Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (6): 663-671.doi: 10.17521/cjpe.2017.0242

• Research Articles • Previous Articles     Next Articles

Fruit types and seed dispersal modes of plants in different communities in Shilin Geopark, Yunnan, China

YU Xiao-Ya1,2,LI Yu-Hui1,*(),YANG Guang-Rong3   

  1. 1 School of Tourism and Geography Science, Yunnan Normal University, Kunming 650500, China
    2 School of Tourism and Resource Environment, Qiannan Normal University for Nationalities, Duyun, Guizhou 558000, China;
    3 Administration of the Shilin National Park Management, Shilin, Yunnan 652211, China
  • Received:2017-09-26 Revised:2018-05-29 Online:2018-06-20 Published:2018-06-20
  • Contact: Yu-Hui LI E-mail:jshe@pku.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China(41371514)

Abstract:

Aims Fruit types and seed dispersal modes of plants play an important role in forest regeneration and colonization. Exploring characteristics of fruit types and dispersal modes in different plant communities could improve our understanding on the natural expansion mechanism of vegetation restoration, which is helpful for reducing karst rocky desertification. Our objective was to study the effects of fruit types and seed dispersal modes on vegetation restoration in Shilin Geopark, Yunnan, China.

Methods Based on the species list of different communities investigated in Shilin Geopark, the fruit type of species was determined based on Flora of China. The seed dispersal mode of each species was determined based on published literature, the Kew Seed Information Database (http://data.kew.org/sid/) and the fruit and seed morphological traits.

Important findings 1) In total 16 fruit types (include spore) were observed for the 282 vascular plant species in the communities in Shilin Geopark. Achenes (17.02%), capsules (16.67%), berries (14.18%) and drupes (12.41%) were the most common fruit types. The most abundant fruit types among woody species, herbaceous species and lianas were drupes (31.96%), achenes (25.17%) and berries (40.48%), respectively. The fruit type spectrums of woody plants, herbs and lianas in communities were not significantly different. From zonal forest, secondary forest, shrubland, shrub tussock to Pinus yunnanensis plantation forest, the proportions of berries and drupes species decreased significantly, and those of achenes, caryopsis and capsules species increased. 2) The dominant seed dispersal modes of different plant communities in Shilin Geopark were zoochory (47.87%) and anemochorous (33.69%). The seed dispersal mode spectrum of woody plants, herbs and lianas in the communities of Shilin Geopark were not significantly different from each other. From zonal forest, secondary forest, shrubland, shrub tussock to Pinus yunnanensis plantation forest, the proportion of zoochory species reduced by 31%-36%, while that of anemochory species increased by 73%-87%. 3) The seed dispersal modes affected species selection and vegetation restoration strategy directly. To restore vegetation quickly and effectively, the species which have natural spread ability should be selected for afforestation plan, and species dispersal corridors are needed.

Key words: karst vegetation, vegetation restoration, fruit type spectrum, seed dispersal mode spectrum, control of karst rocky desertification

Table 1

Fruit type spectrum of different growth types vascular species in Shilin Geopark, Yunnan, China"

果实类型
Fruit type
木本物种数和百分比
Species No. and percentage of woody plants (%)
草本物种数和百分比
Species No. and percentage of herbs (%)
藤本物种数和百分比
Species No. and
percentage of lianas (%)
石林地质公园中物种数及其百分比
Species No. and percentage in Shilin Geopark (%)
瘦果 Achene 6 (6.19) 36 (25.17) 6 (14.29) 48 (17.02)
蒴果 Capsule 14 (14.43) 28 (19.58) 5 (11.90) 47 (16.67)
浆果 Berry 12 (12.37) 11 (7.69) 17 (40.48) 40 (14.18)
核果 Drupe 31 (31.96) 2 (1.40) 2 (4.76) 35 (12.41)
颖果 Caryopsis 1 (1.03) 22 (15.38) - 23 (8.16)
坚果 Nut 7 (7.22) 13 (9.09) 1 (2.38) 21 (7.45)
荚果 Legume 5 (5.15) 8 (5.59) 7 (16.67) 20 (7.09)
蓇葖果 Follicle 4 (4.12) 3 (2.10) 4 (9.52) 11 (3.90)
梨果 Pome 9 (9.28) - - 9 (3.19)
球果 Strobilus 6 (6.19) - - 6 (2.13)
分果 Schizocarp - 3 (2.10) - 3 (1.06)
胞果 Utricle - 1 (0.70) - 1 (0.35)
翅果 Samara 1 (1.03) - - 1 (0.35)
柑果 Hesperidium 1 (1.03) - - 1 (0.35)
角果 Pods - 1 (0.70) - 1 (0.35)
孢子 Spore - 15 (10.49) - 15 (5.32)
合计 Total 97 (100.00) 143 (100.00) 42 (100.00) 282 (100.00)

