Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (1): 16-26.doi: 10.17521/cjpe.2018.0119

• Research Articles • Previous Articles     Next Articles

Variation and correlation of plant functional traits in the riparian zone of the Lijiang River, Guilin, Southwest China

LIANG Shi-Chu,LIU Run-Hong,RONG Chun-Yan,CHANG Bin,JIANG Yong()   

  1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University/College of Life Science, Guangxi Normal University, Guilin, Guangxi 541006, China
  • Received:2018-05-20 Accepted:2018-12-08 Online:2019-04-25 Published:2019-01-20
  • Contact: JIANG Yong
  • Supported by:
    Supported by the National Science and Technology Pillary Program during the Twelfth Five-year Plan Period of China(2012BAC16B03);the National Natural Science Foundation of China(31860124)


Aims Patterns of variation in plant functional traits and the correlation among them are important for understanding species coexistence and the maintenance of biodiversity. Our objectives in this study were to understand how variation and correlation of plant functional traits, at both the species and community levels, influence 1) plants adaptation to changing environments, and 2) the mechanisms of community assembly.
Methods We investigated species composition of riparian plant communities in 36 plots along the longitudinal gradient (represented by upstream, midstream, downstream) of the Lijiang River, Guilin, Southwest China. We measured three functional traits for 42 woody plant species: leaf area (LA), specific leaf area (SLA), and wood density (WD). For each plant community, we calculated 1) species abundance-weighted mean community trait values, and 2) species-level mean trait values. For each of these calculations, we used trait-gradient analysis to partition the three traits into alpha and beta components. We then conducted Pearson correlations to analyze the relationships among the three traits along the longitudinal gradient. Finally we tested the strength of environmental filtering using a null model that generates randomly assembled communities with species richness given by observed values.
Important findings The species abundance-weighted mean community value of LA was lowest in the midstream communities, which was significantly different from that in the downstream communities. The mean community value of WD for midstream and upstream communities was significantly higher than that for downstream communities. Mean community value of SLA was significantly different among the three reaches. The beta components of the three functional traits significantly differed among the three reaches and had observed values that are, on average, lower than simulated values. However, alpha components for all three traits were not significantly different among the three reaches and had consistently lower variation than beta components. This implies that the variation in the mean community trait value across plots was greater than trait variation between species within plots. The observed and simulated values of the alpha components for both LA and SLA were weakly correlated with each other within and among communities, which suggests that there are independent axes of differentiation among coexisting species. On the other hand, comparisons between observed and simulated values indicated that significantly negative correlations between SLA and WD were largely the result of strong environmental filters. Finally, these results imply that variation of plant functional traits is greater among communities than within communities.

Key words: Lijiang River, riparian zone, functional traits, scale variation, trait-gradient analysis, RDA ordination, correlation, null model

Table 1

Basic information of the sampled plots in the riparian zone along the longitudinal gradient of the Lijiang River"

Plot number
Elevation (m)
Temperature (℃)
Precipitation (mm)
Disturbance intensity
Community type
3 154 24.7 1 941 轻度
Pterocarya stenoptera-Ficus abelii communities
3 148 23.0 1 941 轻度
Pterocarya stenoptera + Celtis sinensis-?Rauvolfia verticillata communities
6 144 23.7 1 941 轻度
Pterocarya stenoptera + Cinnamomum burmannii-Ficus abelii communities
4 138 26.0 1 900 重度
枫杨+乌桕-细叶水团花群落 Pterocarya stenoptera + Sapium sebiferum-Adina rubella communities
5 134 25.0 1 900 重度
阴香群落 Cinnamomum burmannii communities
3 104 24.0 1 900 重度
枫杨-萝芙木群落Pterocarya stenoptera-?Rauvolfia verticillata communities
8 111 30.1 1 900 中度
乌桕+朴树-牡荆群落Sapium sebiferum + Celtis sinensis-Vitex negundo var. cannabifolia communities
4 105 26.8 1 900 中度
乌桕-木槿群落 Sapium sebiferum + Hibiscus syriacus communities

