Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (7): 557-565.doi: 10.17521/cjpe.2018.0230

• Research Articles •     Next Articles

Temporal changes in precipitation altered aboveground biomass in a typical steppe in Nei Mongol, China

MIAO Bai-Ling1,2,LIANG Cun-Zhu1,*(),SHI Ya-Bo1,LIANG Mao-Wei1,LIU Zhong-Ling1   

  1. 1School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
    2Inner Mongolia Meteorological Institute, Hohhot 010051, China
  • Received:2018-09-18 Accepted:2019-06-21 Online:2019-12-12 Published:2019-07-20
  • Contact: LIANG Cun-Zhu
  • Supported by:
    Supported by the National Key R&D Program of China(2016YFC0500503);the Science and Technology Project of Nei Mongol Autonomous Region(20140409)


Aims Precipitation and its spatiotemporal changes are crucial for determining the effects of climate on plant community assembly and functioning of ecosystem (CAFE) in arid and semi-arid regions. Plant functional groups (PFGs) - an effective representation of CAFE—have been widely reported for their identity-dependent response to the changing climate. Here, we examine the responses of different PFGs to the temporal changes in precipitation by using aboveground biomass (AGB) as the dependent variable.
Methods We conducted a long-term ecological research of AGB since 1982 in a typical steppe grassland of Nei Mongol, China. We used the monthly-observation dataset from 1982 through 2015 to quantify the empirical relationships between AGB of different PDFs and precipitation.
Important findings We found that: 1) the decline in precipitation-concentration degree (PCD) was coupled with an increase in small rainfall events (≤5 mm) during the 35-year study period; 2) temporal changes in precipitation resulted in AGB decreases of annuals and biennials (AB), perennial forbs (PF) and perennial rhizome grass (PR), whereas AGB increased for perennial bunchgrasses (PB); 3) AGB, PF and semi-shrubs (SS) were positively correlated with growing season rainfall with AGB positively correlated with PCD while AGB of the shrubs (S) was negatively correlated with PCD; 4) AGB showed no significant correlation with precipitation frequency, but a significant negative correlation for type I to II precipitation 0.1-10 mm; 5) AGB had negative correlations with frequency and amount of type I (0.1-5.0 mm) and type VI (20-25 mm) precipitation. We concluded that the increase in small precipitation events will significantly reduce the AGB. These small precipitation events should be further explored for their ecological significances in the arid and semi-arid regions.

Key words: precipitation dynamics, precipitation-concentration degree, typical steppe, aboveground biomass, plant functional groups

Fig. 1

Layout of the biomass sampling plots in a typical steppe grassland of Xilingol, Nei Mongol. A01-A10, a belt of biomass monitoring over a 10-year period; 1-9, a transect of biomass measurements during the growing seasons."

Table 1

Types of plant functional groups (PFGS) and associated life forms in the typical steppe grassland of Xilin Gol, Nei Mongol"