Table 2

Seed dispersal mode spectrum of different growth types vascular species in Shilin Geopark, Yunnan,China"

传播方式 Seed dispersal mode 木本物种数和百分比
Species No. and percentage of woody plants (%)
草本物种数和百分比
Species No. and
percentage of herb (%)
藤本物种数和百分比
Species No. and
percentage of liana (%)
石林地质公园中
物种数和百分比
Species No. and percentage in Shilin Geopark (%)
动物传播 Zoochory 73 (75.26) 40 (27.97) 24 (57.14) 135 (47.87)
其中: 鸟类传播 Birds in Zoochory 30 (30.93) 11 (7.69) 15 (35.71) 56 (19.86)
风传播 Anemochory 10 (10.31) 75 (52.45) 10 (23.81) 95 (33.69)
水传播 Hydrochory 0 (0.00) 6 (4.20) 0 (0.00) 6 (2.13)
自体传播 Autochory 14 (14.43) 22 (15.38) 8 (19.05) 46 (16.31)
合计 Total 97 (100.00) 143 (100.00) 42 (100.00) 282 (100.00)

Fig.1

Fruit type spectrums of different growth types vascular species in plant communities in Shilin Geopark, Yunnan, China. S1, Form. Cyclobalanopsis glaucoides forest; S2, Form. Neolitsea homilantha secondary forest; S3, Form. Cyclobalanopsis glaucoides shrubland; S4, Form. Spiraea martini-Heteropogon contortus shrub tussock; S5, Form. Pinus yunnanensis plantation forest."

Fig. 2

Seed dispersal mode spectrums of different growth types vascular species in plant communities in Shilin Geopark, Yunnan, China. S1, Form. Cyclobalanopsis glaucoides forest; S2, Form. Neolitsea homilantha secondary forest; S3, Form. Cyclobalanopsis glaucoides shrubland; S4, Form. Spiraea martini-Heteropogon contortus shrub tussock; S5, Form. Pinus yunnanensis plantation forest."