Fig. 1

The scatterplot between species mean specific leaf area (i.e. lgSLAs, cm2·g-1) vs. plot mean specific leaf area (i.e. lgSLAp, cm2·g-1) between Cinnamomum burmannii and Vitex negundo in the riparian zone of the Lijiang River. Each grey point represents a species in a specific plot; the green solid points and the orange solid triangles represent Cinnamomum burmannii and Vitex negundo respectively, and a column of grey points in a black rectangle represent all the species within community. For each species, the abscissa values of the large open point show the mean position of occupied plots (i.e., the beta component of the species trait value, βi), while the ordinate values of the solid symbols are their mean species trait value (ti). The difference between βi and ti, or the distance from the y = x line is αi (because αi = ti - βi ). Regression line shows abundance-weighted least squares regression of species trait values relative to plot mean trait values, with slope bi. bi is the slope of each species’ s regression line of species mean trait values (ti) relative to plot mean trait values (pj), it reflects the intraspecific variation of the species mean specific leaf area along a gradient defined by community-level mean trait values."

Fig. 2

Redundancy analysis (RDA) ordination diagram showing the relationships between the three abundance weighted functional traits and 10 selected environmental factors of the riparian plant of the Lijiang River. AN, soil available nitrogen; DI, disturbance intensity; Dis, distance; Ele, elevation; LA, leaf area; pH, soil pH value; Pre, precipitation; Rea, reach; SLA, specific leaf area; SOM, soil organic matter content; Tem, temperature; TN, soil total nitrogen content; WD, wood density. plot 1-12, upstream; plot 12-24, midstream; plot 25-36, downstream."

Table 2

The explained variance of environmental factors and their significant analysis in the first two axes in redundancy analysis (RDA) ordination"

环境因子 Environmental factor RDA1 RDA2 R2 p
有机质 Soil organic matter (g·kg-1) 0.40 0.91 0.34 0.002**
全氮 Soil total nitrogen (g·kg-1) -0.45 0.88 0.19 0.032*
有效氮 Soil available nitrogen (mg·kg-1) -0.74 -0.66 0.57 0.001***
pH -0.26 0.96 0.21 0.015*
干扰强度Disturbance intensity -0.16 0.98 0.63 0.001***
距离河岸距离 Distance (m) -0.85 0.51 0.29 0.004**
降水量 Precipitation (mm) -0.66 0.74 0.79 0.001***
温度 Temperature (℃) -0.97 0.22 0.50 0.001***
海拔 Elevation (m) 0.92 -0.38 0.57 0.001***
河段 Reach -0.90 0.41 0.88 0.001***

Table 3

Statistics of the three plant functional traits across the three reaches of Lijiang River (mean ± SD)"

河段 Reach 功能性状
Functional trait
性状参数 Functional trait parameter
物种性状值 ti β 组分 βi α 组分 αi 群落性状值 pj
叶面积 LA (cm2) 1.30 ± 0.35a 1.36 ± 0.08a -0.06 ± 0.34a 1.34 ± 0.14ab
比叶面积 SLA (cm2·g-1) 2.40 ± 0.13a 2.40 ± 0.02a -0.00 ± 0.13a 2.39 ± 0.03a
木材密度 WD (g·cm-3) 0.47 ± 0.10a 0.44 ± 0.02a 0.03 ± 0.10a 0.44 ± 0.04a
叶面积 LA (cm2) 1.16 ± 0.32a 1.24 ± 0.08b -0.08 ± 0.27a 1.26 ± 0.10a
比叶面积 SLA (cm2·g-1) 2.47 ± 0.21a 2.47 ± 0.06b 0.01 ± 0.21a 2.46 ± 0.07b
木材密度 WD (g·cm-3) 0.42 ± 0.12ab 0.47 ± 0.01b -0.04 ± 0.12a 0.47 ± 0.02a
叶面积 LA (cm2) 1.24 ± 0.32a 1.45 ± 0.05c -0.20 ± 0.30a 1.46 ± 0.07b
比叶面积 SLA (cm2·g-1) 2.48 ± 0.13a 2.53 ± 0.02c -0.06 ± 0.12a 2.55 ± 0.03c
木材密度 WD (g·cm-3) 0.36 ± 0.10b 0.34 ± 0.01c 0.02 ± 0.10a 0.34 ± 0.02b

