Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (5): 595-608.doi: 10.17521/cjpe.2018.0021

• Research Articles • Previous Articles    

Effects of vegetation restoration on soil organic carbon concentration and density in the mid-subtropical region of China

GU Xiang1,ZHANG Shi-Ji1,LIU Zhao-Dan1,LI Lei-Da1,CHEN Jin-Lei1,WANG Liu-Fang1,FANG Xi1,2,3,*()   

  1. 1 School of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
    2 National Engineering Laboratory of South China Forestry Ecology Applicable Technologies, Changsha 410004, China
    3 Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem of Hunan Province, Huitong, Hunan 438107, China
  • Received:2018-01-15 Revised:2018-05-09 Online:2018-07-20 Published:2018-05-20
  • Contact: Xi FANG E-mail:fangxizhang@sina.com
  • Supported by:
    Supported by the National Forestry Public Welfare Industry Research Project(201504411);the National Natural Science Foundation of China(30771720);the National Natural Science Foundation of China(31170426)

Abstract:

Aims Vegetation restoration plays an important role in the accumulation and storage of soil organic carbon (SOC). Our objectives were to investigate the effects of vegetation restoration on SOC and to explain the underlying mechanisms of carbon sequestration during vegetation restoration in the mid-subtropical China.

Methods According to the disturbance intensity and the degree of restoration, we used the space-for-time substitution method by selecting four different types of vegetation communities, composed of Loropetalum chinense-Vaccinium bracteatum-Rhododendron simsii scrub-grass-land (LVR), Loropetalum chinense-Cunninghamia lanceolata-Quercus fabri shrubbery (LCQ), Pinus massoniana-Lithocarpus glaber-Loropetalum chinense coniferous-broad leaved mixed forest (PLL), and Lithocarpus glaber-Cleyera japonica-Cyclobalanopsis glauca evergreen broad-leaved forest (LAG) to represent the successional sequence in the secondary forests in Changsha County, Hunan Province, China. Permanent plots were established in each vegetation communities. Soil samples (0-40 cm) were collected and divided into four layers (0-10, 10-20, 20-30 and 30-40 cm). Soil organic carbon concentration (CSOC) and soil organic carbon density (DSOC) were measured. The main influencing factors on CSOC and DSOC were analyzed with Principal Component Analysis and Stepwise Regressions Analysis.

Important findings 1) Along vegetation restoration, CSOC and DSOC increased dramatically. The CSOC was the highest in LAG, which was 12.5, 9.3 and 4.7 g·kg -1 higher than in LVR, LCQ and PLL in 0-40 cm soil depth, increasing by 248.5%, 113.1% and 58.5%, respectively. The increments of DSOC in LAG at 0-40 cm soil depth were 67.1, 46.1 and 32.5 t C·hm -2, and increased by 182.0%, 79.7% and 45.6% compared to DSOC in LVR, LCQ and PLL, respectively. 2) Correlation analysis showed that CSOC and DSOC were strongly and positively correlated with species diversity index, community total biomass, aboveground biomass, root biomass, existing biomass in litter layer, nitrogen (N), phosphorus (P) concentration in litter layer, soil total P, soil available P, soil C/N ratio (except CSOC), soil C/P ratio, soil N/P ratio and percentage of soil clay (< 0.002 mm), but significantly and negatively correlated with C/N in litter layer (except DSOC), C/P in litter layer, soil pH and soil bulk density, suggesting that the differences in CSOC and DSOC under different vegetation stages were related to both vegetation and soil properties. 3) The results of principal component analysis and stepwise regression analysis revealed that soil C/P, pH, concentration of soil clay (except CSOC) and C/P in litter layer were the dominant factors affecting CSOC and DSOC during vegetation restoration. Among them, soil C/P ratio ranked first. These results indicated that the differences in soil C/P ratio, pH, soil clay concentration and C/P in litter layer were responsible for the changes in SOC during vegetation restoration.

Key words: central hilly area of Hunan Province, vegetation restoration, scrub-grass-land, shrubbery, coniferous- broad leaved mixed forest, evergreen broad-leaved forest, vegetation factor, soil factor

Table 1

Stand characteristics at different stages during vegetation restoration"

恢复阶段
Restoration stage
优势植物
Dominant plants
组成比例
Composition proportion (%)
木本植物密度
Density of woody plants (trees·hm-2)
多样性
指数
Diversity index
重要值Important value (%) 平均胸径
Average
DBH (cm)
平均树高
Average tree height (m)
海拔
Elevation (m)
坡向
Slope
aspect
坡度
Slope
檵木-南烛-
杜鹃灌草丛
LVR
檵木 Loropetalum chinense 34.48 18125 0.87 27.46 - 0.85
(0.3-1.8)
120-131 东南
Southeast
18°
南烛 Vaccinium bracteatum 21.55 18.96
杜鹃 Rhododendron simsii 12.07 14.00
白栎 Quercus fabri 7.76 10.66
板栗 Castanea mollissima 5.17 2.72
其他(8种) Others (8 species) 18.97 26.20
檵木-杉木-
白栎灌木林
LCQ
檵木 Loropetalum chinense 17.47 7633 1.06 22.02 2.74
(1.0-9.8)
3.37
(1.5-6.5)
120-135 西北
Northwest
22°
杉木 Cunninghamia lanceolata 14.85 13.16
白栎 Quercus fabri 12.66 11.10
南烛 Vaccinium bracteatum. 12.66 9.26
木姜子 Litsea spp. 11.35 10.13
其他(16种) Others (16 species) 31.01 34.43
马尾松-柯-
檵木针阔
混交林
PLL
马尾松 Pinus massoniana 39.69 17629 1.91 45.34 5.70
(1.0-28.0)
6.54
(1.5-20.0)
135-160 西南
Southwest
20°
Lithocarpus glaber 25.52 13.87
檵木 Loropetalum chinense 11.06 7.43
红淡比 Cleyera japonica 3.59 4.11
连蕊茶 Camellia cuspidata 3.11 4.02
其他(22种) Others (22 species) 17.03 25.23
柯-红淡比-
青冈常绿
阔叶林
LAG
Lithocarpus glaber 38.78 19970 2.29 25.75 5.63
(1.0-40.0)
5.75
(1.5-20.0)
200-260 东南
Southeast
22°
红淡比 Cleyera japonica 18.70 11.05
青冈 Cyclobalanopsis glauca 5.82 8.90
杉木 Cunninghamia lanceolata 5.36 6.14
格药柃 Eurya muricata Dunn 5.06 5.73
其他(31种) Others (31 species) 26.28 42.44

