nitrogen (N) and phosphorus (P) stoichiometry of woody plants along an altitudinal gradient in Changbai Mountain, and 2) the relative contribution of climate, plant characteristics, and phylogeny to the changes in leaf N, P concentration and N:P.

Methods We measured leaf N and P concentration, and N:P of 48 woody species in 14 plots along an altitudinal gradient in Changbai Mountain. General linear models (GLMs) and variation partitioning analyses were used to explain leaf N and P stoichiometry with parameters related to plant functional groups, climate and phylogenetic groups.

Important findings Leaf N concentration and N:P decreased with altitude, and were positively correlated with mean annual temperature (MAT) but negatively correlated with mean annual precipitation (MAP). Leaf P concentration had no significant relationship with altitude. Leaf N, P concentration and N:P were significantly different among different plant functional groups. Leaf N concentration of shrubs was higher than that of trees, but leaf P concentration and N:P did not differ significantly between shrubs and trees. Leaf N, P concentration and N:P of broad-leaved plants were significantly higher than those of coniferous plants. Similarly, leaf N, P concentration and N:P of deciduous plants were significantly higher than those of evergreen plants. The effects of climate on leaf N, P concentration and N:P were significant but very weak, with MAT and MAP together explaining 1.50%-2.98% of the variations. Phylogenetic groups explained 30.36%-54.38% of the variations, suggesting the critical effect of phylogeny. Our study also showed that the synergistic effect of climate and species composition (phylogeny) on leaf N and P stoichiometry was neglectable, at least along the altitude gradient of Changbai Mountain. More comparative studies between altitudinal and latitudinal gradients are needed to better understand the drivers of the changes in leaf stoichiometry along an environmental gradient.

Key words: leaf stoichiometry, altitude gradient, climate, plant functional groups, phylogeny, woody plants

Table 1

Statistics of leaf nitrogen (N), phosphorus (P) concentrations and N:P of the examined plant species in Changbai Mountain"

叶性状
Leaf trait
功能群
Functional group
样本量
n
平均值
Mean
最大值
Max
最小值
Min
标准偏差
SD
标准误差
SE
变异系数
CV
氮含量
N concentration (g·kg-1)
全部样品 All samples 431 21.46 37.90 5.10 6.75 0.33 0.31
生活型
Life form
乔木 Tree 240 20.74b 37.90 5.10 6.80 0.44 0.33
灌木 Shrub 191 22.37a 37.40 6.80 6.59 0.48 0.29
叶型
Leaf shape
针叶 Coniferous 89 15.50b 36.80 8.50 4.91 0.52 0.32
阔叶 Broad-leaved 342 23.02a 37.90 5.10 6.29 0.34 0.27
叶片习性
Leaf habit
常绿 Evergreen 87 14.49b 35.00 8.44 4.42 0.47 0.31
落叶 Deciduous 344 23.23a 37.90 5.10 6.06 0.33 0.26
磷含量
P concentration (g·kg-1)
全部样品 All samples 431 2.23 6.75 0.66 0.87 0.04 0.39
生活型
Life form
乔木 Tree 240 2.22 6.75 0.66 0.93 0.06 0.42
灌木 Shrub 191 2.25 5.29 0.77 0.80 0.06 0.35
叶型
Leaf shape
针叶 Coniferous 89 1.91b 4.13 0.66 0.77 0.08 0.40
阔叶 Broad-leaved 342 2.32a 6.75 0.77 0.88 0.05 0.38
叶片习性
Leaf habit
常绿 Evergreen 87 1.74b 3.30 0.66 0.66 0.07 0.38
落叶 Deciduous 344 2.36a 6.75 0.99 0.87 0.05 0.37
N:P 全部样品 All samples 431 10.81 33.70 2.47 4.77 0.23 0.44
生活型
Life form
乔木 Tree 240 10.60 33.70 2.47 4.89 0.32 0.46
灌木 Shrub 191 11.07 26.34 3.12 4.62 0.33 0.42
叶型
Leaf shape
针叶 Coniferous 89 9.35b 25.92 3.90 4.68 0.50 0.50
阔叶 Broad-leaved 342 11.19a 33.70 2.47 4.72 0.26 0.42
叶片习性
Leaf habit
常绿 Evergreen 87 9.75b 25.92 3.28 4.93 0.53 0.51
落叶 Deciduous 344 11.08a 33.70 2.47 4.70 0.25 0.42

Fig. 1

Leaf nitrogen (N) (A), phosphorus (P) (B) concentrations and N:P (C) in relation to altitude."