Fig. 3

Scatterplots showing relationships between leaf area (LA), specific leaf area (SLA) and wood density (WD) for species trait values (A), beta components (B), alpha components (C), and plot mean trait values (D) of the riparian plant of the Lijiang River. The Pearson correlation coefficient (r) of these relationships are shown in each figure. Black solid dots and rm respectively represent observed values and observed correlation coefficient; black open circles and rs respectively represent random simulation values and simulation coefficient. *, p < 0.05; **, p < 0.01."

Fig. 4

Difference on beta components ranges in the observed and simulated values of the three functional traits at the three reaches in Lijiang River. Circles and squares represent simulated and observed values respectively. Filled squares indicate that the observed values differ significantly from the simulated values."

Fig. 5

Partitioning of the variance in plant functional traits explained by four scales (i.e. within-specie, among-species, communities and reaches) (A) and by two scales (i.e. within and among reaches) (B) of the riparian plant of the Lijiang River. LA, leaf area; SLA, specific leaf area; WD, wood density."

[1] Ackerly DD, Cornwell WK ( 2007). A trait-based approach to community assembly: Partitioning of species trait values into within- and among-community components. Ecology Letters, 10, 135-145.
doi: 10.1111/ele.2007.10.issue-2
[2] Ackerly DD, Knight CA, Weiss SB, Barton K, Starmer KP ( 2002). Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: Contrasting patterns in species level and community level analyses. Oecologia, 130, 449-457.
doi: 10.1007/s004420100805 pmid: 28547053
[3] Agricultural Chemistry Committee of Soil Science Society of China ( 1983). Conventional Methods for the Agricultural Chemical Analysis of Soil. Science Press, Beijing.
[ 中国土壤学会农业化学专业委员会 ( 1983). 土壤农业化学常规分析方法. 科学出版社, 北京.]
[4] Baraloto C, Timothy Paine CE, Poorter L ( 2010). Decoupled leaf and stem economics in rain forest trees. Ecology Letters, 13, 1338-1347.
doi: 10.1111/j.1461-0248.2010.01517.x pmid: 20807232
[5] Bu WS, Zang RG, Ding Y, Zhang JY, Ruan YZ ( 2013). Relationships between plant functional traits at the community level and environmental factors during succession in a tropical lowland rainforest on Hainan Island, South China. Biodiversity Science, 21, 278-287.
doi: 10.3724/SP.J.1003.2013.10012
[ 卜文圣, 臧润国, 丁易, 张俊艳, 阮云泽 ( 2013). 海南岛热带低地雨林群落水平植物功能性状与环境因子相关性随演替阶段的变化. 生物多样性, 21, 278-287.]
doi: 10.3724/SP.J.1003.2013.10012
[6] Cao K ( 2014). The Phylogeny Signal of Functional Traits and Their Relationship between Each Other and Effects on Community Structure. Master degree dissertation, Zhejiang Normal University, Jinhua, Zhejiang.
[ 曹科 ( 2014). 古田山植物功能性状的系统发育信号、不同性状之间的关系及其对群落结构的影响. 硕士学位论文, 浙江师范大学, 浙江金华.]
[7] Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Steege H, Morgan HD, Heijden MGA, Pausas JG, Poorter H ( 2003). A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
doi: 10.1071/bt02124
[8] Cornwell WK, Schwilk DW, Ackerly DD ( 2006). A trait-based test for habitat filtering: Convex hull volume. Ecology, 87, 1465-1471.
doi: 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2 pmid: 16869422
[9] Craine JM, Lee WG ( 2003). Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia, 134, 471-478.
doi: 10.1007/s00442-002-1155-6 pmid: 12647118
[10] Donovan LA, Maherali H, Caruso CM, Huber H, Kroom HD ( 2011). The evolution of the worldwide leaf economics spectrum. Trends in Ecology and Evolution, 26, 88-95.