Table 2

Plant community biomass and nutrient characteristics of litter layer at different stages during vegetation restoration (mean ± SD)"

恢复阶段
Restoration stage
群落总生物量
Community
total biomass (kg·hm-2)
地上部分
生物量
Aboveground biomass (kg·hm-2)
根系生物量
Root biomass (kg·hm-2)
凋落物层
现存量
Existing biomass in litter layer (kg·hm-2)
凋落物层
C含量
C concentration in litter layer (g·kg-1)
凋落物层
N含量
N concentration in litter layer (g·kg-1)
凋落物层
P含量
P concentration in litter layer (g·kg-1)
凋落物层
C/N比 C/N ratio in litter layer
凋落物层
C/P比 C/P ratio in litter layer
凋落物层N/P比 N/P ratio in litter layer
LVQ 5 185.4 ±
2 702.5a
2 244.5 ±
1 153.9a
2 029.6 ±
1 515.7a
911.4 ±
653. 9a
315.8 ± 25.3ac 9.84 ± 0.3a 0.30 ± 0.02a 35.8 ± 2.6a 1532.2 ± 95.2a 41.5 ± 2.9a
LCQ 2 0591.5 ± 9 728.9b 10 346.7 ± 7 143.2b 5 443.0 ±
3 467.5a
4 801.8 ±
1 030.2b
277.2 ± 33.3a 11.2 ± 0.9a 0.34 ± 0.03ab 26.0 ± 0.2b 914.2 ± 69.4b 35.7 ± 3.6a
PLL 129 112.7 ± 19 713.5c 107 692.6 ± 16 361.6c 16 332.9 ± 3 047.6b 5 087.2 ±
1 246.1b
424.1 ± 8.6b 11.5 ± 0.5a 0.33 ± 0.05ab 38.0 ± 1.6a 1389.7 ± 227.9ab 36.6 ± 4.4a
LAG 148 975.4 ± 43 906.4c 120 695.2 ± 13 647.7c 24 400.4 ±
5 124.8c
3 879.8 ±
1 171.5b
332.3 ± 53.9c 14.0 ± 0.2b 0.38 ± 0.04b 23.9 ± 3.5b 953.1 ± 44.6b 40.3 ± 4.0a

Table 3

Soil physicochemical properties at different stages during vegetation restoration (mean ± SD)"

恢复
阶段 Restoration stage
土层
深度
Soil layer (cm)
容重
Bulk
density (g·cm-3)
0.05-2 mm
砂粒百分含量
Soil sand (0.05-2 mm) percentage (%)
0.002-0.05 mm粉粒百分含量 Soil silt (0.002- 0.05 mm)
percentage (%)
<0.002 mm
黏粒百分含量 Soil clay
(<0.002 mm) percentage (%)
pH TP
(g·kg-1)
AP (mg·kg-1) C/N C/P N/P
LVR 0-10 1.4 ± 0.2Aa 43.6 ± 4.8Aa 44.7 ± 6.4Aa 11.7 ± 4.6Aa 4.5 ± 0.2Aa 0.17 ± 0.16Aa 2.1 ± 0.7Aa 22.4 ± 12.5Aa 109.1 ± 44.7Aa 5.3 ± 2.4Aa
10-20 1.5 ± 0.1Aab 39.5 ± 4.1Aa 57.0 ± 5.2Ab 3.5 ± 1.1Ab 4.7 ± 0.2Ab 0.12 ± 0.03Aab 1.4 ± 0.6Ab 20.0 ± 9.3Aab 59.5 ± 51.4Ab 3.3 ± 3.0Ab
20-30 1.5 ± 0.1Aab 42.0 ± 5.6Aa 56.5 ± 6.2Ab 2.7 ± 0.9Ab 4.8 ± 0.2Ab 0.11 ± 0.04Ab 1.3 ± 0.5Ab 17.7 ± 9.5Aab 42.9 ± 40.9Ab 2.5 ± 2.2Ab
30-40 1.5 ± 0.1Ab 43.1 ± 5.6Aa 54.4 ± 6.1ACb 2.5 ± 0.6Ab 5.0 ± 0.2Ac 0.11 ± 0.04Ab 1.2 ± 0.5Ab 13.7 ± 7.7ABb 30.5 ± 37.4Ab 2.5 ± 2.5Ab
LCQ 0-10 1.4 ± 0.1Ab 67.9 ± 2.1Ba 21.6 ± 2.5Ba 10.6 ± 2.4Aa 4.8 ± 0.2Ba 0.12 ± 0.03Aa 2.6 ± 1.1ABa 17.7 ± 6.8Aa 164.4 ± 45.5Ba 10.0 ± 3.1Ba
10-20 1.6 ± 0.1Ab 60.1 ± 11.1Bb 27.2 ± 9.1Bb 12.9 ± 5.0Ba 4.9 ± 0.2ABab 0.10 ± 0.03Ab 1.9 ± 0.6Bab 16.3 ± 4.6ABab 90.2 ± 29.9Bb 6.0 ± 2.8Bb
20-30 1.6 ± 0.1Ab 63.3 ± 3.9Bab 26.0 ± 4.9Bab 10.7 ± 3.5Ba 5.0 ± 0.2ABb 0.09 ± 0.02Ab 1.9 ± 0.7Bb 17.0 ± 7.5ABab 72.4 ± 47.2Bb 4.8 ± 2.84Bbc
30-40 1.7 ± 0.0Bb 63.4 ± 3.7Bab 25.8 ± 5.0Bab 10.8 ± 3.4Ba 5.1 ± 0.2Ab 0.10 ± 0.03Ab 1.6 ± 0.7ABb 12.5 ± 3.2Ab 40.7 ± 17.7ABc 3.5 ± 1.6ABc
PLL 0-10 1.2 ± 0.3Aa 49.0 ± 18.5Aa 35.2 ± 14.0Ca 15.8 ± 6.3Ba 4.4 ± 0.2Ba 0.15 ± 0.05Aa 2.5 ± 0.9ABa 21.5 ± 3.4Aa 217.6 ± 54.6Ca 10.2 ± 2.7Ba
10-20 1.4 ± 0.2Aa 45.2 ± 19.3Aa 43.3 ± 18.0Ca 11.6 ± 8.3Ba 4.5 ± 0.3Bab 0.13 ± 0.06Aa 2.0 ± 0.4BCab 20.1 ±6.5Aab 103.6 ± 33.3Bb 5.5 ± 2.1Bb
20-30 1.5 ± 0.2Aa 43.0 ± 18.2Aa 45.6 ± 19.4Ca 11.5 ± 6.8Ba 4.6 ± 0.3Bab 0.11 ± 0.06Aa 1.7 ± 0.8ABb 16.6 ± 4.9ABb 72.7 ± 26.5Bc 4.5 ± 1.7Bbc
30-40 1.5 ± 0.1Aa 41.2 ± 18.7Aa 48.8 ± 19.7Aa 10.1 ± 7.9Ba 4.7 ± 0.3Ab 0.13 ± 0.08Aa 2.0 ± 1.5Bab 17.1 ± 5.6Bb 46.8 ± 22.4ABc 3.1 ± 2.1Ac
LAG 0-10 1.3 ± 0.1Aa 26.1 ± 7.4Ca 56.5 ± 8.4Da 17.4 ± 4.2Ba 4.4 ± 0.3Ca 0.25 ± 0.05Ba 2.8 ± 0.9Ba 16.5 ± 2.9Aa 151.4 ± 55.8Ba 8.6 ± 3.7Ba
10-20 1.4 ± 0.0Ab 20.1 ± 3.6Cb 61.2 ± 4.8Dab 18.8 ± 4.8Ca 4.6 ± 0.2Ca 0.20 ± 0.04Bb 2.5 ± 0.9Cab 13.2 ± 1.2Bb 84.7 ± 27.3ABb 6.5 ± 2.1Bb
20-30 1.5 ± 0.0Ab 21.8 ± 5.2Cab 62.9 ± 5.0Ab 15.3 ± 4.3Cab 4.6 ± 0.2Ca 0.19 ± 0.04Bb 2.0 ± 1.0Bb 11.9 ± 1.6Bb 67.4 ± 25.0ABb 5.6 ± 1.8Bb
30-40 1.5 ± 0.0Ab 23.9 ± 6.3Cab 62.5 ± 7.3Cb 13.6 ± 4.5Bb 4.6 ± 0.3Ca 0.20 ± 0.05Bb 1.9 ± 0.9ABb 12.0 ± 1.7Ab 63.3 ± 31.3Bb 5.2 ± 2.4Bb