Plant functional group
Perennial rhizome grass
根茎冰草、黄囊薹草、羊草 Agropyron michnoi, Carex korshinskii, Leymus chinensis
Perennial bunchgrasses
糙隐子草、大针茅、渐尖早熟禾、阿尔泰溚草、羊茅、羽茅 Cleistogenes squarrosa, Stipa grandis, Poa attenuata, Koeleria macrantha, Festuca ovina, Achnatherum sibiricum
Perennial forbs
阿尔泰狗娃花、矮韭、细叶白头翁、瓣蕊唐松草、花苜蓿、柔毛蒿、串铃草、北芸香、多叶棘豆、二裂委陵菜、二色补血草、防风、甘草、狗舌草、黄花韭、火绒草、菊叶委陵菜、柳穿鱼、轮叶委陵菜、麻花头、红纹马先蒿、蓬子菜、披针叶野决明、乳白花黄耆、乳浆大戟、长柱沙参、山韭、伏毛山莓草砂韭费菜细叶韭细叶鸢尾、红柴胡、少花米口袋、达乌里芯芭、星毛委陵菜、宿根亚麻、野韭、直立黄芪、多裂叶荆芥、山蚂蚱草、女娄菜、翼茎风毛菊 Heteropappus altaicus, Allium anisopodium, Pulsatilla turczaninovii, Thalictrum petaloideum, Medicago ruthenica, Artemisia pubescens, Phlomis mongolica, Haplophyllum dauricum, Oxytropis myriophylla, Potentilla bifurca, Limonium bicolor, Saposhnikovia divaricata, Glycyrrhiza uralensis, Tephroseris kirilowii, Allium condensatum, Leontopodium leontopodioides, Potentilla tanacetifolia, Linaria vulgaris subsp. sinensis, Potentilla verticillaris, Klasea centauroides, Pedicularis striata, Galium verum, Thermopsis lanceolata, Astragalus galactites, Euphorbia esula, Adenophora stenanthina, Allium senescens, Sibbaldia adpressa, Allium bidentatum, phedimus aizoon, Allium tenuissimum, Iris tenuifolia, Bupleurum scorzonerifolium, Gueldenstaedtia verna, Cymbaria daurica, Potentilla acaulis, Linum perenne, Allium ramosum, Astragalus adsurgens, Nepeta multifida, Silene jenisseensis, Silene aprica, Saussurea japonica var. pteroclada
灌木 Shrubs 小叶锦鸡儿 Caragana microphylla
半灌木 Semi-shrubs 冷蒿、木地肤、燥原荠 Artemisia frigida, Kochia prostrata, Ptilotricum canescens
Annuals and biennials
刺藜、大籽蒿、瓦松、鹤虱、猪毛蒿、藜、小花花旗杆、鳞叶龙胆、轴藜、猪毛菜 Dysphania aristata, Artemisia sieversiana, Orostachys fimbriatus, Lappula myosotis, Artemisia scoparia, Chenopodium album, Dontostemon micranthus, Gentiana squarrosa, Axyris amaranthoides, Salsola collina

Table 2

General information of Leymus chinensis site in the typical steppe grassland of Xilin Gol, Nei Mongol"

biomass (g·m-2)
降水量 Precipitation (mm) 相对多度 Relative Abundance (%)

Growing season
Perennial rhizome grass
Perennial forbs
Annuals and
195.8 330.8 287.9 63.4 19.3 9.9 4.8 1.9 0.7

Table 3

Precipitation level for type I-VIII at our study sites in the typical steppe grassland of Xilin Gol, Nei Mongol"

Daily precipitation
Precipitation grade
I 0.1-5 小雨/小雪-中雪
Light rain/Light snow-Moderate snow
II 5-10 小雨/中雪-大雪
Light rain/Moderate snow-Heavy snow
III 10-15 中雨/暴雪 Moderate rain/Torrential snow
IV 15-20 中雨/暴雪 Moderate rain/Torrential snow
V 20-25 中雨/暴雪-大暴雪
Moderate rain/Torrential snow-Snowstorm
VI 25-30 大雨/大暴雪 Heavy rain/Snowstorm
VII 30-35 大雨/大暴雪 Heavy rain/Snowstorm
VIII >35 大雨-暴雨/大暴雪-特大暴雪
Heavy rain-Torrential rain/Snowstorm-
Historical extreme snow

Table 4

Characteristics of precipitation changes for different levels in study area in the typical steppe grassland of Xilin Gol, Nei Mongol during 1982-2015"

Daily precipitation
降水频率(%) Precipitation frequency 降水贡献率(%) Contribution to the total rainfall
Change rate
p 平均值
Change rate
0.1-5 79.15 6.30 0.28** 0.00 28.80 21.43 0.26* 0.02
5-10 10.62 40.81 -0.15* 0.04 21.71 44.11 -0.07 0.66
10-15 5.27 49.04 -0.06 0.21 18.12 45.72 0.00 0.99
15-20 2.43 61.63 -0.04 0.17 12.10 61.22 -0.08 0.53
20-25 1.16 97.60 -0.01 0.54 7.04 92.22 -0.01 0.91
25-30 0.52 121.14 -0.01 0.24 3.67 118.56 -0.07 0.40
30-35 0.35 193.38 -0.02 0.13 2.96 187.87 -0.13 0.18
>35 0.49 171.51 0.01 0.63 5.60 163.85 0.11 0.50

Fig. 2

Response of aboveground biomass (AGB) by community and functional group to precipitation in the typical grassland of Xilin Gol, Nei Mongol."