Fig. 2

Leaf nitrogen (N), phosphorus (P) concentrations and N:P in relation to mean annual temperature and mean annual precipitation."

Table 2

Contributions of each factor to the variations of leaf nitrogen (N), phosphorus (P) concentrations and N:P"

叶性状
Leaf traits
年平均气温
Mean annual
temperature
年降水量
Mean annual
precipitation
生活型
Life form
叶型
Leaf shape
叶片习性
Leaf habit
90 Mya谱系组
90 Mya division
60 Mya谱系组
60 Mya division
物种
Species
氮含量
N concentration
R2 0.012 0.012 0.016 0.229 0.324 0.415 0.459 0.536
p 0.023* 0.025* 0.008** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***
磷含量
P concentration
R2 0.003 0.003 0.002 0.049 0.115 0.216 0.306 0.391
p 0.233 0.247 0.342 0.000*** 0.000*** 0.000*** 0.000*** 0.000***
N:P R2 0.016 0.016 0.003 0.028 0.018 0.152 0.215 0.303
p 0.008** 0.009** 0.257 0.000*** 0.005** 0.000*** 0.000*** 0.000***

Table 3

Summary of results of general linear model analysis for the effects of environmental factors, plant functional groups and phylogeny (90 and 60 Mya phylogenetic group, species) on leaf nitrogen (N), phosphorus (P) concentrations and N:P"

N P N:P
df %SS p df %SS p df %SS p
气候 Climate
年平均气温 Mean annual temperature 1 1.21 0.001** 1 0.33 0.146 1 1.65 0.002**
年降水量 Mean annual precipitation 1 0.61 0.022* 1 0.45 0.089 1 1.28 0.007**
植物功能型 Plant functional groups
生活型 Life form 1 1.54 0.000*** 1 0.22 0.237 1 0.27 0.214
叶型 Leaf shape 1 22.60 0.000*** 1 5.70 0.000*** 1 2.24 0.000***
叶片习性 Leaf habit 1 9.34 0.000*** 1 6.46 0.000*** 1 0.02 0.767
谱系 Phylogeny
90 Mya谱系组 90 Mya division 18 12.06 0.000*** 18 13.03 0.000*** 18 13.18 0.000***
60 Mya谱系组 60 Mya division 10 3.82 0.000*** 10 8.10 0.000*** 10 7.34 0.000***
物种 Species 17 5.01 0.000*** 17 6.33 0.002** 17 7.32 0.001**
残差 Residuals 380 43.81 380 59.36 380 66.72

Fig. 3

Variation partitioning analysis for leaf nitrogen (N), phosphorus (P) concentrations and N:P by three types of factors: Climate (mean annual temperature and mean annual precipitation), species (phylogenetic differences among species, He et al., 2010), and unexplained variations. A, leaf N concentration. B, leaf P concentration. C, N:P. a and b are the pure effects of climate and species, respectively; c is their synergistic effects. The significances of a and b were evaluated with F test. ***, p < 0.001; **, p < 0.01."