doi: 10.1016/j.tree.2010.11.011 pmid: 21196061
[11] Duan WJ, Wang JY, Zhang LJ, Li HF, Huang HQ ( 2014). Characteristics of precipitation in Lijiang River Basin during 1960~2010. Journal of China Hydrology, 34(5), 88-93.
doi: 10.3969/j.issn.1000-0852.2014.05.016
[ 段文军, 王金叶, 张立杰, 李海防, 黄华乾 ( 2014). 1960~2010年漓江流域降水变化特征研究. 水文, 34(5), 88-93.]
doi: 10.3969/j.issn.1000-0852.2014.05.016
[12] Fonseca CR, Overton JM, Collins B, Westoby M ( 2000). Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology, 88, 964-977.
doi: 10.2307/2648405
[13] Gewin V ( 2006). Beyond neutrality—Ecology finds its niche. PLOS Biology, 4, 1306-1310.
doi: 10.1371/journal.pbio.0040278 pmid: 16895443
[14] Grime JP ( 2006). Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and consequences. Journal of Vegetation Science, 17, 255-260.
doi: 10.1111/j.1654-1103.2006.tb02444.x
[15] Grubb P ( 1998). A reassessment of the strategies of plants which cope with shortages of resources. Perspectives in Plant Ecology, Evolution and Systematics, 1, 3-31.
doi: 10.1078/1433-8319-00049
[16] Han L, Wang HZ, Yu J ( 2013). Research progress and prospects on riparian zone ecology. Ecology and Environmental Sciences, 22, 879-886.
doi: 10.3969/j.issn.1674-5906.2013.05.026
[ 韩路, 王海珍, 于军 ( 2013). 河岸带生态学研究进展与展望. 生态环境学报, 22, 879-886.]
doi: 10.3969/j.issn.1674-5906.2013.05.026
[17] Hu YK, Pan X, Liu GF, Li WB, Dai WH, Tang SL, Zhang YL, Xiao T, Chen LY, Xiong W, Zhou MY, Song YB, Dong M ( 2015). Novel evidence for within-species leaf economics spectrum at multiple spatial scales. Frontiers in Plant Science, 6, 901. DOI: 10.3389/fpls.2015.00901.
doi: 10.3389/fpls.2015.00901 pmid: 4620397
[18] Huang D, Wang DM, Ren Y, Qin YB, Wu LC ( 2017). Responses of leaf traits to submergence stress and analysis of the economic spectrum of plant species in an aquatic-?terrestrial ecotone, the Li River. Acta Ecologica Sinica, 37, 750-759.
doi: 10.5846/stxb201508281789
[ 黄端, 王冬梅, 任远, 覃云斌, 吴林川 ( 2017). 漓江水陆交错带植物叶性状对水淹胁迫的响应及经济谱分析. 生态学报, 37, 750-759. ]
doi: 10.5846/stxb201508281789
[19] Huang Y, Que XX, Li CY ( 2013). Study on landscape ecological restoration technology of land/inland water ecotones along Li River. Journal of Southern Agriculture, 44, 1700-1704.
doi: 10.3969/j:issn.2095-1191.2013.10.1700
[ 黄莹, 阙欣欣, 李彩云 ( 2013). 漓江沿岸水陆交错带景观调查与生态修复技术. 南方农业学报, 44, 1700-1704.]
doi: 10.3969/j:issn.2095-1191.2013.10.1700
[20] Jung V, Violle C, Mondy C, Hoffmann L, Muller S ( 2010). Intraspecific variability and trait-based community assembly. Journal of Ecology, 98, 1134-1140.
doi: 10.1111/j.1365-2745.2010.01687.x
[21] Kraft NJB, Valencia R, Ackerly DD ( 2008). Functional traits and niche-based tree community, assembly in an Amazonian forest. Science, 322, 580-582.
doi: 10.1126/science.1160662 pmid: 19460986
[22] Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornelissen JHC, Gourlet-Fleury S, Hanewinkel M, Herault B, Kattge J, Kurokawa H, Onoda Y, Peñuelas J, Poorter H, Uriarte M, Richardson S, Ruiz-Benito P, Sun I-F, Ståhl G, Swenson NG, Thompson J, Westerlund B, Wirth C, Zavala MA, Zeng H, Zimmerman JK, Zimmermann NE, Westoby M ( 2016). Plant functional traits have globally consistent effects on competition. Nature, 529, 204-207.
doi: 10.1038/nature16476 pmid: 26700807
[23] Li QS, Wang DM, Xin ZB, Li Y, Ren Y ( 2014). Root distribution in typical sites of Lijiang ecotone and their relationship to soil properties. Acta Ecologica Sinica, 34, 2003-2011.
doi: 10.5846/stxb201303130407
[ 李青山, 王冬梅, 信忠保, 李扬, 任远 ( 2014). 漓江水陆交错带典型立地根系分布与土壤性质的关系. 生态学报, 34, 2003-2011.]
