Chin J Plant Ecol ›› 2017, Vol. 41 ›› Issue (12): 1239-1250.DOI: 10.17521/cjpe.2017.0208
Special Issue: 全球变化与生态系统; 土壤呼吸
• Research Articles • Previous Articles Next Articles
YANG Qing-Xiao1,2, TIAN Da-Shuan2, ZENG Hui1,4,*(), NIU Shu-Li2,3
Online:
2017-12-10
Published:
2018-02-23
Contact:
ZENG Hui
YANG Qing-Xiao, TIAN Da-Shuan, ZENG Hui, NIU Shu-Li. Main factors driving changes in soil respiration under altering precipitation regimes and the controlling processes[J]. Chin J Plant Ecol, 2017, 41(12): 1239-1250.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2017.0208
Fig. 1 Regressional relationships of soil moisture (A) and soil respiration (B) with percentage changes of precipitation. The filled circles represent increased precipitation, and the open circles represent decreased precipitation. p < 0.01, statistically highly significant; p < 0.05, statistically significant.
Fig. 2 Changes of normalized soil respiration in overall and different ecosystems under increased or decreased precipitation (effect size ± 95% confidence interval). The white bars represent the negative effects of decreased precipitation while the black bars represent the positive effects of increased precipitation. The values beside the bars indicate sample sizes used in meta-analysis.* means statistically significant.
Fig. 3 Regressional relationships of soil respiration with soil moisture (A), aboveground net primary productivity (B), belowground net primary productivity (C), and microbial biomass carbon (D). The filled circles represent increased precipitation, and the open circles represent decreased precipitation. p < 0.01, statistically highly significant; p < 0.05, statistically significant.
Fig. 4 A structural equation model of the effects of soil moisture, aboveground net primary productivity, belowground net primary productivity, and microbial biomass carbon on soil respiration. Gray and black arrows represent significant positive and negative pathways, respectively. Values beside the arrows indicate the standard path coefficients. Arrow width is proportional to the strength of the relationship. R2 values represent the proportion of variance explainable by each variable in the model. ***, p < 0.001; **, p < 0.01; *, p < 0.05. χ2 = 0.49, p = 0.48, comparative fit index (CFI) = 1.00, root mean square error of approximation (RMSEA) = 0.00, Akaike information criteria (AIC) = 38.49.
Fig. 5 Regressional relationships between response ratio of soil respiration and response ratio of soil moisture under increased or decreased precipitation (A, D). Different sensitivities of changes in soil respiration to soil moisture under increased or decreased precipitation in different conditional mean annual temperature (℃; B, E) and mean annual precipitation (mm; C, F). Black line, dash line and gray line represent the regression relationships between response ratio of soil respiration and response ratio of soil moisture under three precipitation or three temperature gradients, respectively. S1, S2, and S3 represent slopes of the three regression lines, respectively. A, B, and C, Increased precipitation treatment. D, E, and F, Decreased precipitation treatments. p < 0.01, statistically highly significant; p < 0.05, statistically significant. RR, response ratio.
1 |
Aanderud ZT, Schoolmaster DR, Lennon JT (2011). Plants mediate the sensitivity of soil respiration to rainfall variability.Ecosystems, 14, 156-167.
DOI URL |
2 |
Allan RP, Soden BJ (2008). Atmospheric warming and the amplification of precipitation extremes. Science, 321, 1481-1484.
DOI URL |
3 |
Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland.Nature, 431, 181-184.
DOI URL PMID |
4 |
Bai W, Wan S, Niu S, Liu W, Chen Q, Wang Q, Zhang W, Han X, Li L (2010). Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: Implications for ecosystem C cycling.Global Change Biology, 16, 1306-1316.
DOI URL |
5 |
Bao F, Zhou GS (2010). Review of research advances in soil respiration of grassland in China.Chinese Journal of Plant Ecology, 34, 713-726.(in Chinese with English abstract) [鲍芳, 周广胜 (2010). 中国草原土壤呼吸作用研究进展. 植物生态学报, 34, 713-726.]