Appendix I

General information of the plots on Changbai Mountain"

样地 Plot 经度 Longitude (°E) 纬度 Latitude (°N) 海拔 Altitude (m) 林型 Forest type
CB01 128.11 42.39 530 白桦林 Betula platyphylla forest
CB02 128.08 42.41 650 阔叶红松林 Pinus koraiensis and broadleaf mixed forest
CB03 128.12 42.32 840 阔叶红松林 Pinus koraiensis and broadleaf mixed forest
CB04 128.17 42.23 950 白桦林 Betula platyphylla forest
CB05 128.17 42.23 970 阔叶红松林 Pinus koraiensis and broadleaf mixed forest
CB06 128.17 42.19 1 010 云冷杉林 Picea and Abies forest
CB07 128.11 42.12 1 270 阔叶红松林 Pinus koraiensis and broadleaf mixed forest
CB08 128.26 42.07 1 420 云冷杉林 Picea and Abies forest
CB09 128.09 42.10 1 420 长白落叶松林 Larix olgensis forest
CB10 128.24 42.08 1 440 长白落叶松林 Larix olgensis forest
CB11 128.08 42.09 1 530 长白落叶松林 Larix olgensis forest
CB12 128.07 42.07 1 660 长白落叶松林 Larix olgensis forest
CB13 128.07 42.06 1 885 岳桦林 Betula ermanii forest
CB14 128.07 42.06 1 940 岳桦林 Betula ermanii forest

Appendix II

Phylogenetic tree for 47 species in this study, based on the phylogenetic tree of Zanne et al. (2014). Showing the phylogenetic divisions at the 90 and 60 million years ago (Mya)"

Appendix III

Summary of general linear models for the effects of environmental variation (mean annual temperature and mean annual precipitation), plant functional groups and taxonomic variation (family, genus, and species) on individual leaf traits"