doi: 10.5846/stxb201303130407
[24] Li Y, Wang DM, Xin ZB, Wang J, Ren Y, Li QS ( 2015). Plant diversity and soil characteristics of different inundation zones in an aquatic-terrestrial ecotone, Li River. Acta Ecologica Sinica, 35, 5121-5130.
doi: 10.5846/stxb201312172967
[ 李扬, 王冬梅, 信忠保, 王晶, 任远, 李青山 ( 2015). 漓江水陆交错带不同淹没区植物多样性与土壤特征. 生态学报, 35, 5121-5130.]
doi: 10.5846/stxb201312172967
[25] Liu JR, Feng H, Yu XL, Song GJ, Ye Q ( 2003). A preliminary discussion on the historic change of the name for the Lijiang River system. Carsologica Sinica, 22(1), 77-83.
doi: 10.3969/j.issn.1001-4810.2003.01.013
[ 刘金荣, 冯红, 俞秀兰, 宋桂金, 叶青 ( 2003). 历史上漓江(桂江)水系名称的变化浅议. 中国岩溶, 22(1), 77-83.]
doi: 10.3969/j.issn.1001-4810.2003.01.013
[26] Liu XJ, Ma KP ( 2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339.
doi: 10.1360/N052014-00244
[ 刘晓娟, 马克平 ( 2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.]
doi: 10.1360/N052014-00244
[27] McGill BJ, Enquist BJ, Weiher E, Westoby M ( 2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178-185.
doi: 10.1016/j.tree.2006.02.002 pmid: 16701083
[28] Meng TT, Ni J, Wang GH ( 2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version), 31, 150-165.
doi: 10.17521/cjpe.2007.0019
[ 孟婷婷, 倪健, 王国宏 ( 2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.]
doi: 10.17521/cjpe.2007.0019
[29] Nilsson C, Berggren K ( 2000). Alterations of riparian ecosystems caused by river regulation. Bioscience, 50, 783-792.
doi: 10.1641/0006-3568(2000)050[0783:AORECB]2.0.CO;2
[30] Shipley B ( 1995). Structured interspecific determinants of specific leaf area in 34 species of herbaceous angiosperms. Functional Ecology, 9, 312-319.
doi: 10.2307/2390579
[31] Stubbs WJ, Wilson JB ( 2004). Evidence for limiting similarity in a sand dune community. Journal of Ecology, 92, 557-567.
doi: 10.1111/j.0022-0477.2004.00898.x
[32] Suding KN, Goldstein LJ ( 2008). Testing the Holy Grail framework: Using functional traits to predict ecosystem change. New Phytologist, 180, 559-562.
doi: 10.1111/j.1469-8137.2008.02650.x pmid: 19138225
[33] Sun R, Yuan XZ, Chen ZL, Zhang YW, Liu H ( 2010). Patterns of plant community species richness in the fluctuating water level zone along the Pengxihe River of the Three Gorges Reservoir. Research of Environmental Sciences, 23, 1382-1389.
doi: 10.1631/jzus.A1000244
[ 孙荣, 袁兴中, 陈忠礼, 张跃伟, 刘红 ( 2010). 三峡水库澎溪河消落带植物群落物种丰富度格局. 环境科学研究, 23, 1382-1389.]
doi: 10.1631/jzus.A1000244
[34] Sun SC, Jin DM, Shi PL ( 2006). The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: An invariant allometric scaling relationship. Annals of Botany, 97, 97-107.
doi: 10.1093/aob/mcj004 pmid: 2803375
[35] Vannote RL, Minshall GW, Cumins KW, Sedell JR, Cushing CE ( 1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130-137.
doi: 10.1139/f80-017
[36] Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra- Manriquez G, Martinez-Ramos M, Mazer SJ, Muller-Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendorp CF, Webb CO, Westoby M, Wright SJ ( 2007). Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Annals of Botany, 99, 1003-1015.
doi: 10.1093/aob/mcl066 pmid: 28029050663
[37] Xi XQ, Zhao YJ, Liu YG, Wang X, Gao XM ( 2011). Variation and correlation of plant functional traits in karst area of central Guizhou Province, China. Chinese Journal of Plant Ecology, 35, 1000-1008.
doi: 10.3724/SP.J.1258.2011.01000
[ 习新强, 赵玉杰, 刘玉国, 王欣, 高贤明 ( 2011). 黔中喀斯特山区植物功能性状的变异与关联. 植物生态学报, 35, 1000-1008.]
doi: 10.3724/SP.J.1258.2011.01000