Table 5

Correlation between peak biomass and the frequency of precipitation in different levels in the typical grassland of Xilin Gol, Nei Mongol"

Daily precipitation
Perennial forbs
Perennial rhizome grass
Annuals and
I 0.1-5 -0.23 -0.50** -0.02 -0.04 -0.01 0.40* -0.27
II 5-10 -0.06 0.19 -0.13 -0.14 0.15 -0.28 0.18
III 10-15 0.15 0.25 -0.01 0.12 -0.13 -0.16 0.23
IV 15-20 0.24 0.24 0.04 0.18 -0.05 -0.03 0.17
V 20-25 0.12 0.10 0.07 0.17 -0.09 -0.08 -0.13
VI 25-30 0.33 0.55** 0.19 0.04 -0.04 -0.17 -0.08
VII 30-35 0.19 0.34 0.11 -0.02 -0.07 -0.19 0.11
VIII >35 0.22 -0.00 0.39* -0.00 -0.00 -0.00 -0.17

Table 6

Correlation analysis between peak biomass and contribution rate of precipitation in different grades in the typical grassland of Xilin Gol, Nei Mongol"

Daily precipitation
Perennial forbs
Perennial rhizome grass
Annuals and
I 0.1-5 -0.53** -0.58** -0.28 -0.22 -0.02 0.23 -0.07
II 5-10 -0.30 -0.08 -0.30 -0.21 0.21 -0.08 0.10
III 10-15 0.00 0.04 -0.06 0.03 -0.15 0.01 0.16
IV 15-20 0.17 0.10 -0.00 0.18 -0.02 0.12 0.13
V 20-25 0.06 -0.02 0.07 0.14 -0.09 -0.03 -0.19
VI 25-30 0.26 0.50** 0.10 0.06 -0.02 -0.15 -0.11
VII 30-35 0.20 0.32 0.12 0.01 -0.06 -0.15 0.08
VIII >35 0.24 -0.05 0.38* 0.06 0.06 0.01 -0.18
[1] Bai YF, Han XG, Wu JG, Chen ZZ, Li LH ( 2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184.
doi: 10.1016/j.tplants.2018.09.007 pmid: 30287162
[2] Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG ( 2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89, 2140-2153.
doi: 10.1890/07-0992.1 pmid: 18724724
[3] Bao YJ, Cao M, Li ZH, Guo P, Zhang J, Qin J ( 2019). A comparative study of the response of Leymus chinensis and Stipa grandis root characteristics to moisture gradients. Acta Ecologica Sinica, 39, 1063-1070.
[ 鲍雅静, 曹明, 李政海, 郭鹏, 张靖, 秦洁 ( 2019). 羊草与大针茅根系构型对水分梯度响应的比较研究. 生态学报, 39, 1063-1070.]
[4] Conant RT, Dalla-Betta P, Klopatek CC, Klopatek JM ( 2004). Controls on soil respiration in semiarid soils. Soil Biology & Biochemistry, 36, 945-951.
doi: 10.1111/gcb.14962 pmid: 31838767
[5] Cui XY, Chen ZZ, Du ZC ( 2001). Study on light- and water- use characteristics of main plants in semiarid steppe. Acta Prataculturae Sinica, 10, 14-21.
[ 崔骁勇, 陈佐忠, 杜占池 ( 2001). 半干旱草原主要植物光能和水分利用特征的研究. 草业学报, 10, 14-21.]
[6] Dijkstra FA, Blumenthal D, Morgan JA, LeCain DR, Follett RF ( 2010). Elevated CO2 effects on semi-arid grassland plants in relation to water availability and competition. Functional Ecology, 24, 1152-1161.
doi: 10.1111/j.1365-2435.2010.01717.x
[7] Dougherty RL, Lauenroth WK, Singh JS ( 1996). Response of a grassland cactus to frequency and size of rainfall events in a North American shortgrass steppe. Journal of Ecology, 84, 177-183.
doi: 10.2307/2261353
[8] Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO ( 2000). Climate extremes: Observations, modeling, and impacts. Science, 289, 2068-2074.
doi: 10.1126/science.289.5487.2068 pmid: 11000103
[9] Fay PA, Carlisle JD, Knapp AK, Blair JM, Collins SL ( 2003). Productivity responses to altered rainfall patterns in a C4-dominated grassland. Oecologia, 137, 245-251.
doi: 10.1007/s00442-003-1331-3 pmid: 12845518
[10] Gao JQ, Yang XG, Dong CY, Li KN ( 2015). Precipitation resource changed characteristics in arid and humid regions in Northern China with climate changes. Transactions of the Chinese Society of Agricultural Engineering, 31, 99-110.