Fig. 1

Soil organic carbon concentration at different stages during vegetation restoration (mean ± SD). LVR, Loropetalum chinense-Vaccinium bracteatum-Rhododendron simsii scrub- grass-land; LCQ, Loropetalum chinense-Cunninghamia lanceolata-Quercus fabri shrubbery; PLL, Pinus massoniana- Lithocarpus glaber-Loropetalum chinense coniferous-broad leaved mixed forest; LAG, Lithocarpus glaber-Cleyera japonica- Cyclobalanopsis glauca evergreen broad-leaved forest. Different capital letters represent significant differences among different vegetation restoration stages in the same soil layer (p < 0.05), and different lower letters indicate significant differences among different soil layers at the same vegetation restoration stage (p < 0.05)."

Fig. 2

Soil organic carbon density at different stages during vegetation restoration (mean ± SD). See Fig. 1 for notes."

Table 4

Pearson’s correlation coefficient between soil organic carbon concentration (CSOC), density (DSOC) and vegetation factors"

项目 Item 植物多样性指数Species diversity index 群落总
生物量
Community total biomass
地上部分
生物量
Aboveground biomass
根系生
物量
Root
biomass
凋落物层
现存量
Existing biomass in litter layer
凋落物层C含量
C concentration in litter layer
凋落物层N含量
N concentration in litter layer
凋落物层P含量
P concentration in litter layer
凋落物层C/N比 C/N ratio in litter layer 凋落物层C/P比 C/P
ratio in litter layer
凋落物层N/P比 N/P ratio in litter layer
CSOC 0.293* 0.479** 0.473** 0.478** 0.456** 0.162 0.459** 0.378** -0.240 -0.279* -0.070
DSOC 0.326* 0.476** 0.468** 0.495** 0.470** 0.102 0.496** 0.424** -0.318* -0.348* -0.083

Table 5

Pearson’s correlation coefficient between soil organic carbon concentration (CSOC), density (DSOC) and soil factors"

项目
Item
容重
Bulk density
0.05-2 mm
砂粒百分含量
Soil sand percentage (0.05-2 mm)
0.002-0.05 mm
粉粒百分含量
Soil silt percentage (0.002-0.05 mm)
<0.002 mm
黏粒百分含量
Soil clay percentage
(<0.002 mm)
pH TP AP C/N C/P N/P
CSOC -0.678** -0.246 0.027 0.637** -0.666** 0.568** 0.727** 0.277* 0.792** 0.780**
DSOC -0.551** -0.209 -0.007 0.623** -0.623** 0.564** 0.752** 0.2430 0.796** 0.811**

Table 6

The principle component loading matrix, eigenvalue, contribution rate for vegetation and soil factors"

因子 Factor 主成分 Component
1 2 3 4 5
植物多样性指数 Species diversity index 0.687 -0.504 -0.200 -0.020 -0.259
群落总生物量 Community total biomass 0.877 0.247 -0.056 0.301 0.169
地上部分生物量 Aboveground biomass 0.862 0.279 -0.054 0.311 0.162
根系部分生物量 Root biomass 0.913 0.132 -0.13 0.221 0.221
凋落物层现存量 Existing biomass in litter layer 0.841 -0.247 0.112 0.180 0.079
凋落物层C含量 C concentration in litter layer 0.281 0.562 0.149 0.708 0.001
凋落物层N含量 N concentration in litter layer 0.786 -0.123 -0.232 -0.011 0.218
凋落物层P含量 P concentration in litter layer 0.810 -0.360 -0.080 0.199 -0.263
凋落物层C/N比 C/N ratio in litter layer -0.522 0.625 0.241 0.501 -0.106
凋落物层C/P比 C/P ratio in litter layer -0.622 0.745 0.06 0.12 0.112
凋落物层N/P比 N/P ratio in litter layer -0.204 0.439 -0.3 -0.533 0.577
土壤容重 Soil bulk density -0.384 -0.614 -0.367 0.237 0.157
0.05-2 mm砂粒百分含量 Soil sand percentage (0.05-2.00 mm) -0.531 -0.57 0.549 0.187 0.078
0.002-0.05 mm粉粒百分含量 Soil silt percentage (0.002-0.05 mm) 0.276 0.615 -0.65 -0.122 -0.098
<0.002 mm黏粒百分含量 Soil clay percentage (<0.002 mm) 0.914 -0.023 0.174 -0.21 0.043
土壤pH值 Soil pH value -0.575 -0.702 -0.204 0.159 0.195
土壤全磷含量 Soil total phosphorus concentration 0.631 0.342 -0.248 -0.457 -0.291
土壤速效磷含量 Soil available phosphorus concentration 0.656 -0.095 0.482 -0.204 -0.187
土壤碳氮比 Soil C/N ratio -0.244 0.446 0.616 -0.205 -0.273
土壤碳磷比 Soil C/P ratio 0.350 0.066 0.861 -0.155 0.191
土壤氮磷比 Soil N/P ratio 0.499 -0.120 0.720 -0.172 0.296
贡献率 Contribution rate 40.533 18.984 15.113 8.953 4.995
累积贡献率 Accumulative contribution rate 40.533 59.517 74.630 83.583 88.578