DOI |
6 |
Beier C, Beierkuhnlein C, Wohlgemuth T, Penuelas J, Emmett B, Korner C, de Boeck H, Christensen JH, Leuzinger S, Janssens IA, Hansen K (2012). Precipitation manipulation experiments—Challenges and recommendations for the future.Ecology Letters, 15, 899-911.
DOI URL |
7 |
Borken W, Xu YJ, Davidson EA, Beese A (2002). Site and temporal variation of soil respiration in European beech, Norway spruce, and Scots pine forests.Global Change Biology, 8, 1205-1216.
DOI URL |
8 |
Chen SP, Lin GH, Huang JH, He M (2008). Responses of soil respiration to simulated precipitation pulses in semiarid steppe under different grazing regimes.Journal of Plant Ecology, 1, 237-246.
DOI URL |
9 |
Chen SP, Lin GH, Huang JH, Jenerette GD (2009). Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe.Global Change Biology, 15, 2450-2461.
DOI URL |
10 |
Chimner RA, Welker JM, Morgan J, Lecain D, Reeder J (2010). Experimental manipulations of winter snow and summer rain influence ecosystem carbon cycling in a mixed-grass prairie, Wyoming, USA.Ecohydrology, 3, 284-293.
DOI URL |
11 |
Cleveland CC, Wieder WR, Reed SC, Townsend AR (2010). Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere.Ecology, 91, 2313-2323.
DOI URL PMID |
12 |
Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model.Nature, 408, 184-187.
DOI URL PMID |
13 |
Dai AG (2013). Increasing drought under global warming in observations and models.Nature Climate Change, 3, 52-58.
DOI URL |
14 |
Deng Q, Hui DF, Chu GW, Han X, Zhang QF (2017). Rain- induced changes in soil CO2 flux and microbial community composition in a tropical forest of China.Scientific Reports, 7, 5539. doi: 10.1038/s41598-017-06345-2.
DOI URL |
15 |
Estiarte M, Vicca S, Penuelas J, Bahn M, Beier C, Emmett BA, Fay PA, Hanson PJ, Hasibeder R, Kigel J, Kroel-Dulay G, Larsen KS, Lellei-Kovacs E, Limousin JM, Ogaya R, Ourcival JM, Reinsch S, Sala OE, Schmidt IK, Sternberg M, Tielborger K, Tietema A, Janssens IA (2016). Few multiyear precipitation-reduction experiments find a shift in the productivity-precipitation relationship.Global Change Biology, 22, 2570-2581.
DOI URL PMID |
16 |
Fiala K, T?ma I, Holub P (2009). Effect of manipulated rainfall on root production and plant belowground dry mass of different grassland ecosystems.Ecosystems, 12, 906-914.
DOI URL |
17 |
Fischer EM, Beyerle U, Knutti R (2013). Robust spatially aggregated projections of climate extremes.Nature Climate Change, 3, 1033-1038.
DOI URL |
18 |
Flanagan LB, Wever LA, Carlson PJ (2002). Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland.Global Change Biology, 8, 599-615.
DOI URL |
19 |
Guan C, Zhang P, Li XR (2017). Responses of respiration with biocrust cover to water and temperature in the southeastern edge of Tengger Desert, Northwest China.Chinese Journal of Plant Ecology, 41, 301-310.(in Chinese with English abstract) [管超, 张鹏, 李新荣 (2017). 腾格里沙漠东南缘生物结皮土壤呼吸对水热因子变化的响应. 植物生态学报, 41, 301-310.]
DOI URL |
20 |
Gutschick VP, BassiriRad H (2003). Extreme events as shaping physiology, ecology, and evolution of plants: Toward a unified definition and evaluation of their consequences.New Phytologist, 160, 21-42.
DOI URL |
21 |
Hagedorn F, Joos O (2014). Experimental summer drought reduces soil CO2 effluxes and DOC leaching in Swiss grassland soils along an elevational gradient.Biogeochemistry, 117, 395-412.
DOI URL |
22 |
Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000). Separating root and soil microbial contributions to soil respiration: A review of methods and observations.Biogeochemistry, 48, 115-146.
DOI URL |
23 |
Harper CW, Blair JM, Fay PA, Knapp AK, Carlisle JD (2005). Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem. Global Chang Biology, 11, 322-334.