氮 Nitrogen 磷 Phosphorus N:P
df %SS p df %SS p df %SS p
气候 Climate
年平均气温 Mean annual temperature 1 1.21 0.001** 1 0.33 0.146 1 1.65 0.002**
年降水量 Mean annual precipitation 1 0.61 0.022* 1 0.45 0.089 1 1.28 0.007**
植物功能型 Plant functional groups
生活型 Life form 1 1.54 0.000*** 1 0.22 0.237 1 0.27 0.214
叶型 Leaf shape 1 22.60 0.000*** 1 5.70 0.000*** 1 2.24 0.000***
叶片习性 Leaf habit 1 9.34 0.000*** 1 6.46 0.000*** 1 0.02 0.767
系统发育关系 Taxonomy
科 Family 17 11.50 0.000*** 17 9.85 0.000*** 17 9.81 0.000***
属 Genus 10 3.11 0.003** 10 8.79 0.000*** 10 6.30 0.000***
种 Species 18 6.29 0.000*** 18 8.83 0.000*** 18 11.73 0.000***
残差 Residuals 380 43.81 380 59.36 380 66.72
1 Aerts R, Champion FS (1999). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns.Advances in Ecological Research, 30, 1-67.
doi: 10.1016/S0065-2504(08)60016-1
2 Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and services.Ecology Letters, 9, 1146-1156.
doi: 10.1111/j.1461-0248.2006.00963.x
3 Chapin FS, Schulze ED, Mooney HA (1990). The ecology and economics of plants.Annual Review of Ecology & Systematics, 21, 423-447.
doi: 10.1146/annurev.es.21.110190.002231
4 Chen YH, Han WX, Tang LY, Tang ZY, Fang JY (2013). Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form.Ecography, 36, 178-184.
doi: 10.1111/more.2013.36.issue-2
5 Cordell S, Goldstein G, Meinzer FC, Vitousek PM (2001). Morphological and physiological adjustment to N and P fertilization in nutrient-limited Metrosideros polymorpha canopy trees in Hawaii.Tree Physiology, 21, 43-50.
doi: 10.1093/treephys/21.1.43 pmid: 11260823
6 Crawley MJ (2007). The R Book. Wiley Publishing. London.
7 Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003). Growth rate-stoichiometry couplings in diverse biota.Ecology Letters, 6, 936-943.
doi: 10.1046/j.1461-0248.2003.00518.x
8 Fan JW, Zhang LX, Zhang WY, Zhong HP (2014). The spatial pattern of plant nitrogen and phosphorus in relation to climate factors in Chinese grassland transect. Acta Agrestia Sinica, 22, 1-6.(in Chinese with English abstract) [樊江文, 张良侠, 张文彦, 钟华平 (2014). 中国草地样带植物氮磷元素空间格局及其与气候因子的关系. 草地学报, 22, 1-6.]
9 Fang JY (1992). Study on the geographic elements affecting temperature distribution in China.Acta Ecologica Sinica, 12, 97-104.(in Chinese with English abstract) [方精云 (1992). 地理要素对我国气温分布影响的数量评价. 生态学报, 12, 97-104.]
10 Fang JY, Wang XP, Shen ZH, Tang ZY, He JS, Yu D, Jiang Y, Wang ZH, Zheng CY, Zhu JL, Guo ZD (2009). Methods and protocols for plant community inventory.Biodiversity Science, 17, 533-548.(in Chinese with English abstract) [方精云, 王襄平, 沈泽昊, 唐志尧, 贺金生, 于丹, 江源, 王志恒, 郑成洋, 朱江玲, 郭兆迪 (2009). 植物群落清查的主要内容、方法和技术规范. 生物多样性, 17, 533-548.]
doi: 10.3724/SP.J.1003.2009.09253
11 Fisher JB, Malhi Y, Torres IC, Metcalfe DB, van de Weg MJ, Meir P, Silva-Espejo JE, Huasco WH (2013). Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes.Oecologia, 172, 889-902.
doi: 10.1007/s00442-012-2522-6
12 Güsewell S (2004). N:P ratios in terrestrial plants: Variation and functional significance.New Phytologist, 164, 243-266.
doi: 10.1111/j.1469-8137.2004.01192.x
13 Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China.New Phytologist, 168, 377-385.
doi: 10.1111/j.1469-8137.2005.01530.x
14 Han WX, Fang JY, Reich PB, Woodward FI, Wang ZH (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China.Ecology Letters, 14, 788-796.
doi: 10.1111/ele.2011.14.issue-8
15 He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z (2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China.Oecologia, 149, 115-122.
doi: 10.1007/s00442-006-0425-0 pmid: 16639565