[ 高继卿, 杨晓光, 董朝阳, 李克南 ( 2015). 气候变化背景下中国北方干湿区降水资源变化特征分析. 农业工程学报, 31, 99-110.]
[11] Groisman PY, Karl TR, Easterling DR, Knight RW, Jamason PF, Hennessy KJ, Suppiah R, Page CM, Wibig J, Fortuniak K, Razuvaev VN, Douglas A, Førland E, Zhai PM ( 1999). Changes in the probability of heavy precipitation: Important indicators of climatic change. Climatic Change, 42, 243-283.
doi: 10.1023/A:1005432803188
[12] Guo K, Dong XJ, Liu ZM ( 2000). Characteristics of soil moisture content on sand dunes in Mu Us sandy grassland: Why Artemisia ordosica declines on old fixed sand dunes. Acta Phytoecologica Sinica, 24, 275-279.
[ 郭柯, 董学军, 刘志茂 ( 2000). 毛乌素沙地沙丘土壤含水量特点——兼论老固定沙地上油蒿衰退原因. 植物生态学报, 24, 275-279.]
[13] Hallett LM, Hsu JS, Cleland EE, Collins SL, Dickson TL, Farrer EC, Gherardi LA, Gross KL, Hobbs RJ, Turnbull L, Suding KN ( 2014). Biotic mechanisms of community stability shift along a precipitation gradient. Ecology, 95, 1693-1700.
doi: 10.1890/13-0895.1 pmid: 25039233
[14] IPCC ( 2013). Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, UK. 1535.
[15] Kawamura K, Akiyama T, Yokota HO, Tsutsumi M, Yasuda T, Watanabe O, Wang SP ( 2005). Quantifying grazing intensities using geographic information systems and satellite remote sensing in the Xilingol steppe region, Inner Mongolia, China. Agriculture, Ecosystems & Environment, 107, 83-93.
doi: 10.1007/s11356-019-06538-4 pmid: 31838703
[16] Knapp AK, Beier C, Briske DD, Classen AT, Luo YQ, Reichstein M, Smith MD, Smith SD, Bell JE, Fay PA, Heisler JL, Leavitt SW, Sherry R, Smith B, Wen ES ( 2008). Consequences of more extreme precipitation regimes for terrestrial ecosystems. BioScience, 58, 811-821.
doi: 10.1641/B580908
[17] Knapp AK, Briggs JM, Koelliker JK ( 2001). Frequency and extent of water limitation to primary production in a mesic temperate grassland. Ecosystems, 4, 19-28.
doi: 10.1007/s100210000057
[18] Knapp AK, Ciais P, Smith MD ( 2017). Reconciling inconsistencies in precipitation-productivity relationships: Implications for climate change. New Phytologist, 214, 41-47.
doi: 10.1111/nph.14381 pmid: 28001290
[19] Knapp AK, Fay PA, Blair JM, Collins SL, Smith MD, Carlisle JD, Harper CW, Danner BT, Lett MS, McCarron JK ( 2002). Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 298, 2202-2205.
doi: 10.1126/science.1076347 pmid: 12481139
[20] Knapp AK, Medina E ( 1999). Success of C4 photosynthesis in the field: Lessons from communities dominated by C4 plants. In: Sage RF, Monson RK eds. C4 Plant Biology. Academic Press, New York. 251-283.
[21] Knapp AK, Smith MD ( 2001). Variation among biomes in temporal dynamics of aboveground primary production. Science, 291, 481-484.
doi: 10.1073/pnas.0700180104 pmid: 17360349
[22] Lauenroth WK, Sala OE ( 1992). Long-term forage production of north American shortgrass steppe. Ecological Applications, 2, 397-403.
doi: 10.2307/1941874 pmid: 27759270
[23] Li ZY, Ma WH, Liang CZ, Liu ZL, Wang W, Wang LX ( 2015). Long-term vegetation dynamics driven by climatic variations in the Inner Mongolia grassland: Findings from 30-year monitoring. Landscape Ecology, 30, 1701-1711.
doi: 10.1007/s10980-014-0068-1
[24] Liu B, Chang XX, Li SB ( 2010). Rainfall patterns and pulse characteristics in desert regions of the Heihe River basin. Acta Ecologica Sinica, 30, 5194-5199.
[ 刘冰, 常学向, 李守波 ( 2010). 黑河流域荒漠区降水格局及其脉动特征. 生态学报, 30, 5194-5199.]