DOI URL |
24 |
Hedges LV, Gurevitch J, Curtis PS (1999). The meta-analysis of response ratios in experimental ecology.Ecology, 80, 1150-1156.
DOI URL |
25 |
Heimann M, Reichstein M (2008). Terrestrial ecosystem carbon dynamics and climate feedbacks.Nature, 451, 289-292.
DOI URL |
26 |
Hertel D, Strecker T, Müller-Haubold H, Leuschner C, Guo D (2013). Fine root biomass and dynamics in beech forests across a precipitation gradient — Is optimal resource partitioning theory applicable to water-limited mature trees?Journal of Ecology, 101, 1183-1200.
DOI URL |
27 |
Hungate BA, van Groenigen KJ, Six J, Jastrow JJ, Luo YQ, Graaff MA, Kessel C, Osenberg CW (2009). Assessing the effect of elevated CO2 on soil carbon: A comparison of four meta-analysis.Global Change Biology, 15, 2020-2034.
DOI URL |
28 |
Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004). Precipitation pulses and carbon fluxes in semiarid and arid ecosystems.Oecologia, 141, 254-268.
DOI URL |
29 |
Inglima I, Alberti G, Bertolini T, Vaccari FP, Gioli B, Miglietta F, Cotrufo MF, Peressotti A (2009). Precipitation pulses enhance respiration of Mediterranean ecosystems: The balance between organic and inorganic components of increased soil CO2 efflux.Global Change Biology, 15, 1289-1301.
DOI URL |
30 | IPCC (Intergovernmental Panel on Climate Change) (2013). Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF, Qin DPlattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y eds. Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
31 |
Jiang H, Deng Q, Zhou G, Hui D, Zhang D, Liu S, Chu G, Li J (2013). Responses of soil respiration and its temperature/moisture sensitivity to precipitation in three subtropical forests in southern China.Biogeosciences, 10, 3963-3982.
DOI URL |
32 | Jiao M, Shen WJ (2014). Effects of seasonal precipitation variation on litter-fall in lower subtropical evergreen broad-leaved forest.Journal of Tropical and Subtropical Botany, 22, 549-557.(in Chinese with English abstract) [焦敏, 申卫军 (2014). 模拟降水分配季节变化对南亚热带常绿阔叶林凋落物的影响. 热带亚热带植物学报, 22, 549-557.] |
33 |
Knapp AK, Beier C, Briske DD, Classen AT, Luo Y, Reichstein M, Smith MD, Smith SD, Bell JE, Fay PA, Heisler JL, Leavitt SW, Sherry R, Smith B, Weng E (2008). Consequences of more extreme precipitation regimes for terrestrial ecosystems.Bioscience ,58, 811-821.
DOI URL |
34 |
Knapp AK, Ciais P, Smith MD (2017). Reconciling inconsistencies in precipitation-productivity relationships: Implications for climate change.New Phytologist, 214, 41-47.
DOI URL |
35 |
Knapp AK, Hoover DL, Wilcox KR, Avolio ML, Koerner SE, La Pierre KJ, Loik ME, Luo Y, Sala OE, Smith MD (2015). Characterizing differences in precipitation regimes of extreme wet and dry years: Implications for climate change experiments.Global Change Biology, 21, 2624-2633.
DOI URL PMID |
36 |
Knapp AK, Smith MD (2001). Variation among biomes in temporal dynamics of aboveground primary production.Science, 291, 481-484.
DOI URL |
37 | Koricheva J, Gurevitch J, Mengersen K (2013). Handbook of Meta-Analysis in Ecology and Evolution. Princeton University Press, Princeton, USA. |
38 | Li LH, Chen ZZ (1998). Soil respiration in grassland communities in the world.Chinese Journal of Ecology, 17(4), 45-51.(in Chinese with English abstract) [李凌浩, 陈佐忠 (1998). 草地群落的土壤呼吸. 生态学杂志, 17(4), 45-51.] |
39 |
Liu L, Wang X, Lajeunesse MJ, Miao G, Piao S, Wan S, Wu Y, Wang Z, Yang S, Li P, Deng M (2016). A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes.Global Change Biology, 22, 1394-1405.