Table 7

The stepwise regression analysis for main influencing factors of soil organic carbon concentration"

因子 Factor 模型 Model
1 2 3
土壤碳磷比 Soil C/P ratio 0.141 0.111 0.101
土壤pH值 Soil pH value -17.073 -19.492
凋落物层C/P比
C/P ratio in litter layer
-0.009
常数项 Constant term -0.285 82.592 105.516
多元相关系数
Multiple correlation coefficient (R)
0.792 0.874 0.912
调整判定系数 Adjust R2 0.620 0.755 0.820
F 84.203 79.603 78.584
p 0.000 0.000 0.000

Table 8

The stepwise regression analysis for main influencing factors of soil organic carbon density"

因子 Factor 模型 Model
1 2 3 4
土壤C/P比 Soil C/P ratio 0.172 0.141 0.127 0.124
<0.002 mm黏粒百分含量
Soil clay percentage
(< 0.002 mm)
0.763 0.565 0.107
土壤pH值 Soil pH value -12.315 -20.204
凋落物层C/P比
C/P ratio in litter layer
-0.012
常数项 Constant term 1.416 -4.094 57.112 114.025
多元相关系数
Multiple correlation coefficient (R)
0.796 0.865 0.889 0.916
调整判定系数 Adjust (R2) 0.626 0.739 0.776 0.825
F 86.325 73.058 60.022 61.066
p 0.000 0.000 0.000 0.000
[1] Aerts R ( 1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos, 79, 439-449.
doi: 10.2307/3546886
[2] Berger TW, Neubauer C, Glatzel G ( 2002). Factors controlling soil carbon and nitrogen stores in pure stands of Norway spruce (Picea abies) and mixed species stands in Austria. Forest Ecology and Management, 159, 3-14.
doi: 10.1016/S0378-1127(01)00705-8
[3] Bi JD, Li YL, Ning ZY, Zhao XY ( 2016). Carbon mineralization and decomposition of litters from dominant plants in the Horqin Sandy Land: Effect of litter quality. Journal of Desert Research, 36, 85-92.
[ 毕京东, 李玉霖, 宁志英, 赵学勇 ( 2016). 科尔沁沙地优势植物叶凋落物分解及碳矿化——凋落物质量的影响. 中国沙漠, 36, 85-92.]
[4] Cao J, Yan WD, Xiang WH, Chen XY, Lei PF ( 2015). Stoichiometry characterization of soil C, N and P of Chinese fir plantations at three different ages in Huitong, Hunan Province, China. Scientia Silvae Sinicae, 51(7), 1-8.
doi: 10.11707/j.1001-7488.20150701
[ 曹娟, 闫文德, 项文化, 谌小勇, 雷丕锋 ( 2015). 湖南会同3个林龄杉木人工林土壤碳、氮、磷化学计量特征. 林业科学, 51(7), 1-8.]
doi: 10.11707/j.1001-7488.20150701
[5] Castro H, Fortunel C, Freitas H ( 2010). Effects of land abandonment on plant litter decomposition in a Montado system: Relation to litter chemistry and community functional parameters. Plant and Soil, 333, 181-190.
doi: 10.1007/s11104-010-0333-2
[6] Chen J, Yang N ( 2016). Effect of re-vegetation on active organic carbon pool of purple soils on sloping-land in Hengyang, Hunan Province, China. Journal of Tropical and Subtropical Botany, 24, 568-576.
doi: 10.11926/j.issn.1005-3395.2016.05.013
[ 陈璟, 杨宁 ( 2016). 衡阳紫色土丘陵坡地植被恢复对土壤活性有机碳库的影响. 热带亚热带植物学报, 24, 568-576.]
doi: 10.11926/j.issn.1005-3395.2016.05.013
[7] Chen LZ, Xie BY, Xiao WF, Huang ZL ( 2007). Organic carbon storage in soil under the major forest vegetation types in the Three Gorges Reservior area. Resources and Environment in the Yangtze Basin, 16, 640-643.
[ 陈亮中, 谢宝元, 肖文发, 黄志霖 ( 2007). 三峡库区主要森林植被类型土壤有机碳贮量研究. 长江流域资源与环境, 16, 640-643.]
[8] Chen S, Huang Y, Zou J, Shi Y ( 2013). Mean residence time of global topsoil organic carbon depends on temperature, precipitation and soil nitrogen. Global and Planetary Change, 100, 99-108.
doi: 10.1016/j.gloplacha.2012.10.006
[9] Dai QH, Liu GB, Xue S, Yu N, Zhang C, Lan X ( 2008). Effect of different vegetation restoration on soil carbon and carbon management index in eroded Hilly Loess Plateau. Research of Soil and Water Conservation, 15(3), 61-64.
[ 戴全厚, 刘国彬, 薛萐, 于娜, 张超, 兰雪 ( 2008). 不同植被恢复模式对黄土丘陵区土壤碳库及其管理指数的影响. 水土保持研究, 15(3), 61-64.]
[10] Deng L, Wang KB, Chen ML, Shangguan ZP, Sweeney S ( 2013). Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China. Catena, 110, 1-7.
doi: 10.1016/j.catena.2013.06.016
[11] Ding FJ, Pan ZS, Zhou FJ, Wu P ( 2012). Organic carbon contents and vertical distribution characteristics of the soil in the three forest types of the karst regions in central Guizhou Province. Journal of Soil and Water Conservation, 26(1), 161-164.
[ 丁访军, 潘忠松, 周凤娇, 吴鹏 ( 2012). 黔中喀斯特地区3种林型土壤有机碳含量及垂直分布特征. 水土保持学报, 26(1), 161-164.]
[12] Du H, Zeng FP, Song TQ, Wen YG, Li CG, Peng WX, Zhang H, Zeng ZX ( 2016). Spatial pattern of soil organic carbon of the main forest soils and its influencing factors in Guangxi, China. Chinese Journal of Plant Ecology, 40, 282-291.
doi: 10.17521/cjpe.2015.0199
[ 杜虎, 曾馥平, 宋同清, 温远光, 李春干, 彭晚霞, 张浩, 曾昭霞 ( 2016). 广西主要森林土壤有机碳空间分布及其影响因素. 植物生态学报, 40, 282-291.]
doi: 10.17521/cjpe.2015.0199