[25] Ludwig JA, Tongway DJ, Freudenberger DO, Nobl JC, Hodgkinson KC ( 1996). Landscape Ecology: Function and Management: Principles from Australia᾿s Rangelands. CSIRO Publishing, Melbourne.
[26] Ma YH, Zhang TH, Liu XP, Mao W, Yue XF ( 2015). Effects of small rainfall events in spring on germination of Chenopodium acuminatum in Horqin Sandy Land. Acta Ecologica Sinica, 35, 4063-4070.
[ 马赟花, 张铜会, 刘新平, 毛伟, 岳祥飞 ( 2015). 春季小降雨事件对科尔沁沙地尖头叶藜萌发的影响. 生态学报, 35, 4063-4070.]
[27] Mowll W, Blumenthal DM, Cherwin K, Smith A, Symstad AJ, Vermeire LT, Collins SL, Smith MD, Knapp AK ( 2015). Climatic controls of aboveground net primary production in semi-arid grasslands along a latitudinal gradient portend low sensitivity to warming. Oecologia, 177, 959-969.
doi: 10.1007/s00442-015-3232-7 pmid: 25669452
[28] Nippert JB, Fay PA, Carlisle JD, Knapp AK, Smith MD ( 2009). Ecophysiological responses of two dominant grasses to altered temperature and precipitation regimes. Acta Oecologica, 35, 400-408.
doi: 10.1016/j.actao.2009.01.010
[29] Niu SL, Jiang GM, Li YG ( 2004). Environmental regulations of C3 and C4 plants. Acta Ecologica Sinica, 24, 308-314.
[ 牛书丽, 蒋高明, 李永庚 ( 2004). C3与C4植物的环境调控. 生态学报, 24, 308-314.]
[30] Niu SL, Wu MY, Han Y, Xia JY, Li LH, Wan SQ ( 2007). Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytologist, 177, 209-219.
doi: 10.1111/j.1469-8137.2007.02237.x pmid: 17944829
[31] Noy-Meir I ( 1973). Desert ecosystems: Environment and producers. Annual Review of Ecology and Systematics, 4, 25-51.
doi: 10.5604/01.3001.0011.6142 pmid: 30015424
[32] Owens MK, Lyons RK, Alejandro CL ( 2006). Rainfall partitioning within semiarid juniper communities: Effects of event size and canopy cover. Hydrological Processes, 20, 3179-3189.
doi: 10.1002/(ISSN)1099-1085
[33] Ren ZY, Yan JP, Wang PT ( 2016). Spatio-temporal variations of precipitation concentration degree and precipitation concentration period in Inner Mongolia. Journal of Desert Research, 36, 760-766.
[ 任志艳, 延军平, 王鹏涛 ( 2016). 1960-2012年内蒙古降水集中度和降水集中期时空变化. 中国沙漠, 36, 760-766.]
[34] Reynolds JF, Kemp PR, Ogle K, Fernández RJ ( 2004). Modifying the “pulse-reserve” paradigm for deserts of North America: Precipitation pulses, soil water, and plant responses. Oecologia, 141, 194-210.
doi: 10.1007/s00442-004-1524-4 pmid: 15042457
[35] Reynolds JF, Kemp PR, Tenhunen JD ( 2000). Effects of long-term rainfall variability on evapotranspiration and soil water distribution in the Chihuahuan Desert: A modeling analysis. Plant Ecology, 150, 145-159.
doi: 10.1023/A:1026530522612
[36] Robertson TR, Bell CW, Zak JC, Tissue DT ( 2009). Precipitation timing and magnitude differentially affect aboveground annual net primary productivity in three perennial species in a Chihuahuan Desert grassland. New Phytologist, 181, 230-242.
doi: 10.1111/j.1469-8137.2008.02643.x pmid: 19076724
[37] Robertson TR, Zak JC, Tissue DT ( 2010). Precipitation magnitude and timing differentially affect species richness and plant density in the sotol grassland of the Chihuahuan Desert. Oecologia, 162, 185-197.
doi: 10.1007/s00442-009-1449-z pmid: 19756763
[38] Sala OE, Lauenroth WK ( 1982). Small rainfall events: An ecological role in semiarid regions. Oecologia, 53, 301-304.
doi: 10.1007/BF00389004 pmid: 28311731
[39] Sala OE, Parton WJ, Joyce LA, Lauenroth WK ( 1988). Primary production of the central grassland region of the United States. Ecology, 69, 40-45.