DOI URL |
40 | Liu T, Zhang YX, Xu ZZ, Zhou GS, Hou YH, Lin L (2012). Effects of short-term warming and increasing precipitation on soil respiration of desert steppe of Inner Mongolia.Chinese Journal of Plant Ecology, 36, 1043-1053.(in Chinese with English abstract) [刘涛, 张永贤, 许振柱, 周广胜, 侯彦会, 林琳 (2012). 短期增温和增加降水对内蒙古荒漠草原土壤呼吸的影响 . 植物生态学报,36, 1043-1053.] |
41 |
Lu M, Zhou X, Yang Q, Li H, Luo YQ, Fang CM, Chen JK, Yang X, Li B (2013). Responses of ecosystem carbon cycle to experimental warming: A meta-analysis.Ecology, 94, 726-738.
DOI URL |
42 | Lü WQ, Wang SJ, Liu XM, Rong L (2011). Influence of rainfall on soil respiration in Karst Urban green space.Earth and Environment, 39(2), 174-180.(in Chinese with English abstract) [吕文强, 王世杰, 刘秀明, 容丽 (2011). 喀斯特地区城市绿地土壤呼吸对降水变化的响应研究. 地球与环境, 39(2), 174-180.] |
43 | Peng Q, Qi YC, Dong YS, He YT, Liu XC, Sun LJ, Jia JQ, Jin Z (2012). Responses of carbon cycling key processes to precipitation changes in arid and semiarid grassland ecosystems: A review.Process in Geography, 31, 1510-1518.(in Chinese with English abstract) [彭琴, 齐玉春, 董云社, 何亚婷, 刘欣超, 孙良杰, 贾军强, 金钊 (2012). 干旱半干旱地区草地碳循环关键过程对降雨变化的响应. 地理科学进展, 31, 1510-1518.] |
44 |
Poll C, Marhan S, Back F, Niklaus PA, Kandeler E (2013). Field-sacle manipulation of soil temperature and precipitation change soil CO2 flux in a temperate agricultural ecosystem.Agriculture, Ecosystems and Environment, 165, 88-97.
DOI URL |
45 | Raich JW, Sehlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate.Tullus, 44B, 81-99. |
46 |
Reichmann LG, Sala OE, Whitehead D (2014). Differential sensitivities of grassland structural components to changes in precipitation mediate productivity response in a desert ecosystem.Functional Ecology, 28, 1292-1298.
DOI URL |
47 |
Reichstein M, Bahn M, Ciais P, Frank D, Mahecha MD, Seneviratne SI, Zscheischler J, Beer C, Buchmann N, Frank DC, Papale D, Rammig A, Smith P, Thonicke K, van der Velde M, Vicca S, Walz A, Wattenbach M (2013). Climate extremes and the carbon cycle.Nature, 500, 287-295.
DOI URL |
48 |
Risch AC, Frank DA (2007). Effects of increased soil water avaulability on grassland ecosystem carbon dioxide fluxes.Biogeochemistry, 86, 91-103.
DOI URL |
49 |
Rochette P, Desjardins RL, Pattey E (1991). Spatial and temporal variability of soil respiration in agricultural fields.Canadian Journal of Soil Science, 71, 189-196.
DOI URL |
50 |
Schuur EAG (2003). Productivity and global climate revisited: The sensitivity of tropical forest growth to precipitation.Ecology, 84, 1165-1170.
DOI URL |
51 |
Schuur EAG, Matson PA (2001). Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest.Oecologia, 128, 431-442.
DOI URL PMID |
52 |
Smith NG, Rodgers VL, Brzostek ER, Kulmatiski A, Avolio ML, Hoover DL, Koerner SE, Grant K, Jentsch A, Fatichi S, Niyogi D (2014). Toward a better integration of biological data from precipitation manipulation experiments into Earth system models.Reviews of Geophysics, 52, 412-434.
DOI URL |
53 |
Sotta ED, Veldkamp E, Schwendenmann L, Guimaraes BR, Paixao RK, Ruivo MDLP, Da Costa ACL, Meir P (2007). Effects of an induced drought on soil carbon dioxide (CO2) efflux and soil CO2 production in an Eastern Amazonian rainforest, Brazil.Global Change Biology, 13, 2218-2229.