16 He JS, Han XG (2010). Ecological stoichiometry: Searching for unifying principles from individuals to ecosystem.Chinese Journal of Plant Ecology, 34, 2-6.(in Chinese with English abstract) [贺金生, 韩兴国 (2010). 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 34, 2-6.]
17 He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes.Oecologia, 155, 301-310.
doi: 10.1007/s00442-007-0912-y pmid: 18278518
18 He JS, Wang XP, Schmid B, Flynn DFB, Li XF, Reich PB, Fang JY (2010). Taxonomic identity, phylogeny, climate and soil fertility as drivers of leaf traits across Chinese grassland biomes.Journal of Plant Research, 123, 551-561.
doi: 10.1007/s10265-009-0294-9
19 He JS, Wang XP, Flynn DFB, Wang L, Schmid B, Fang JY (2009). Taxonomic, phylogenetic, and environmental trade-offs between leaf productivity and persistence.Ecology, 90, 2779-2791.
doi: 10.1890/08-1126.1 pmid: 19886487
20 Hedin LO (2004). Global organization of terrestrial plant- nutrient interactions.Proceedings of the National Academy of Sciences of the United States of America, 101, 10849-10850.
doi: 10.1073/pnas.0404222101 pmid: 15263081
21 Kay AD, Ashton IW, Gorokhova E, Kerkhoff AJ, Liess A, Litchman E (2005). Toward a stoichiometric framework for evolutionary biology.Oikos, 109, 6-17.
doi: 10.1111/j.0030-1299.2005.14048.x
22 Koerselman W, Meuleman AFM (1996). The vegetation N:P: A new tool to detect the nature of nutrient limitation.Journal of Applied Ecology, 33, 1441-1450.
doi: 10.2307/2404783
23 K?rner C (1989). The nutritional status of plants from high altitudes.Oecologia, 81, 379-391.
doi: 10.1007/BF00377088
24 Liu C, Wang XP, Wu X, Dai S, He JS, Yin WL (2013). Relative effects of phylogeny, biological characters and environments on leaf traits in shrub biomes across central Inner Mongolia, China.Journal of Plant Ecology, 5, 220-231.
doi: 10.1093/jpe/rts028
25 Lovelock CE, Feller IC, Ball MC, Ellis J, Sorrell B (2007). Testing the growth rate vs. geochemical hypothesis for latitudinal variation in plant nutrients.Ecology Letters, 10, 1154-1163.
doi: 10.1111/ele.2007.10.issue-12
26 Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
doi: 10.1073/pnas.0403588101 pmid: 15213326
27 Ren SJ, Yu GR, Tao B, Wang SQ (2007). Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC.Chinese Journal of Environmental Science, 28, 2665-2673.(in Chinese with English abstract) [任书杰, 于贵瑞, 陶波, 王绍强 (2007). 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究. 环境科学, 28, 2665-2673.]
doi: 10.3321/j.issn:0250-3301.2007.12.001
28 Shi WQ, Wang GA, Han WX (2012). Altitudinal variation in leaf nitrogen concentration on the eastern slope of Mount Gongga on the Tibetan Plateau, China.PLOS ONE, 7, e44628. doi: 10.1371/journal.pone.0044628.
doi: 10.1371/journal.pone.0044628 pmid: 3445534
29 Smeck NE (1985). Phosphorus dynamics in soils and landscapes.Geoderma, 36, 185-199.
doi: 10.1016/0016-7061(85)90001-1
30 Sun H, Wang XP, Fan YW, Liu C, Wu P, Li QY, Yin WL (2017). Effects of biophysical constraints, climate and phylogeny on forest shrub allometries along an altitudinal gradient in Northeast China.Scientific Reports, 7, 43769. doi: 10.1038/srep43769.
doi: 10.1038/srep43769 pmid: 5339776
31 van de Weg MJ, Meir P, Grace J, Atkin OK (2009). Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru.Plant Ecology & Diversity, 2, 243-254.
32 Wang XP, Fang JY, Zhu B (2008). Forest biomass and root-shoot allocation in northeast China.Forest Ecology and Management, 255, 4007-4020.
doi: 10.1016/j.foreco.2008.03.055