[13] Fang J, Chen A, Peng C, Zhao S, Ci L ( 2001). Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.
doi: 10.1126/science.1058629 pmid: 11423660
[14] Fisk M, Santangelo S, Minick K ( 2015). Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests. Soil Biology & Biochemistry, 81, 212-218.
doi: 10.1016/j.soilbio.2014.11.022
[15] Fu DL, Liu MY, Liu L, Zhang K, Zuo JX ( 2014). Organic carbon density and storage in different soils on the Loess Plateau. Arid Zone Research, 1, 44-50.
[ 付东磊, 刘梦云, 刘林, 张琨, 左进香 ( 2014). 黄土高原不同土壤类型有机碳密度与储量特征. 干旱区研究, 31, 44-50.]
[16] Gong W, Hu XT, Wang JY, Gong YB, Ran H ( 2008). Soil carbon pool and fertility under natural evergreen broad-leaved forest and its artificial regeneration forests in Southern Sichuan Province. Acta Ecologica Sinica, 28, 2536-2545.
doi: 10.3321/j.issn:1000-0933.2008.06.013
[ 龚伟, 胡庭兴, 王景燕, 宫渊波, 冉华 ( 2008). 川南天然常绿阔叶林人工更新后土壤碳库与肥力的变化. 生态学报, 28, 2536-2545.]
doi: 10.3321/j.issn:1000-0933.2008.06.013
[17] Grüneberg E, Schöning I, Hessenmöller D, Schulze ED, Weisser WW ( 2013). Organic layer and clay content control soil organic carbon stocks in density fractions of differently managed German beech forests. Forest Ecology and Management, 303, 1-10.
doi: 10.1016/j.foreco.2013.03.014
[18] Gu X, Fang X, Xiang WH, Li SL, Sun WJ ( 2013). Soil organic carbon and mineralizable organic carbon in four subtropical forests in hilly region of central Hunan Province, China. Chinese Journal of Ecology, 32, 2687-2694.
[ 辜翔, 方晰, 项文化, 李胜蓝, 孙伟军 ( 2013). 湘中丘陵区4种森林类型土壤有机碳和可矿化有机碳的比较. 生态学杂志, 32, 2687-2649.]
[19] Guo SL, Ma YH, Che SG, Sun WY ( 2009). Effects of artificial and natural vegetations on litter production and soil organic carbon change in loess hilly areas. Scientia Silvae Sinicae, 45(10), 14-48.
doi: 10.11707/j.1001-7488.20091003
[ 郭胜利, 马玉红, 车升国, 孙文义 ( 2009). 黄土区人工与天然植被对凋落物量和土壤有机碳变化的影响. 林业科学, 45(10), 14-18.]
doi: 10.11707/j.1001-7488.20091003
[20] Harrison-Kirk T, Beare MH, Meenken ED, Condron LM ( 2013). Soil organic matter and texture affect responses to dry/wet cycles: Effects on carbon dioxide and nitrous oxide emissions. Soil Biology & Biochemistry, 57, 43-55.
doi: 10.1016/j.soilbio.2012.10.008
[21] Herbert DA, Williams M, Rastetter EB ( 2003). Amodel analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment. Biogeochemistry, 65, 121-150.
doi: 10.1023/A:1026020210887
[22] Huang ZS, Yu LF, Fu YH ( 2012). Characteristics of soil mineralizable carbon pool in natural restoration process of karst forest vegetation. Chinese Journal of Applied Ecology, 23, 2165-2170.
[ 黄宗胜, 喻理飞, 符裕红 ( 2012). 喀斯特森林植被自然恢复过程中土壤可矿化碳库特征. 应用生态学报, 23, 2165-2170.]
[23] Jha P, De A, Lakaria BL, Biswas AK, Singh M, Reddy KS, Rao AS ( 2012). Soil carbon pools, mineralization and fluxes associated with land use change in vertisols of Central India. Natinal Academy Science Letters, 35, 475-483.
doi: 10.1007/s40009-012-0082-2
[24] Jia GM, Cao J, Wang C, Wang G ( 2005). Microbial biomass and nutrients in soils at the different stages of secondary forest succession in Ziwulin, northwest China. Forest Ecology and Management, 217, 117-125.
doi: 10.1016/j.foreco.2005.05.055
[25] Kunkel ML, Flores AN, Smith TJ, Mcnamara JP, Benner SG ( 2011). A simplified approach for estimating soil carbon and nitrogen stocks in semi-arid complex terrain. Geoderma, 165, 1-11.
doi: 10.1016/j.geoderma.2011.06.011
[26] Lal R ( 1999). Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect. Progress in Environmental Science, 1, 307-326.
doi: 10.1177/0265407595124009
[27] Li B, Fang X, Li Y, Xiang WH, Tian DL, Chen XY, Yan WD, Deng DH ( 2015). Dynamic properties of soil organic carbon in Hunan’s forests. Acta Ecologica Sinica, 35, 4265-4278.
[ 李斌, 方晰, 李岩, 项文化, 田大伦, 谌小勇, 闫文德, 邓东华 ( 2015). 湖南省森林土壤有机碳密度及碳库储量动态. 生态学报, 35, 4265-4278.]
[28] Li SJ, Qiu LP, Zhang XC ( 2010). Mineralization of soil organic carbon and its relations with soil physical and chemical properties on the Loess Plateau. Acta Ecologica Sinica, 30, 1217-1226.
[ 李顺姬, 邱莉萍, 张兴昌 ( 2010). 黄土高原土壤有机碳矿化及其与土壤理化性质的关系. 生态学报, 30, 1217-1226.]
[29] Liang QP, Yu XX, Pang Z, Wang C, Lü XZ ( 2010). Study on soil organic carbon density of different forest types. Ecology and Environmental Sciences, 19, 889-893.
[ 梁启鹏, 余新晓, 庞卓, 王琛, 吕锡芝 ( 2010). 不同林分土壤有机碳密度研究. 生态环境学报, 19, 889-893.]