[1] Dansereau P, Lems K ( 1957). The grading of dispersal types in plant communities and their ecological significance. Contributions de L′Institute Botanique Institute of Botany, University of Montreal, 71, 1-52.
[2] Editorial Committee of Flora of China(1989-2013). Flora of China. Vols. 1-25 . Science Press, Beijing; Missouri Botanical Garden Press, St Louis.
[3] Gao RH, Liu TX, Zhang H, Han Y, Cong L ( 2005). Study on relationship between planta lignose fruit types and environment succession in Daqing Clough. Journal of Arid Land Resources and Environment, 19(7), 174-178.
doi: 10.3969/j.issn.1003-7578.2005.z1.035
[ 高润宏, 刘庭玺, 张昊, 韩轶, 丛林 ( 2005). 大青沟木本植物果实类型组成与环境演变研究. 干旱区资源与环境, 19(7), 174-178.]
doi: 10.3969/j.issn.1003-7578.2005.z1.035
[4] Gómez JM, Puertapi?ero C, Schupp EW ( 2008). Effectiveness of rodents as local seed dispersers of Holm oaks. Oecologia, 155, 529-537.
doi: 10.1007/s00442-007-0928-3
[5] Guitián J, Sánchez JM ( 1992). Seed dispersal spectra of plant communities in the Iberian Peninsula. Vegetatio, 98, 157-164.
doi: 10.1007/BF00045553
[6] Guo K, Liu CC, Dong M ( 2011). Ecological adaptation of plants and control of rocky-desertification on karst region of Southwest China. Chinese Journal of Plant Ecology, 35, 991-999.
[ 郭柯, 刘长成, 董鸣 ( 2011). 我国西南喀斯特植物生态适应性与石漠化治理. 植物生态学报, 35, 991-999.]
[7] Guo ZW, Zheng JM ( 2017). Predicting modes of seed dispersal using plant life history traits. Biodiversity Science, 25, 966-971.
doi: 10.17520/biods.2017019
[ 郭志文, 郑景明 ( 2017). 用植物生活史性状预测种子扩散方式. 生物多样性, 25, 966-971.]
doi: 10.17520/biods.2017019
[8] Howe FH, Smallwood J ( 1982). Ecology of seed dispersal. Annual Review of Ecology & Systematics, 13, 201-228.
[9] Hughes L, Dunlop M, French K, Leishman MR, Rice B ( 1994). Predicting dispersal spectra: A minimal set of hypotheses based on plant attributes. Journal of Ecology, 82, 933-950.
doi: 10.2307/2261456
[10] James JJ, Boyd CS, Svejcar T ( 2013). Seed and seedling ecology research to enhance restoration outcomes. Rangeland Ecology & Management, 66, 115-116.
doi: 10.2111/REM-D-13-00027.1
[11] Jiang YL, Li XK, Guo YL, Ding T, Wang B, Xiang WS ( 2017). Diversity of climbing seed plants and their reproductive habit in a karst seasonal rain forest in Nonggang, Guangxi, China. Chinese Journal of Plant Ecology, 41, 716-728.
[ 蒋裕良, 李先琨, 郭屹立, 丁涛, 王斌, 向悟生 ( 2017). 广西弄岗喀斯特季节性雨林藤本种子植物多样性及繁殖习性. 植物生态学报, 41, 716-728.]
[12] Jin ZZ, Peng J ( 1998). Vegetation of Kunming. Yunnan Science and Technology Press, Kunming.
[ 金振洲, 彭鉴 ( 1998). 昆明植被. 云南科技出版社, 昆明.]
[13] Li J, Guo C, Xiao ZS ( 2013). Fruit composition and seed dispersal strategies of woody plants in a Dujiangyan subtropical forest, Southwest China. Biodiversity Science, 21, 572-581.
[ 李娟, 郭聪, 肖治术 ( 2013). 都江堰亚热带森林常见木本植物果实组成与种子扩散策略. 生物多样性, 21, 572-581.]
[14] Li YH (2006). Study on Geopark.The Commercial Press, Beijing.
[ 李玉辉 ( 2006). 地质公园研究. 商务印书馆,北京.]
[15] Li YH, Feng ZQ, Yu XY, Ma ZP ( 2005). Eventful changes of the vegetation in Shilin National Park and its significance. Carsologica Sinica, 24(3), 46-53.