[38] Xin ZB, Xiao YL, Wang DM, Li Y, Ren Y, Li QS ( 2014). Spatial patterns of riparian vegetations and its optimization in Lijiang River: An intensive tourism karsts river in the southern subtropical China. Ecological Science, 33, 631-641.
[ 信忠保, 肖玉玲, 王冬梅, 李扬, 任远, 李青山 ( 2014). 广西桂林漓江河岸带植被配置类型与退化机制研究. 生态科学, 33, 631-641.]
[1] Shitong Wang Yaozhan Xu Teng Yang Xinzeng Wei Mingxi Jiang. Impacts of microhabitats on leaf functional traits characteristics of Sinojackia huangmeiensis [J]. Biodiv Sci, 2020, 28(3): 0-0.
[2] Shuaifeng Li Xuedong Lang Wande Liu Xiaobo Huang Jianrong Su Chonghua Xu Zhihong Li Fandi Xu. The analysis of interspecific correlations of woody plant and community stability in the Eleutharrhena macrocarpa habitat [J]. Biodiv Sci, 2020, 28(3): 0-0.
[3] LIN Li-Tao, MA Ke-Ming. Selection of null models in nestedness pattern detection of highly asymmetric mycorrhizal networks [J]. Chin J Plant Ecol, 2019, 43(7): 611-623.
[4] FU Yi-Wen, TIAN Da-Shuan, WANG Jin-Song, NIU Shu-Li, ZHAO Ken-Tian. Patterns and affecting factors of nitrogen use efficiency of plant leaves and roots in Nei Mongol and Qinghai-Xizang Plateau grasslands [J]. Chin J Plant Ecol, 2019, 43(7): 566-575.
[5] Gu Hanjiao, Zhang Cancan, Wang Jinsong, Shi Xuewen, Xia Ruixue, Liu Bin, Chen Fusheng, Bu Wensheng. Variation in basic morphological and functional traits of Chinese bamboo [J]. Biodiv Sci, 2019, 27(6): 585-594.
[6] ZHAO Dan-Dan, MA Hong-Yuan, LI Yang, WEI Ji-Ping, WANG Zhi-Chun. Effects of water and nutrient additions on functional traits and aboveground biomass of Leymus chinensis [J]. Chin J Plant Ecol, 2019, 43(6): 501-511.
[7] Xie Lihong,Huang Qingyang,Cao Hongjie,Yang Fan,Wang Jifeng,Ni Hongwei. Leaf functional traits of Acer mono in Wudalianchi Volcano, China [J]. Biodiv Sci, 2019, 27(3): 286-296.
[8] HE Yun-Yu, GUO Shui-Liang, WANG Zhe. Research progress of trade-off relationships of plant functional traits [J]. Chin J Plant Ecol, 2019, 43(12): 1021-1035.
[9] Ruyun Zhang,Yanpeng Li,Yunlong Ni,Xujun Gui,Juyu Lian,Wanhui Ye. Intraspecific variation of leaf functional traits along the vertical layer in a subtropical evergreen broad-leaved forest of Dinghushan [J]. Biodiv Sci, 2019, 27(12): 1279-1290.
[10] GAO Si-Han, GE Yu-Xi, ZHOU Li-Yi, ZHU Bao-Lin, GE Xing-Yu, LI Kai, NI Jian. What is the optimal number of leaves when measuring leaf area of tree species in a forest community? [J]. Chin J Plan Ecolo, 2018, 42(9): 917-925.
[11] WANG Li-Hua, XUE Jing-Yue, XIE Yu, WU Yan. Spatial distribution and influencing factors of soil organic carbon among different climate types in Sichuan, China [J]. Chin J Plan Ecolo, 2018, 42(3): 297-306.
[12] PENG Xi, YAN Wen-De, WANG Feng-Qi, WANG Guang-Jun, YU Fang-Yong, ZHAO Mei-Fang. Specific leaf area estimation model building based on leaf dry matter content of Cunninghamia lanceolata [J]. Chin J Plan Ecolo, 2018, 42(2): 209-219.
[13] ZHAOLe-Wen, CHEN Zi-Yi, ZOU Ying, FU Zi-Zhao, WU Gui-Lin, LIU Xiao-Rong, LUO Qi, LIN Yi-Xue, LI Xiong-Ju, LIU Zhi-Tong, LIU Hui. Changes in hydraulic traits of nine vascular plants from different evolutionary lineages [J]. Chin J Plan Ecolo, 2018, 42(2): 220-228.
[14] Hua-Jun YIN,Zi-Liang ZHANG,Qing LIU. Root exudates and their ecological consequences in forest ecosystems: Problems and perspective [J]. Chin J Plant Ecol, 2018, 42(11): 1055-1070.
[15] Ting XU, Cheng-Zhang ZHAO, Ling HAN, Wei FENG, Bei-Bei DUAN, Hui-Ling ZHENG. Correlation between vein density and water use efficiency of Salix matsudana in Zhangye Wetland, China [J]. Chin J Plan Ecolo, 2017, 41(7): 761-769.
Full text