[30] Liu C, Xiang WH, Lei PF, Deng XW, Tian DL, Fang X, Peng CH ( 2014). Standing fine root mass and production in four Chinese subtropical forests along a succession and species diversity gradient. Plant and Soil, 376, 445-459.
doi: 10.1007/s11104-013-1998-0
[31] Liu JS, Yang JS, Yu JB, Wang JD ( 2003). Study on vertical distribution of soil organic carbon in wetlands Sanjiang Plain. Journal of Soil and Water Conservation, 17(3), 5-8.
[ 刘景双, 杨继松, 于君宝, 王金达 ( 2003). 三江平原沼泽湿地土壤有机碳垂直分布特征研究. 水土保持学报, 17(3), 5-8.]
[32] Liu SR, Wang H, Luan JW ( 2011). A review of research progress and future prospective of forest soil carbon stock and soil carbon process in China. Acta Ecologica Sinica, 31, 5437-5448.
[ 刘世荣, 王晖, 栾军伟 ( 2011). 中国森林土壤碳储量与土壤碳过程研究进展. 生态学报, 31, 5437-5448.]
[33] Liu W, Chen S, Qin X, Baumann F, Scholten T, Zhou Z, Sun W, Zhang T, Ren J, Qin D ( 2012). Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau. Environmental Research Letters, 7, 35401-35412.
doi: 10.1088/1748-9326/7/3/035401
[34] Liu WD, Su JR, Li SF, Zhang ZJ, Li ZW ( 2010). Stoichiometry study of C, N and P in plant and soil at different successional stages of monsoon evergreen broad-leaved forest in Pu’er, Yunnan Province. Acta Ecologica Sinica, 30, 6581-6590.
[ 刘万德, 苏建荣, 李帅锋, 张志钧, 李忠文 ( 2010). 云南普洱季风常绿阔叶林演替系列植物和土壤 C、N、P 化学计量特征. 生态学报, 30, 6581-6590.]
[35] Liu ZH, Chen LX, Wang LL ( 2009). Soil active carbon in soils under different stages of Korean pine and broadleaf forest. Chinese Journal of Soil Science, 40, 1088-1103.
[ 刘振花, 陈立新, 王琳琳 ( 2009). 红松阔叶混交林不同演替阶段土壤活性有机碳的研究. 土壤通报, 40, 1088-1103.]
[36] McKane RB, Rastetter EB, Melillo JM, Shaver GR, Hopkinson CS, Fernandes DN ( 1995). Effects of global change on carbon storage in tropical forests of South America. Global Biogeochemical Cycle, 9, 329-350.
doi: 10.1029/95GB01736
[37] Motavalli PP, Palm CA, Parton CA, Elliott ET, Frey SD ( 1995). Soil pH and organic C dynamics in tropical forest soils: Evidence from laboratory and simulation studies. Soil Biology & Biochemistry, 27, 1589-1599.
doi: 10.1016/0038-0717(95)00082-P
[38] Post WM, Kwon KC ( 2000). Soil carbon sequestration and land-use change: Processes and Potential. Global Change Biology, 6, 317-327.
doi: 10.1046/j.1365-2486.2000.00308.x
[39] Ramesh T, Manjaiah KM, Mohopatra KP, Rajasekar K, Ngachan SV ( 2015). Assessment of soil organic carbon stocks and fractions under different agroforestry systems in subtropical hill agroecosystems of north-east India. Agroforestry Systems, 89, 677-690.
doi: 10.1007/s10457-015-9804-z
[40] Reichstein M, Bahn M, Ciais P, Frank D, Mahecha1 MD, Seneviratne SI, Zscheischler J, Beer C, Buchmann N, Frank DC, Papale D, Rammig A, Smith P, Thonicke K, van der Velde M, Vicca S, Walz A, Wattenbach M ( 2013). Climate extremes and the carbon cycle. Nature, 500, 287-295.
doi: 10.1038/nature12350 pmid: 23955228
[41] Sá JCDM, Lal R ( 2009). Stratification ratio of soil organic matter pools as an indicator of carbon sequestration in a tillage chronosequence on a Brazilian Oxisol. Soil and Tillage Research, 103, 46-56.
doi: 10.1016/j.still.2008.09.003
[42] Sun BW, Yang XD, Zhang ZH, Ma WJ, Arshad A, Huang HX, Yan ER ( 2013). Relationships between soil carbon pool and vegetation carbon return through succession of evergreen broad-leaved forests in Tiantong region, Zhejiang Province, Eastern China. Chinese Journal of Plant Ecology, 37, 803-810.
[ 孙宝伟, 杨晓东, 张志浩, 马文济, Ali Arshad, 黄海侠, 阎恩荣 ( 2013). 浙江天童常绿阔叶林演替过程中土壤碳库与植被碳归还的关系. 植物生态学报, 37, 803-810.]
[43] Sun WJ, Fang X, Xiang WH, Zhang SJ, Li SL ( 2013). Active pools of soil organic carbon in subtropical forests at different successional stages in Central Hunan, China. Acta Ecologica Sinica, 33, 7765-7773.
doi: 10.5846/stxb201301060046
[ 孙伟军, 方晰, 项文化, 张仕吉, 李胜蓝 ( 2013). 湘中丘陵区不同演替阶段森林土壤活性有机碳库特征. 生态学报, 33, 7765-7773.]
doi: 10.5846/stxb201301060046
[44] Tang PH, Dang KL, Wang LH, Ma J ( 2016). Factors affecting soil organic carbon density in Betula albo-sinensis forests on the southern slope of the Qinling Mountains. Acta Ecologica Sinica, 36, 1030-1039.
doi: 10.5846/stxb201406271326
[ 唐朋辉, 党坤良, 王连贺, 马俊 ( 2016). 秦岭南坡红桦林土壤有机碳密度影响因素. 生态学报, 36, 1030-1039.]
doi: 10.5846/stxb201406271326
[45] Wang H, Hall CAS ( 2004). Modeling the effects of Hurricane Hugo on spatial and temporal variation in primary productivity and soil carbon and nitrogen in the Luquillo Experimental Forest, Puerto Rico. Plant and Soil, 263, 69-84.