[ 李玉辉, 冯正清, 俞筱押, 马遵平 ( 2005). 云南石林公园植被重大变化与意义. 中国岩溶, 24(3), 46-53.]
[16] Liu CC, Liu YG, Guo K, Li GQ, Zheng YR, Yu LF, Yang R ( 2011). Comparative ecophysiological responses to drought of two shrub and four tree species from karst habitats of southwestern China. Trees, 25, 537-549.
doi: 10.1007/s00468-010-0533-7
[17] Liu JM ( 2000 a). The seed bank of the forest community at the pinnacles of Maolan karst hilly area in Guizhou. Forest Research, 13, 44-50.
[ 刘济明 ( 2000 a). 贵州茂兰喀斯特山地顶部森林群落种子库研究. 林业科学研究, 13, 44-50.]
[18] Liu JM ( 2000 b). The reproductive and regenerative countermeasures of the main woody species in Maolan karst forest. Scientia Silvae Sinicae, 36(5), 114-122.
doi: 10.11707/j.1001-7488.20000527
[ 刘济明 ( 2000 b). 茂兰喀斯特森林主要树种的繁殖更新对策. 林业科学, 36(5), 114-122.]
doi: 10.11707/j.1001-7488.20000527
[19] Long CL, Yu SX ( 2007). Space variation of seed rain and seed bank in gaps of karst forest in Maolan Nature Reserve, Guizhou Province. Acta Botannica Yunnannica, 29, 327-332.
[ 龙翠玲, 余世孝 ( 2007). 茂兰喀斯特森林林隙种子雨、种子库空间变异. 云南植物研究, 29, 327-332.]
[20] Shen YX, Gao L, Xia X, Li YH, Guan HL ( 2013). Successional distance between the source and recipient influence seed germination and seedling survival during surface soil replacement in SW China. PLOS ONE, 8, e79125. DOI: 10.1371/journal.pone.0079125.
doi: 10.1371/journal.pone.0079125
[21] Shen YX, Liu WL, Li YH, Guan HL ( 2014). Large sample area and size are needed for forest soil seed bank studies to ensure low discrepancy with standing vegetation. PLOS ONE, 9, e105235. DOI: 10.1371/journal.pone.0105235.
doi: 10.1371/journal.pone.0105235
[22] Shilin Research Group (1997). Study on the Lunan Stone Forest Karst in China.Yunnan Science and Technology Press, Kunming.
[ 石林研究组 ( 1997). 中国路南石林喀斯特研究. 云南科技出版社, 昆明.]
[23] Spjut RW ( 1994). A Systematic Treatment of Fruit Types. New York Botanical Garden, New York.
[24] van der Pijl L ( 1969). Principles of Dispersal in Higher Plants. Springer, Berlin.
[25] van der Pijl L ( 1982). Principles of Dispersal in Higher Plants. 3rd edn. Springer, Berlin.
[26] Wang GH, Zhou GS ( 2001). Correlation analysis on the relationship between plant life form, fruit type and hydrothermic factors in Gansu woody plant flora. Bulletin of Botanical Research, 21, 448-455.
doi: 10.3969/j.issn.1673-5102.2001.03.029
[ 王国宏, 周广胜 ( 2001). 甘肃木本植物区系生活型和果实类型构成式样与水热因子的相关分析. 植物研究, 21, 448-455.]
doi: 10.3969/j.issn.1673-5102.2001.03.029
[27] Wang J, Yan QL ( 2017). Effects of disturbance on animal-?mediated seed dispersal effectiveness of forest plants: A review. Chinese Journal of Applied Ecology, 28, 1716-1726.
doi: 10.13287/j.1001-9332.201705.033
[ 王静, 闫巧玲 ( 2017). 干扰对动物传播森林植物种子有效性影响的研究进展. 应用生态学报, 28, 1716-1726.]
doi: 10.13287/j.1001-9332.201705.033
[28] Westoby M, Leishman M, Lord J, Poorter H, Schoen DJ ( 1996). Comparative ecology of seed size and dispersal. Philosophical Transactions of the Royal Society B Biological Sciences, 351, 1309-1318.
doi: 10.1098/rstb.1996.0114
[29] Willson MF, Rice BL, Westoby M ( 1990). Seed dispersal spectra: A comparison of temperate plant communities. Journal of Vegetation Science, 1, 547-562.