33 Wang Z, Xu ZB, Li X, Peng DS, Tan ZX (1980). The main forest types and their features of community structure in northern slope of Changbai Mountain.Research of Forest Ecosystem, 1, 1-8.(in Chinese with English abstract) [王战, 徐振邦, 李昕, 彭定山, 谭征详 (1980). 长白山北坡主要森林类型及其群落结构特点. 森林生态系统研究,1, 1-8.]
34 Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets ü, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby M (2005). Modulation of leaf economic traits and trait relationships by climate.Global Ecology & Biogeography, 14, 411-421.
doi: 10.1111/j.1466-822x.2005.00172.x
35 Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum.Nature, 428, 821-827.
doi: 10.1038/nature02403
36 Wu TG, Chen BF, Xiao YH, Pan YJ, Chen Y, Xiao JH (2010). Leaf stoichiometry of trees in three forest types in Pearl River Delta, South China. Chinese Journal of Plant Ecology, 34, 58-63.(in Chinese with English abstract) [吴统贵, 陈步峰, 肖以华, 潘勇军, 陈勇, 萧江华 (2010). 珠江三角洲3种典型森林类型乔木叶片生态化学计量学. 植物生态学报, 34, 58-63.]
37 Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM (2014). Three keys to the radiation of angiosperms into freezing environments.Nature, 506, 89-92.
doi: 10.1038/nature12872
38 Zhao N, He NP, Wang QF, Zhang XY, Wang RL, Xu ZW, Yu GR (2014). The altitudinal patterns of leaf C:N:P stoichiometry are regulated by plant growth form, climate and soil on Changbai Mountain, China.PLOS ONE, 9, e95196. doi: 10.1371/journal.pone.0095196.
doi: 10.1371/journal.pone.0095196
39 Zhao SQ, Fang JY, Zong ZJ, Zhu B, Shen HH (2004). Composition, structure and species diversity of plant communities along an altitudinal gradient on the northern slope of Mt. Changbai, Northeast China.Biodiversity Science, 12, 164-173.(in Chinese with English abstract) [赵淑清, 方精云, 宗占江, 朱彪, 沈海花 (2004). 长白山北坡植物群落组成、结构及物种多样性的垂直分布. 生物多样性, 12, 164-173.]
doi: 10.3321/j.issn:1005-0094.2004.01.020
40 Zhu B, Wang XP, Fang JY, Piao SL, Shen HH, Zhao SQ, Peng CH (2010). Altitudinal changes in carbon storage of temperate forests on Mt. Changbai, Northeast China.Journal of Plant Research, 123, 439-452.
doi: 10.1007/s10265-009-0301-1 pmid: 20127501
[1] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606.
[2] Liu Xiangyu, Zhao Ciliang, Xu Mingshan, Liang Qiming, Zhu Xiaotong, Li Liang, Yan Enrong. Beta diversity of vascular plants and its drivers in sea-islands of eastern China [J]. Biodiv Sci, 2019, 27(4): 380-387.
[3] Yue-Mei ZHAO Zhenyan Yang Yongping Zhao Xiaoling Li Zhixin Zhao Gui-Fang ZHAO. Chloroplast Genome Structural Characteristics and Phylogenetic Relationships of Oleaceae [J]. Chin Bull Bot, 2019, 54(4): 0-0.
[4] Chen Zuoyi, Xu Xiaojing, Zhu Suying, Zhai Mengyi, Li Yang. Species diversity and geographical distribution of the Chaetoceros lorenzianus complex along the coast of China [J]. Biodiv Sci, 2019, 27(2): 149-158.
[5] WEN Xiao-Shi, CHEN Bin-Hang, ZHANG Shu-Bin, XU Kai, YE Xin-Yu, NI Wei-Jie, WANG Xiang-Ping. Relationships of radial growth with climate change in larch plantations of different stand ages and species [J]. Chin J Plant Ecol, 2019, 43(1): 27-36.
[6] Ren Peng,Yu Jianping,Chen Xiaonan,Shen Xiaoli,Song Xiao,Zhang Tiantian,Yu Yongquan,Ding Ping. Seasonal variation in the distribution of Elliot’s pheasant (Syrmaticus ellioti) in Gutianshan National Nature Reserve [J]. Biodiv Sci, 2019, 27(1): 13-23.
[7] Anrong Liu,Teng Yang,Wei Xu,Zijian Shangguan,Jinzhou Wang,Huiying Liu,Yu Shi,Haiyan Chu,Jin-Sheng He. Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland [J]. Biodiv Sci, 2018, 26(9): 972-987.
[8] Meiling Ge,Qinzeng Xu,Shiliang Fan,Zongxing Wang,Xuelei Zhang. Taxonomy at order and family levels of the benthic groups of Polychaeta in the coastal waters of China [J]. Biodiv Sci, 2018, 26(9): 998-1003.