[1] Hu Shi-yi. Fertilization in Plants IV. Fertilization Barriers Inoompalibilty[J]. Chin Bull Bot, 1984, 2(23): 93 -99 .
[2] JIANG Gao-Ming. On the Restoration and Management of Degraded Ecosystems: with Special Reference of Protected Areas in the Restoration of Degraded Lands[J]. Chin Bull Bot, 2003, 20(03): 373 -382 .
[3] . [J]. Chin Bull Bot, 1994, 11(专辑): 65 .
[4] . [J]. Chin Bull Bot, 1996, 13(专辑): 103 .
[5] ZHANG Xiao-Ying;YANG Shi-Jie. Plasmodesmata and Intercellular Trafficking of Macromolecules[J]. Chin Bull Bot, 1999, 16(02): 150 -156 .
[6] Chen Zheng. Arabidopsis thaliana as a Model Species for Plant Molecular Biology Studies[J]. Chin Bull Bot, 1994, 11(01): 6 -11 .
[7] . [J]. Chin Bull Bot, 1996, 13(专辑): 13 -16 .
[8] LEI Xiao-Yong HUANG LeiTIAN Mei-ShengHU Xiao-SongDAI Yao-Ren. Isolation and Identification of AOX (Alternative Oxidase) in ‘Royal Gala’ Apple Fruits[J]. Chin Bull Bot, 2002, 19(06): 739 -742 .
[9] Chunpeng Yao;Na Li. Research Advances on Abscisic Acid Receptor[J]. Chin Bull Bot, 2006, 23(6): 718 -724 .
[10] Li Wang, Qinqin Wang, Youqun Wang. Cytochemical Localization of ATPase and Acid Phosphatase in Minor Veins of the Leaf of Vicia faba During Different Developmental Stages[J]. Chin Bull Bot, 2014, 49(1): 78 -86 .