doi: 10.2307/3235789
[30] Yang XF, Tang Y, Cao M ( 2010). Diaspore traits of 145 tree species from a tropical seasonal rainforest in Xishuangbanna, SW China. Acta Botanica Yunnanica, 32, 367-377.
doi: 10.3724/SP.J.1143.2010.10064
[ 杨小飞, 唐勇, 曹敏 ( 2010). 西双版纳热带季节雨林145个树种繁殖体特征. 云南植物研究, 32, 367-377.]
doi: 10.3724/SP.J.1143.2010.10064
[31] Yu XY, Li YH ( 2010). Characteristics of woody plant regeneration in karren-habitats successional plant communities in Yunnan Shilin karst area of China. Chinese Journal of Plant Ecology, 34, 889-897.
doi: 10.3773/j.issn.1005-264x.2010.08.001
[ 俞筱押, 李玉辉 ( 2010). 滇石林喀斯特植物群落不同演替阶段的溶痕生境中木本植物的更新特征. 植物生态学报, 34, 889-897.]
doi: 10.3773/j.issn.1005-264x.2010.08.001
[32] Zhang ZY, Li YH, Chai DM, Zhang L ( 2005). Ant biodiversity in different habitats in Shilin Park, Yunnan Province. Biodiversity Science, 13, 357-362.
[ 张智英, 李玉辉, 柴冬梅, 张亮 ( 2005). 云南石林公园不同生境蚂蚁多样性研究. 生物多样性, 13, 357-362.]
[1] CHEN Chan,ZHANG Shi-Ji,LI Lei-Da,LIU Zhao-Dan,CHEN Jin-Lei,GU Xiang,WANG Liu-Fang,FANG Xi. Carbon, nitrogen and phosphorus stoichiometry in leaf, litter and soil at different vegetation restoration stages in the mid-subtropical region of China [J]. Chin J Plant Ecol, 2019, 43(8): 658-671.
[2] WANG Ming-Ming,LIU Xin-Ping,HE Yu-Hui,ZHANG Tong-Hui,WEI Jing,Chelmge ,SUN Shan-Shan. How enclosure influences restored plant community changes of different initial types in Horqin Sandy Land [J]. Chin J Plant Ecol, 2019, 43(8): 672-684.
[3] GU Xiang,ZHANG Shi-Ji,LIU Zhao-Dan,LI Lei-Da,CHEN Jin-Lei,WANG Liu-Fang,FANG Xi. Effects of vegetation restoration on soil organic carbon concentration and density in the mid-subtropical region of China [J]. Chin J Plan Ecolo, 2018, 42(5): 595-608.
[4] GU Xiang, ZHANG Shi-Ji, LIU Zhao-Dan, LI Lei-Da, CHEN Jin-Lei, WANG Liu-Fang, FANG Xi. Effects of vegetation restoration on soil organic carbon mineralization in the east of Hunan, China [J]. Chin J Plant Ecol, 2018, 42(12): 1211-1224.
[5] Hao ZHANG, Mao-Kui Lyu, Jin-Sheng XIE. Effect of Dicranopteris dichotoma on spectroscopic characteristic of dissolved organic matter in red soil erosion area [J]. Chin J Plan Ecolo, 2017, 41(8): 862-871.
[6] Jida Yang,Zhiming Zhang,Zehao Shen,Xiaokun Ou,Yupeng Geng,Mingyu Yang. Review of research on the vegetation and environment of dry-hot valleys in Yunnan [J]. Biodiv Sci, 2016, 24(4): 462-474.
[7] LIU Zhu, YANG Yu-Sheng, SI You-Tao, KANG Gen-Li, and ZHENG Huai-Zhou. Effects of vegetation restoration on content and spectroscopic characteristics of dissolved organic matter in eroded red soil [J]. Chin J Plan Ecolo, 2014, 38(11): 1174-1183.
[8] Guohong Wang, Xiaoping Wang, Weikang Zhang, He Li, Lianhai Du, Jigui Wu. A functional analysis of resistance of plant communities to disturbance: a case study of Beijing nature reserves [J]. Biodiv Sci, 2013, 21(2): 153-162.
[9] TANG Yi and LIU Zhi-Min. Advances, trends and challenges in seed bank research for sand dune ecosystems [J]. Chin J Plan Ecolo, 2012, 36(8): 891-898.