DOI URL |
54 |
Sponseller RA (2007). Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem.Global Change Biology, 13, 426-436.
DOI URL |
55 |
Suseela A, Dukes J (2013). The responses of soil and rhizosphere respiration to simulated climatic changes vary by season.Ecology, 94, 403-413.
DOI URL PMID |
56 |
Thomey ML, Collins SL, Vargas R, Johnson JE, Brown RF, Natvig DO, Friggens MT (2011). Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland.Global Change Biology, 17, 1505-1515.
DOI URL |
57 |
Vargas R, Collins SL, Thomey M, Johnson JE, Brown RF, Natvig DO, Friggens MT (2012). Precipitation variability and fire influence the temporal dynamics of soil CO2 efflux in an arid grassland. Global Change Biology, 18, 1401-1411.
DOI URL |
58 |
Vicca S, Bahn M, Estiarte M, van Loon EE, Vargas R, Alberti G, Ambus P, Arain MA, Beier C, Bentley LP, Borken W, Buchmann N, Collins SL, de Dato G, Dukes JS, Escolar C, Fay P, Guidolotti G, Hanson PJ, Kahmen A, Kr?el-Dulay G, Ladreiter-Knauss T, Larsen KS, Lellei-Kovacs E, Lebrija-Trejos E, Maestre FT, Marhan S, Marshall M, Meir P, Miao Y, Muhr J, Niklaus PA, Ogaya R, Pe?uelas J, Poll C, Rustad LE, Savage K, Schindlbacher A, Schmidt IK, Smith AR, Sotta ED, Suseela V, Tietema A, van Gestel N, van Straaten O, Wan S, Weber U, Janssens IA (2014). Can current moisture responses predict soil CO2 efflux under altered precipitation regimes? A synthesis of manipulation experiments.Biogeosciences, 11, 2991-3013.
DOI URL |
59 |
Wang X, Liu LL, Piao SL, Janssens IA, Tang JW, Liu WX, Chi YG, Wang J, Xu S (2014). Soil respiration under climate warming: Differential response of heterotrophic and autotrophic respiration.Global Change Biology, 20, 3229-3237.
DOI URL |
60 | Wilcox KR, Blair JM, Smith MD, Knapp AK (2016). Does ecosystem sensitivity to precipitation at the site-level conform to regional-scale predictions?Ecology, 97, 561-568. |
61 |
Wilcox KR, Shi Z, Gherardi LA, Lemoine NP, Koerner SE, Hoover DL, Bork E, Byrne KM, Cahill JJ, Collins SL, Evans S, Gilgen AK, Holub P, Jiang L, Knapp AK, LeCain D, Liang J, Garcia-Palacios P, Penuelas J, Pockman WT, Smith MD, Sun S, White SR, Yahdjian L, Zhu K, Luo YQ (2017). Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments.Global Change Biology, 23, 4376-4385.
DOI URL PMID |
62 |
Wu Z, Dijkstra P, Koch GW, Pe?uelas J, Hungate BA (2011). Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation.Global Change Biology, 17, 927-942.
DOI URL |
63 |
Xu MJ, Wang HM, Wen XF, Zhang T, Di YB, Wang YD, Wang JL, Cheng CP, Zhang WJ (2017). The full annual carbon balance of a subtropical coniferous plantation is highly sensitive to autumn precipitation.Scientific Reports, 7, 10025. doi: 10.1038/s41598-017-10485-w.
DOI URL |
64 |
Xu X, Shi Z, Chen X, Lin Y, Niu S, Jiang L, Luo R, Luo Y (2016). Unchanged carbon balance driven by equivalent responses of production and respiration to climate change in a mixed-grass prairie.Global Change Biology, 22, 1857-1866.
DOI URL |
65 |
Zhang LH, Chen YN, Zhao RF, Li WH (2009). Impact of temperature and soil water content on soil respiration in temperate deserts, China.Chinese Journal of Plant Ecology, 33, 936-949.(in Chinese with English abstract) [张丽华, 陈亚宁, 赵锐峰, 李卫红 (2009). 温带荒漠中温度和土壤水分对土壤呼吸的影响. 植物生态学报, 33, 936-949.]