doi: 10.1023/B:PLSO.0000047719.44971.dd
[46] Wang SF, Wang XK, Ouyang ZY ( 2012). Factors controlling soil organic carbon and total nitrogen densities in the upstream watershed of Miyun Reservoir, north China. Environmental Science, 33, 946-951.
[ 王淑芳, 王效科, 欧阳志云 ( 2012). 密云水库上游流域土壤有机碳和全氮密度影响因素研究. 环境科学, 33, 946-951.]
[47] Wang YF, Fu BJ, Lü YH, Chen LD ( 2011). Effects of vegetation restoration on soil organic carbon sequestration at multiple scales in semi-arid Loess Plateau, China. Catena, 85, 58-66.
doi: 10.1016/j.catena.2010.12.003
[48] Weintraub MN, Schimel JP ( 2003). Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in arctic tundra soils. Ecosystems, 6, 129-143.
doi: 10.1007/s10021-002-0124-6
[49] Wynn JG, Bird MI, Vellen L, Grand-Clement E, Carter J, Berry SL ( 2006). Continental-scale measurement of the soil organic carbon pool with climatic, edaphic, and biotic controls. Global Biogeochemical Cycles, 20, 1-12.
doi: 10.1029/2005GB002576
[50] Xiang WH, Zhou J, Ouyang S, Zhang SL, Lei PF, Li JX, Deng XW, Fang X, Forrester DI ( 2016). Species-specific and general allometric equations for estimating tree biomass components of subtropical forests in southern China. European Journal of Forest Research, 135, 1-17.
doi: 10.1007/s10342-015-0913-z
[51] Xue S, Liu GB, Pan YP, Dai QH, Zhang C, Yu N ( 2009). Evolution of soil labile organic matter and carbon management index in the artificial Robinia of loess hilly area. Scientia Agricultura Sinica, 42, 1458-1464.
doi: 10.3864/j.issn.0578-1752.2009.04.042
[ 薛萐, 刘国彬, 潘彦平, 戴全厚, 张超, 余娜 ( 2009). 黄土丘陵区人工刺槐林土壤活性有机碳与碳库管理指数演变. 中国农业科学, 42, 1458-1464.]
doi: 10.3864/j.issn.0578-1752.2009.04.042
[52] You LH, Ye GF, Chen ZH, Luo MJ, Gao W, You SS ( 2014). Litter decomposition and initial nutrient content of major dominant tree species on coastal sandy areas. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 43, 585-591.
doi: 10.3969/j.issn.1671-5470.2014.06.005
[ 尤龙辉, 叶功富, 陈增鸿, 罗美娟, 高伟, 游水生 ( 2014). 滨海沙地主要优势树种的凋落物分解及其与初始养分含量的关系. 福建农林大学学报(自然科学版), 43, 585-591.]
doi: 10.3969/j.issn.1671-5470.2014.06.005
[53] Zak DR, Holmes WE, Burton AJ, Pregitzer KS, Talhelm AF ( 2008). Simulated atmospheric NO -3 deposition increases soil organic matter by slowing decomposition . Ecological Applications, 18, 2016-2027.
doi: 10.1890/07-1743.1 pmid: 19263894
[54] Zhang X, Han SJ, Wang SQ, Gu Y, Yue LY, Feng Y, Geng SC, Chen ZJ ( 2016). Change of soil organic carbon fractions at different successional stages of Betula platyphylla forest in Changbai Mountains. Chinese Journal of Ecology, 35, 282-289.
doi: 10.13292/j.1000-4890.201602.019
[ 张雪, 韩士杰, 王树起, 谷越, 岳琳艳, 冯月, 耿世聪, 陈志杰 ( 2016). 长白山白桦林不同演替阶段土壤有机碳组分的变化. 生态学杂志, 35, 282-289.]
doi: 10.13292/j.1000-4890.201602.019
[55] Zhao YG, Liu XF, Wang ZL, Zhao SW ( 2015). Soil organic carbon fractions and sequestration across a 150-yr secondary forest chronosequence on the Loess Plateau, China. Catena, 133, 303-308.
doi: 10.1016/j.catena.2015.05.028
[56] Zhu LQ, Huang RZ, Duan HL, Jia L, Wang H, Huang SH, Yi ZQ, Zhang WF ( 2017). Effects of artificially restored forests on soil organic carbon and active organic carbon in eroded red soil. Acta Ecologica Sinica, 37, 249-257.
doi: 10.5846/stxb201607301560
[ 朱丽琴, 黄荣珍, 段洪浪, 贾龙, 王赫, 黄诗华, 易志强, 张文锋 ( 2017). 红壤侵蚀地不同人工恢复林对土壤总有机碳和活性有机碳的影响. 生态学报, 37, 249-257.]
doi: 10.5846/stxb201607301560
[1] CHEN Chan,ZHANG Shi-Ji,LI Lei-Da,LIU Zhao-Dan,CHEN Jin-Lei,GU Xiang,WANG Liu-Fang,FANG Xi. Carbon, nitrogen and phosphorus stoichiometry in leaf, litter and soil at different vegetation restoration stages in the mid-subtropical region of China [J]. Chin J Plant Ecol, 2019, 43(8): 658-671.
[2] WANG Ming-Ming,LIU Xin-Ping,HE Yu-Hui,ZHANG Tong-Hui,WEI Jing,Chelmge ,SUN Shan-Shan. How enclosure influences restored plant community changes of different initial types in Horqin Sandy Land [J]. Chin J Plant Ecol, 2019, 43(8): 672-684.
[3] FAN Hai-Dong, CHEN Hai-Yan, WU Yan-Nan, LIU Jian-Feng, XU De-Yu, CAO Jia-Yu, YUAN Quan, TAN Bin, LIU Xiao-Tong, XU Jia, WANG Guo-Min, HAN Wen-Juan, LIU Li-Bin, NI Jian. Community characteristics of main vegetation types on the southern slope of Beishan Mountain in Jinhua, Zhejiang, China [J]. Chin J Plant Ecol, 2019, 43(10): 921-928.