[10] XIAO Chan, LIU Wen-Zhi, LIU Gui-Hua. Comparison of the established vegetation and soil seed bank of tidal flat versus tributary habitats of China’s Danjiangkou Reservoir: the potential of hydrochory [J]. Chin J Plan Ecolo, 2011, 35(3): 247-255.
[11] XI Xin-Qiang, ZHAO Yu-Jie, LIU Yu-Guo, WANG Xin, and GAO Xian-Ming. Variation and correlation of plant functional traits in karst area of central Guizhou Province, China [J]. Chin J Plan Ecolo, 2011, 35(10): 1000-1008.
[12] LIU Yu-Guo, LIU Chang-Cheng, WEI Ya-Fen, LIU Yong-Gang, and GUO Ke. Species composition and community structure at different vegetation successional stages in Puding, Guizhou Province, China [J]. Chin J Plan Ecolo, 2011, 35(10): 1009-1018.
[13] LUO Dong-Hui, XIA Jing, YUAN Jing-Wei, ZHANG Zhong-Hua, ZHU Jie-Dong, NI Jian. Root biomass of karst vegetation in a mountainous area of southwestern China [J]. Chin J Plan Ecolo, 2010, 34(5): 611-618.
[14] LIU Jian-Li, WANG Yan-Hui, YU Peng-Tao, CHENG Li-Li, XIONG Wei, XU Li-Hong, Du A-Peng. VEGETATION CARRYING CAPACITY BASED ON SOIL WATER ON TYPICAL SLOPES IN THE DIEDIEGOU SMALL WATERSHED OF LIUPAN MOUN-TAINS, NORTHWESTERN CHINA [J]. Chin J Plan Ecolo, 2009, 33(6): 1101-1111.
[15] Shaojun Wang, Qiujin Cai, Honghua Ruan. Soil nematode community response to vegetation restoration in northern Fujian [J]. Biodiv Sci, 2007, 15(4): 356-364.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Kang Le. The Chemical Defenses of plants to phytophagous Insects[J]. Chin Bull Bot, 1995, 12(04): 22 -27 .
[2] HUANG Kai-Yao;GUO Hou-Liang and YI Ping. Effects of Salt Stress on Cell Structure and N2 Fixation in Blue-Green Alga Anabaena cylindrica[J]. Chin Bull Bot, 1998, 15(03): 54 -56 .
[3] Zhang Jing-tan. Abbreviations for Some Commonly Used Term[J]. Chin Bull Bot, 1985, 3(01): 57 -58 .
[4] DU Gui-Sen;ZANG Yu-Long and WANG Mei-Zhi. Study on Spore Morphology of 6 Species of The Family Pottiaceae in China[J]. Chin Bull Bot, 1998, 15(03): 57 -60 .
[5] TIAN Xin-Zhi. On Plant Illustration and Artistic Drawing and Painting[J]. Chin Bull Bot, 1999, 16(04): 470 -476 .
[6] LI Xiu-Lan WU Cheng DENG Xiao-Jian YANG Zhi-Rong. Plant Height Genes and Their Progress of Molecular Biology Research in Rice[J]. Chin Bull Bot, 2003, 20(03): 264 -269 .
[7] LIU Hong-Tao LI Bing ZHOU Ren-Gang. Calcium_calmodulin Signal Transduction Pathway and Environment Stimulation[J]. Chin Bull Bot, 2001, 18(05): 554 -559 .
[8] Renyi Gui;Yadi Liu;Xiaoqin Guo;Haibao Ji;Yue Jia;Mingzeng Yu;Wei Fang*. Effects of Dose of 137Cs-γ Irradiation on Chlorophyll Fluorescence Parameters for Leaves of Seedlings of Phyllostachys heterocycla ‘Pubescens’[J]. Chin Bull Bot, 2010, 45(01): 66 -72 .
[9] Sanxiong Fu;Cunkou Qi*. Identification of Genes Differentially Expressed in Seeds of Brassica napus Planted in Nanjing and Lhasa by Arabidopsis Microarray[J]. Chin Bull Bot, 2009, 44(02): 178 -184 .
[10] Li Yunxiang, Liu Yucheng, Zhong Zhangcheng. Quantitative Structure and Dynamics of Leaf Populations of Gordonia acuminata on Jinyun Mountain[J]. Chin J Plan Ecolo, 1997, 21(1): 67 -76 .