[9] DIAO Li-Wei,LI Ping,LIU Wei-Xing,XU Shan,QIAO Chun-Lian,ZENG Hui,LIU Ling-Li. Response of plant biomass to nitrogen addition and precipitation increasing under different climate conditions and time scales in grassland [J]. Chin J Plant Ecol, 2018, 42(8): 818-830.
[10] Xiuwei Liu, Douglas Chesters, Chunsheng Wu, Qingsong Zhou, Chaodong Zhu. A horizon scan of the impacts of environmental change on wild bees in China [J]. Biodiv Sci, 2018, 26(7): 760-765.
[11] Luo Junjie, Wang Ying, Shang Hui, Zhou Xile, Wei Hongjin, Huang Sunan, Gu Yufeng, Jin Dongmei, Dai Xiling, Yan Yuehong. Phylogeny and Systematics of the Genus Microlepia (Dennstaedtiaceae) based on Palynology and Molecular Evidence [J]. Chin Bull Bot, 2018, 53(6): 782-792.
[12] ZHANG Yun, YIN Ding-Cai, TIAN Kun, ZHANG Wei-Guo, HE Rong-Hua, HE Wen-Qing, SUN Jiang-Mei, LIU Zhen-Ya. Radial growth responses of Picea likiangensis to climate variabilities at different altitudes in Yulong Snow Mountain, southwest China [J]. Chin J Plan Ecolo, 2018, 42(6): 629-639.
[13] ZHOU Tong,CAO Ru-Yin,WANG Shao-Peng,CHEN Jin,TANG Yan-Hong. Responses of green-up dates of grasslands in China and woody plants in Europe to air temperature and precipitation: Empirical evidences based on survival analysis [J]. Chin J Plan Ecolo, 2018, 42(5): 526-538.
[14] Yao Zhao,Jiakuan Chen. The origin of crops in the Yangtze River Basin and its relevance for biodiversity [J]. Biodiv Sci, 2018, 26(4): 333-345.
[15] Lingyun Wu,Shuangquan Huang. Insect-pollinated cereal buckwheats: Its biological characteristics and research progress [J]. Biodiv Sci, 2018, 26(4): 396-405.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Lei Zhao, Mei Chen, Dongmei Cheng, Haomeng Yang, Yongle Sun, Heyi Zhou, and Fang Huang. Different B-Type Methionine Sulfoxide Reductases in Chlamydomonas May Protect the Alga against High-Light, Sulfur-Depletion, or Oxidative Stress[J]. J Integr Plant Biol, 2013, 55(11): 1054 -1068 .
[2] Lei Guo, Li Jiang, Xiu-Li Lu and Chun-Ming Liu. ANAPHASE PROMOTING COMPLEX/CYCLOSOME‐mediated cyclin B1 degradation is critical for cell cycle synchronization in syncytial endosperms[J]. J Integr Plant Biol, 2018, 60(6): 448 -454 .
[3] LIU Ai-Zhong, LI De-Zhu, WANG Hong. Pollination Ecology of a Pioneer Species: Musa itinerans (Musaceae) in Xishuangbanna, South Yunnan, China[J]. J Integr Plant Biol, 2001, 43(3): 319 -322 .
[4] Wu Su-Kung, Cheng Xiao. Contributions to Pteridophyta of the Hengduan Mountains (1)[J]. J Syst Evol, 1985, 23(5): 400 -403 .
[5] Yuliang Chen;Feixiong Zhang;Guiyou Zhang*. Key Caspase-like Enzymes in Programmed Cell Death in Plants[J]. Chin Bull Bot, 2008, 25(05): 616 -623 .
[6] Zhu Zheng-ge;Pan Yan-yun;Zhang Zhao-duo and Liu Zhi-yi. The Extraction and Analysis of Mitochondriat DNA from Common Wheat[J]. Chin Bull Bot, 1995, 12(增刊): 42 -45 .
[7] Hsü Jen(J. Hsü). On Plant-Remains from the Devonian of Yunnan and their Significance in the Identification of the Stratigraphical Sequence of this Region[J]. J Integr Plant Biol, 1966, 14(1): .
[8] Li Rong-hui;Zhang Shu-ying and Zhang Zhi-min. Embryo Culture of Viburnum lantana in Vitro[J]. Chin Bull Bot, 1989, 6(02): 104 -107 .
[9] WU Li-Hong, YANG De-Po, WANG Fa-Song, CHANG Hung-Ta. New taxa of Hypericum (Clusiaceae) from China[J]. J Syst Evol, 2004, 42(1): 73 -78 .
[10] Huai YANG, Yi-De LI, Hai REN, Tu-Shou LUO, Ren-Li CHEN, Wen-Jie LIU, De-Xiang CHEN, Han XU, Zhang ZHOU, Ming-Xian LIN, Qiu YANG, Hai-Rong YAO, Guo-Yi ZHOU. Soil organic carbon density and influencing factors in tropical virgin forests of Hainan Island, China[J]. Chin J Plan Ecolo, 2016, 40(4): 292 -303 .