[4] CHEN Lin, WANG Lei, YANG Xin-Guo, SONG Nai-Ping, LI Yue-Fei, SU Ying, BIAN Ying-Ying, ZHU Zhong-You, MENG Wen-Ting. Reproductive characteristics of Artemisia scoparia and the analysis of the underlying soil drivers in a desert steppe of China [J]. Chin J Plant Ecol, 2019, 43(1): 65-76.
[5] Wei Lu,Jianping Yu,Haibao Ren,Xiangcheng Mi,Jianhua Chen,Keping Ma. Spatial variations in species diversity of mid-subtropical evergreen broad-leaved forest community in Gutianshan National Nature Reserve [J]. Biodiv Sci, 2018, 26(9): 1023-1028.
[6] YU Xiao-Ya, LI Yu-Hui, YANG Guang-Rong. Fruit types and seed dispersal modes of plants in different communities in Shilin Geopark, Yunnan, China [J]. Chin J Plan Ecolo, 2018, 42(6): 663-671.
[7] Han-Dong WEN, Lu-Xiang LIN, Jie YANG, Yue-Hua HU, Min CAO, Yu-Hong LIU, Zhi-Yun LU, You-Neng XIE. Species composition and community structure of a 20 hm2 plot of mid-mountain moist evergreen broad-leaved forest on the Mts. Ailaoshan, Yunnan Province, China [J]. Chin J Plan Ecolo, 2018, 42(4): 419-429.
[8] Shun ZOU, Guo-Yi ZHOU, Qian-Mei ZHANG, Shan XU, Xin XIONG, Yan-Ju XIA, Shi-Zhong LIU, Ze MENG, Guo-Wei CHU. Long-term (1992-2015) dynamics of community composition and structure in a monsoon evergreen broad-leaved forest in Dinghushan Biosphere Reserve [J]. Chin J Plan Ecolo, 2018, 42(4): 442-452.
[9] GU Xiang, ZHANG Shi-Ji, LIU Zhao-Dan, LI Lei-Da, CHEN Jin-Lei, WANG Liu-Fang, FANG Xi. Effects of vegetation restoration on soil organic carbon mineralization in the east of Hunan, China [J]. Chin J Plant Ecol, 2018, 42(12): 1211-1224.
[10] Yunfeng Song, Shengwen Chen, Wei Wang, Jianping Yu, Haiyuan Qian, Yunquan Wang, Lei Chen, Xiangcheng Mi, Haibao Ren, Duo Ye, Jianhua Chen, Keping Ma. Effects of negative density dependence and habitat filtering on the functional diversity of seedlings in the subtropical forest of Gutianshan [J]. Biodiv Sci, 2017, 25(9): 959-965.
[11] Hao ZHANG, Mao-Kui Lyu, Jin-Sheng XIE. Effect of Dicranopteris dichotoma on spectroscopic characteristic of dissolved organic matter in red soil erosion area [J]. Chin J Plan Ecolo, 2017, 41(8): 862-871.
[12] Wei HE, Xue-Ying YANG, Juan XIAO, Zi-Liang ZHANG, Zheng JIANG, Yuan-Shuang YUAN, Dong WANG, Qing LIU, Hua-Jun YIN. Effects of nitrogen enrichment on root exudative carbon inputs in Sibiraea angustata shrubbery at the eastern fringe of Qinghai-Xizang Plateau [J]. Chin J Plan Ecolo, 2017, 41(6): 610-621.
[13] Dandan Sui, Yue Wang, Juyu Lian, Jian Zhang, Jianbo Hu, Xuejun Ouyang, Zongji Fan, Honglin Cao, Wanhui Ye. Gap distribution patterns in the south subtropical evergreen broad-leaved forest of Dinghushan [J]. Biodiv Sci, 2017, 25(4): 382-392.
[14] Duo Ye, Ruirui Dong, Xiangcheng Mi, Wei Lu, Zhenjie Zheng, Mingjian Yu, Jian Ni, Jianhua Chen. Characteristics and effects of sprouting on species diversity in a subtropical evergreen broad-leaved forest in Gutianshan, East China [J]. Biodiv Sci, 2017, 25(4): 393-400.
[15] Yuanjie Xu,Dunmei Lin,Ming Shi,Yanjie Xie,Yizhi Wang,Zhenhua Guan,Jianying Xiang. Spatial heterogeneity and its causes in evergreen broad-leaved forests in the Ailao Mountains, Yunnan Province [J]. Biodiv Sci, 2017, 25(1): 23-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Chin Bull Bot, 1994, 11(专辑): 19 .
[2] Xiao Xiao and Cheng Zhen-qi. Chloroplast 4.5 S ribosomol DNA. II Gene and Origin[J]. Chin Bull Bot, 1985, 3(06): 7 -9 .
[3] CAO Cui-LingLI Sheng-Xiu. Effect of Nitrogen Level on the Photosynthetic Rate, NR Activity and the Contents of Nucleic Acid of Wheat Leaf in the Stage of Reproduction[J]. Chin Bull Bot, 2003, 20(03): 319 -324 .
[4] SONG Li-Ying TAN Zheng GAO Feng DENG Shu-Yan. Advances in in vitro Culture of Cucurbitaceae in China[J]. Chin Bull Bot, 2004, 21(03): 360 -366 .
[5] . [J]. Chin Bull Bot, 1994, 11(专辑): 76 .
[6] LI Jun-De YANG Jian WANG Yu-Fei. Aquatic Plants in the Miocene Shanwang Flora[J]. Chin Bull Bot, 2000, 17(专辑): 261 .
[7] XU Jing-Xian WANG Yu-Fei YANG Jian PU Guang-Rong ZHANG Cui-Fen. Advances in the Research of Tertiary Flora and Climate in Yunnan[J]. Chin Bull Bot, 2000, 17(专辑): 84 -94 .
[8] Sun Zhen-xiao Xia Guang-min Chen Hui-min. Karyotype Analysis of Psathyrostachys juncea[J]. Chin Bull Bot, 1995, 12(01): 56 .
[9] . [J]. Chin Bull Bot, 1994, 11(专辑): 8 -9 .
[10] Yunpu Zheng;Jiancheng Zhao * ;Bingchang Zhang;Lin Li;Yuanming Zhang . Advances on Ecological Studies of Algae and Mosses in Biological Soil Crust[J]. Chin Bull Bot, 2009, 44(03): 371 -378 .