doi: 10.1093/ee/nvz074 pmid: 31232452
[40] Schwinning S, Sala OE ( 2004). Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia, 141, 211-220.
doi: 10.1007/s00442-004-1520-8 pmid: 15034778
[41] Schwinning S, Sala OE, Loik ME, Ehleringer JR ( 2004). Thresholds, memory, and seasonality: Understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia, 141, 191-193.
doi: 10.1007/s00442-004-1683-3 pmid: 15300489
[42] Sims PL, Singh JS, Lauenroth WK ( 1978). The structure and function of ten western north American grasslands: I. Abiotic and vegetational characteristics. Journal of Ecology, 66, 251-285.
doi: 10.2307/2259192
[43] Snyder KA, Donovan LA, James JJ, Tiller RL, Richards JH ( 2004). Extensive summer water pulses do not necessarily lead to canopy growth of Great Basin and northern Mojave Desert shrubs. Oecologia, 141, 325-334.
doi: 10.1007/s00442-003-1403-4 pmid: 14576930
[44] Soriano A, Sala O ( 1984). Ecological strategies in a Patagonian arid steppe. Vegetatio, 56, 9-15.
doi: 10.1002/ecy.1703 pmid: 27987317
[45] Swemmer AM, Knapp AK, Snyman HA ( 2007). Intra-seasonal precipitation patterns and above-ground productivity in three perennial grasslands. Journal of Ecology, 95, 780-788.
doi: 10.1111/jec.2007.95.issue-4
[46] Tan LP, Zhou GS ( 2013). Variations of Leymus chinesis community, functional groups, plant species and their relationships with climate factors. Acta Ecologica Sinica, 33, 650-658.
doi: 10.5846/stxb
[ 谭丽萍, 周广胜 ( 2013). 内蒙古羊草群落、功能群、物种变化及其与气候的关系. 生态学报, 33, 650-658.]
doi: 10.5846/stxb
[47] Tong C, Wu J, Yong S, Yang J, Yong W ( 2004). A landscape- scale assessment of steppe degradation in the Xilin River Basin, Inner Mongolia, China. Journal of Arid Environments, 59, 133-149.
doi: 10.1016/j.jaridenv.2004.01.004
[48] Walter H ( 1971). Natural savannahs as a transition to the arid zone. In: Walter H ed. Ecology of Tropical and Subtropical Vegetation. Oliver and Boyd, Edinburgh, UK. 238-265.
[49] Wiesmeier M, Steffens M, Kölbl A, Kögel-Knabner I ( 2009). Degradation and small-scale spatial homogenization of topsoils in intensively-grazed steppes of Northern China. Soil & Tillage Research, 104, 299-310.
doi: 10.4014/jmb.1911.11003 pmid: 31838828
[50] Zhang LJ, Qian YF ( 2004). A study on the feature of precipitation concentration and its relation to flood-producing in the Yangtze River Valley of China. Chinese Journal of Geophysics, 47, 622-630.
[ 张录军, 钱永甫 ( 2004). 长江流域汛期降水集中程度和洪涝关系研究. 地球物理学报, 47, 622-630.]
[51] Zhao WZ, Liu H ( 2011). Precipitation pulses and ecosystem responses in arid and semiarid regions: A review. Chinese Journal of Applied Ecology, 22, 243-249.
pmid: 21548315
[ 赵文智, 刘鹄 ( 2011). 干旱、半干旱环境降水脉动对生态系统的影响. 应用生态学报, 22, 243-249.]
pmid: 21548315
[52] Zhao XY, Liu LX, Wang W, Chang XL, Qu H, Mao W, Jia KF ( 2014). Impacts of precipitation change on desert-grassland vegetation productivity. Journal of Desert Research, 34, 1486-1495.
[ 赵学勇, 刘良旭, 王玮, 常学礼, 曲浩, 毛伟, 贾昆峰 ( 2014). 降水波动对荒漠草原生产力的影响. 中国沙漠, 34, 1486-1495.]
[53] Zheng XQ, Zheng XJ, Li Y ( 2012). Distribution and change of different precipitation pulse sizes in the southern marginal zone of the Junggar Basin, China. Arid Zone Research, 29, 495-502.
[ 郑新倩, 郑新军, 李彦 ( 2012). 准噶尔盆地南缘降水脉冲量级分布及其变化规律. 干旱区研究, 29, 495-502.]
[1] ZHAO Dan-Dan, MA Hong-Yuan, LI Yang, WEI Ji-Ping, WANG Zhi-Chun. Effects of water and nutrient additions on functional traits and aboveground biomass of Leymus chinensis [J]. Chin J Plant Ecol, 2019, 43(6): 501-511.
[2] TANG Yong-Kang, WU Yan-Tao, WU Kui, GUO Zhi-Wei, LIANG Cun-Zhu, WANG Min-Jie, CHANG Pei-Jing. Changes in trade-offs of grassland ecosystem services and functions under different grazing intensities [J]. Chin J Plant Ecol, 2019, 43(5): 408-417.
[3] Qian YANG, Wei WANG, Hui ZENG. Effects of nitrogen addition on the plant diversity and biomass of degraded grasslands of Nei Mongol, China [J]. Chin J Plan Ecolo, 2018, 42(4): 430-441.
[4] YAN Bao-Long, WANG Zhong-Wu, QU Zhi-Qiang, WANG Jing, HAN Guo-Dong. Effects of enclosure on carbon density of plant-soil system in typical steppe and desert steppe in Nei Mongol, China [J]. Chin J Plan Ecolo, 2018, 42(3): 327-336.
[5] CEN Yu, WANG Cheng-Dong, ZHANG Zhen, REN Xia, LIU Mei-Zhen, YANG Fan. Spatial distributions of biomass and carbon density in natural grasslands of Hebei, China [J]. Chin J Plan Ecolo, 2018, 42(3): 265-276.
[6] ZHANG Lu, HAO Bi-Tai, QI Li-Xue, LI Yan-Long, XU Hui-Min, YANG Li-Na, BAOYIN Taogetao. Dynamic responses of aboveground biomass and soil organic matter content to grassland restoration [J]. Chin J Plan Ecolo, 2018, 42(3): 317-326.
[7] YANG Lei, SUN Han, FAN Yan-Wen, HAN Wei, ZENG Ling-Bing, LIU Chao, WANG Xiang-Ping. Changes in leaf nitrogen and phosphorus stoichiometry of woody plants along an altitudinal gradient in Changbai Mountain, China [J]. Chin J Plan Ecolo, 2017, 41(12): 1228-1238.
[8] Shanshan Tan, Renren Wang, Xiaoling Gong, Jiayao Cai, Guochun Shen. Scale dependent effects of species diversity and structural diversity on aboveground biomass in a tropical forest on Barro Colorado Island, Panama [J]. Biodiv Sci, 2017, 25(10): 1054-1064.
[9] Xian YANG, Yan-Pei GUO, Anwar MOHHAMOT, Hong-Yan LIU, Wen-Hong MA, Shun-Li YU, Zhi-Yao TANG. Distribution of biomass in relation to environments in shrublands of temperate China [J]. Chin J Plan Ecolo, 2017, 41(1): 22-30.
[10] Qiang ZHANG, Jia-Xiang LI, Wen-Ting XU, Gao-Ming XIONG, Zong-Qiang XIE. Estimation of biomass allocation and carbon density of Rhododendron simsii shrubland in the subtropical mountainous areas of China [J]. Chin J Plan Ecolo, 2017, 41(1): 43-52.
[11] Yue Qi,Junsheng Li,Bing Yan,Zhenzhen Deng,Gang Fu. Impact of herbicides on wild plant diversity in agro-ecosystems: a review [J]. Biodiv Sci, 2016, 24(2): 228-236.
[12] Jing WANG, Shan-Shan WANG, Xian-Guo QIAO, Ang LI, Jian-Guo XUE, Muqier HASI, Xue-Yao ZHANG, Jian-Hui HUANG. Influence of nitrogen addition on the primary production in Nei Mongol degraded grassland [J]. Chin J Plan Ecolo, 2016, 40(10): 980-990.
[13] QIAO Li-Qing, TIAN Da-Shuan, WAN Hong-Wei, BAOYIN Taogetao, and PAN Qing-Min. Growth and reproductive strategies of Thalictrum petaloideum under different stocking rates [J]. Chin J Plan Ecolo, 2014, 38(8): 878-888.
[14] LI Wen-Huai, ZHENG Shu-Xia, and BAI Yong-Fei. Effects of grazing intensity and topography on species abundance distribution in a typical steppe of Inner Mongolia [J]. Chin J Plan Ecolo, 2014, 38(2): 178-187.
[15] BAI Xue, CHENG Jun-Hui, ZHENG Shu-Xia, ZHAN Shu-Xia, and BAI Yong-Fei. Ecophysiological responses of Leymus chinensis to nitrogen and phosphorus additions in a typical steppe [J]. Chin J Plan Ecolo, 2014, 38(2): 103-115.
Full text



[1] Liu Ying-di. The Role of Ultrastructure in Algal Systematics[J]. Chin Bull Bot, 1990, 7(04): 18 -23 .
[2] Fan Guo-qiang and Jiang Jian-ping. Study on the Methods of Extraction of Protein from Paulownia Leaves[J]. Chin Bull Bot, 1997, 14(03): 61 -64 .
[3] Tong Zhe and Lian Han-ping. Cryptochrome[J]. Chin Bull Bot, 1985, 3(02): 6 -9 .
[4] Huang Ju-fu and Luo Ai-ling. The Advances of the Studies on Extraction of FeMoco from Nitrogenase Molybdenum-Iron Protein[J]. Chin Bull Bot, 1991, 8(03): 19 -25 .
[5] Hsu Rong-jiang Gu Wen-mao Gao Jing-cheng and Peng Chang-ming. Inhibitory Effect of High CO2 and Low O2 Tension on Ethylene Evolution in Apples[J]. Chin Bull Bot, 1984, 2(01): 29 -31 .
[6] Zou Shu-hua;Zhao Shu-wen and Xu Bao. Electropheresis Profiles of Esterase Isozymes in Different Types of Soybean[J]. Chin Bull Bot, 1985, 3(06): 18 -20 .
[7] . [J]. Chin Bull Bot, 1999, 16(增刊): 49 -52 .
[8] Houqing Zeng, Yaxian Zhang, Shang Wang, Xiajun Zhang, Huizhong Wang, Liqun Du. Calcium/calmodulin-mediated Signal Transduction System in Plants[J]. Chin Bull Bot, 2016, 51(5): 705 -723 .
[9] Zhu Zhi-qing. Abbreviations for some Commonly Used Terms in Ultrastructures of Plant Cells[J]. Chin Bull Bot, 1984, 2(04): 57 -58 .
[10] Gu An-gen;Wang Mao and Wang Li-jun. Different Opinions on the Origins and Evolutions of Pteridophyte and Oymnosperms[J]. Chin Bull Bot, 1990, 7(02): 58 -62 .