DOI URL |
66 |
Zhou GS, Jia BR, Han GX, Zhou L (2008). Toward a general evaluation model for soil respiration (GEMSR).Science in China Series C: Life Sciences, 51, 254-262.
DOI URL PMID |
67 | Zhou X, Zhou L, Nie Y, Fu Y, Du Z, Shao J, Zheng Z, Wang X (2016). Similar responses of soil carbon storage to drought and irrigation in terrestrial ecosystems but with contrasting mechanisms: A meta-analysis.Agriculture, Ecosystems & Environment, 228, 70-81. |
[1] | Bei DENG feng XiaoWANG. Meta-analysis analysis the effects of environmental stress on the physiological and ecological characteristics of herbaceous and woody plants in the hydro-fluctuation belt of the Three Gorges Reservoir area [J]. Chin J Plant Ecol, 2024, 48(5): 623-637. |
[2] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[3] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
[4] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[5] | SHEN Jian, HE Zong-Ming, DONG Qiang, GAO Shi-Lei, LIN Yu. Effects of mild fire on soil respiration rate and abiotic factors in coastal sandy plantation [J]. Chin J Plant Ecol, 2023, 47(7): 1032-1042. |
[6] | YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 1-24. |
[7] | HAN Guang-Xuan, LI Juan-Yong, QU Wen-Di. Effects of nitrogen input on carbon cycle and carbon budget in a coastal salt marsh [J]. Chin J Plant Ecol, 2021, 45(4): 321-333. |
[8] | LÜ Ya-Xiang, QI Zhi-Yan, LIU Wei, SUN Jia-Mei, PAN Qing-Min. Effects of nitrogen and phosphorus addition at early-spring and middle-summer on ecosystem carbon exchanges of a degraded community in Nei Mongol typical steppe [J]. Chin J Plant Ecol, 2021, 45(4): 334-344. |
[9] | WEI Chun-Xue, YANG Lu, WANG Jin-Song, YANG Jia-Ming, SHI Jia-Wei, TIAN Da-Shuan, ZHOU Qing-Ping, NIU Shu-Li. Effects of experimental warming on root biomass in terrestrial ecosystems [J]. Chin J Plant Ecol, 2021, 45(11): 1203-1212. |
[10] | HU Zong-Da, LIU Shi-Rong, LUO Ming-Xia, HU Jing, LIU Xing-Liang, LI Ya-Fei, YU Hao, OU Ding-Hua. Characteristics of soil carbon and nitrogen contents and enzyme activities in sub-alpine secondary forests with different successional stages in Western Sichuan, China [J]. Chin J Plant Ecol, 2020, 44(9): 973-985. |
[11] | ZHENG Jia-Jia, HUANG Song-Yu, JIA Xin, TIAN Yun, MU Yu, LIU Peng, ZHA Tian-Shan. Spatial variation and controlling factors of temperature sensitivity of soil respiration in forest ecosystems across China [J]. Chin J Plant Ecol, 2020, 44(6): 687-698. |
[12] | XIA Jian-Yang, LU Rui-Ling, ZHU Chen, CUI Er-Qian, DU Ying, HUANG Kun, SUN Bao-Yu. Response and adaptation of terrestrial ecosystem processes to climate warming [J]. Chin J Plant Ecol, 2020, 44(5): 494-514. |
[13] | XING Peng, LI Biao, HAN Yi-Xuan, GU Qiu-Jin, WAN Hong-Xiu. Responses of freshwater ecosystems to global change: research progress and outlook [J]. Chin J Plant Ecol, 2020, 44(5): 565-574. |
[14] | ZHOU Gui-Yao, ZHOU Ling-Yan, SHAO Jun-Jiong, ZHOU Xu-Hui. Effects of extreme drought on terrestrial ecosystems: review and prospects [J]. Chin J Plant Ecol, 2020, 44(5): 515-525. |
[15] | ZHANG Yang-Jian, ZHU Jun-Tao, SHEN Ruo-Nan, WANG Li. Research progress on the effects of grazing on grassland ecosystem [J]. Chin J Plant Ecol, 2020, 44(5): 553-564. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn