Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (8): 685-696.doi: 10.17521/cjpe.2019.0132

• Research Articles • Previous Articles     Next Articles

Morphological and photosynthetic physiological characteristics of Saussurea salsa in response to flooding in salt marshes of Xiao Sugan Lake, Gansu, China

LI Qun,ZHAO Cheng-Zhang(),WANG Ji-Wei,WEN Jun,LI Zi-Qin,MA Jun-Yi   

  1. College of Geography and Environmental Science, Northwest Normal University, Research Center of Wetland Resources Protection and Industrial Development Engineering of Gansu Province, Lanzhou 730070, China
  • Received:2019-05-30 Revised:2019-08-09 Online:2020-01-03 Published:2019-08-20
  • Contact: ZHAO Cheng-Zhang ORCID:0000-0002-0127-8405 E-mail:zhaocz601@163.com
  • Supported by:
    National Natural Science Foundation of China(41861009);National Natural Science Foundation of China(41461013)

Abstract:

Aims The response of plant leaf functional traits to flooding in salt marshes is not only helpful in exploring the internal correlation between leaf plasticity mechanism and photosynthetic characteristics, but also of vital significance for gaining a better understanding on the stress resistance strategies of plants in salt marsh wetlands. The aim of this study is to investigate the responses of leaf functional traits of Saussurea salsa to flooding with the changes of water-logging durations.
Methods The research site was located in provincial migratory bird nature reserve in Xiao Sugan Lake, Gansu Province, China (39.22°-39.35° N, 94.45°-94.59° E). A sample belt was selected from the edge of the lakeshore to the end of the perennial tidewater line in the low-lying area along the north side of Xiao Sugan River. The duration of water-logging in the salt marsh wetland was measured base on the water level marked by the flood rise and retreat marks in Xiao Sugan Lake over the years. The sample belt was divided into 3 plots according to the water-logging duration: low flooding area (water-logging duration: 30-90 days); medium flooding area (water- logging duration: 90-150 days); and deep flooding area (water-logging duration: 150-210 days). Six subplots (2 m × 2 m) of S. salsa were selected from each of the three plots for a total of 18 subplots. We investigated community characteristics and population traits of S. salsa, soil moisture and soil electrical conductivity (EC). Six plants per subplot were selected for photosynthesis and chlorophyll fluorescence measurements. Foliar samples collected from each of the six S. salsa were taken to the laboratory for measurements of leaf traits (leaf area, thickness, dry mass and chlorophyll content).
Important findings The results showed that S. salsa changed the covariation strategy of S. salsa foliar morphology and photosynthesis with the extension of water-logging duration. In the low flooding area, S. salsa adopted fleshy lobular pattern with small specific leaf area (SLA), high effective quantum yield of photosynthetic system II (PSII) photochemistry in light (Y(II)) and low quantum yield of regulated energy dissipation (Y(NPQ)). However, S. salsa grew in the deep flooding area adopted completely opposite covariation strategy in foliar morphology and photosynthesis compared with those grew in the low flooding area. We observed a significant correlation between SLA and Y(II), photochemical quenching (QP), and Y(NPQ), as well as a significant positive correlation between the quantum yield of non-regulated energy dissipation (Y(NO)) and chlorophyll a content (Ca), chlorophyll b content (Cb) in all of the three plots. Under the influence of the spatio-temporal evolution pattern of still water in the flooded area of Xiao Sugan Lake, S. salsa population achieved the balance of the photosynthetic carbon budget by changing the morphological characteristics of leaves, such as leaf area, leaf thickness and SLA, timely adjusting the photosynthetic characteristics, such as Y(NPQ) and Y(II). Saussurea salsa showed strong tolerance to water and salt heterogeneity, reflecting the leaf plasticity and resistance mechanism of salt marsh wetland plant under extreme environments.

Key words: leaf traits, specific leaf area, actual photochemical efficiency of PSII, Saussurea salsa, Xiao Sugan Lake

Fig. 1

Locations of measured plots in salt marshes of Xiao Sugan Lake."

Table 1

The parameters and their abbreviations used in this paper."

参数 Parameter 缩写 Abbreviation 单位 Unit
土壤含水量 Soil moisture content SMC %
土壤电导率 Soil electrical conductivity EC ms·cm-1
地上生物量 Aboveground biomass AB g·m-2
平均高度 Average height AH cm
密度 Density D 株·m-2
叶面积 Leaf area LA cm2
叶厚度 Leaf thickness LT mm
比叶面积 Specific leaf area SLA cm2·g-1
叶干质量 Leaf dry mass LDW g
叶绿素a含量 Chlorophyll a content Ca mg·g-1
叶绿素b含量 Chlorophyll b content Cb mg·g-1
类胡萝卜素含量 Carotenoid content Ccar mg·g-1
净光合速率 Net photosynthetic rate Pn μmol CO2·m-2·s-1
蒸腾速率 Transpiration rate Tr mmol H2O·m-2·s-1
水分利用效率 Water use efficiency WUE μmol CO2·mmol-1 H2O
实际光合效率 The actual photochemical efficiency of PSII Y(II) 无纲量 No dimension
非调节性能量耗散的量子产量 The quantum yield of non-regulated energy dissipation Y(NO) 无纲量 No dimension
调节性能量耗散的量子产额 The quantum yield of regulated energy dissipation Y(NPQ) 无纲量 No dimension
光化学淬灭系数 Photochemical quenching QP 无纲量 No dimension
非光化学猝灭系数 Non- Photochemical quenching NPQ 无纲量 No dimension
电子传递速率 Electron transport rate ETR µmol·m-2·s-1

Table 2

Soil characteristics, biological characteristics of wetland community and population characteristics of Saussurea salsa in salt marshes of Xiao Sugan Lake (mean ± SE)"

样地 Plot 群落特征 Community characteristics 盐地风毛菊 Saussurea salsa
SMC (%) EC (ms·cm-1) AH (cm) AB (g·m-2) AH (cm) D (株·m-2)
I 31.79 ± 1.59c 9.94 ± 0.50a 6.16 ± 0.31c 165.30 ± 8.27a 7.48 ± 0.37b 59 ± 2.95c
II 39.12 ± 1.96b 7.52 ± 0.30b 9.73 ± 0.49b 121.66 ± 6.08b 13.8 ± 0.69b 74 ± 3.70a
III 59.63 ± 2.98a 3.85 ± 0.19c 30.88 ± 1.54a 95.93 ± 4.80c 22.8 ± 1.14a 62 ± 3.10b

Table 3

Leaf traits characteristics and photosynthetic physiological parameters of Saussurea salsa in salt marshes of Xiao Sugan Lake (mean ± SE)"

参数 Parameter 样地 Plot
I II III
LA (cm2) 7.14 ± 0.36c 8.34 ± 0.42b 17.61 ± 0.88a
LT (mm) 0.15 ± 0.01a 0.14 ± 0.01a 0.10 ± 0.01b
SLA (cm2·g-1) 8.28 ± 0.41b 8.82 ± 0.44b 14.53 ± 0.73a
LDW (g) 0.86 ± 0.04a 0.95 ± 0.05a 1.21 ± 0.06b
Ca (mg·g-1) 5.39 ± 0.27a 3.11 ± 0.16b 1.26 ± 0.06c
Cb (mg·g-1) 1.93 ± 0.10a 1.15 ± 0.06b 0.67 ± 0.03c
Ccar (mg·g-1) 1.39 ± 0.07a 0.67 ± 0.03b 0.58 ± 0.03c
Pn (μmol CO2·m-2·s-1) 4.67 ± 0.23b 5.17 ± 0.26a 3.77 ± 0.19c
Tr (mmol H2O·m-2·s-1) 1.08 ± 0.05a 1.19 ± 0.06a 0.97 ± 0.05b
WUE (μmol CO2·mmol-1 H2O) 4.32 ± 0.22a 4.34 ± 0.22a 3.89 ± 0.19b
Y(II) 0.33 ± 0.02a 0.33 ± 0.02a 0.23 ± 0.01b
Y(NO) 0.38 ± 0.02a 0.26 ± 0.01b 0.23 ± 0.01c
Y(NPQ) 0.29 ± 0.01c 0.41 ± 0.02b 0.54 ± 0.03a
QP 0.73 ± 0.04a 0.75 ± 0.04a 0.52 ± 0.03b
NPQ 0.19 ± 0.01c 0.40 ± 0.02b 0.59 ± 0.03a
ETR (µmol·m-2·s-1) 60.02 ± 3.00a 51.94 ± 2.60b 49.02 ± 2.45c

Table 4

Redundancy analysis analysis results of functional traits and environmental factors of Saussurea salsa in salt marshes of Xiao Sugan Lake"

统计量 Statistic 轴1 Axis 1 轴2 Axis 2 总方差 Total variance
土壤含水量 Soil moisture content 0.936 6 0.038 9 1.000 0
土壤电导率 Soil electrical conductivity -0.963 2 -0.052 4
静水持留时间 Water-logging duration 0.910 3 0.198 8
特征值 Eigenvalues 0.533 0 0.050 0
功能性状与环境的相关性
Function traits-environment correlations
0.977 0 0.565 0
累积百分比方差
Explained variation (cumulative)
功能性状数据
Function traits data
55.300 0 60.200 0
功能性状-环境关系
Relationship between function traits and environment relation
89.700 0 97.800 0
总特征值 All eigenvalues 1.000 0
总典范特征值 Canonical eigenvalues 0.616 0

Fig. 2

Redundancy analysis ordination of functional traits and environmental factors of Saussurea salsa in salt marshes of Xiao Sugan Lake. Parameters see Table 1. T, water-logging duration."

Table 5

Covariance analysis between functional traits and environmental factors of Saussurea salsa in salt marshes of Xiao Sugan Lake (mean ± SE)"

功能性状 Functional traits 总离差平方和
SST
残差均方
MSE
未考虑协变量的均方 MS1 F1 (MS1/MSE) 显著性水平p1 判定系数R12 考虑协变量的均方 MS2 F2 (MS2/MSE) 显著性水平
p2
判定系数R22
SLA 6.311 1 2.129 5 3.155 6 1.481 9 0.266 0 0.852 0 29.425 5 13.818 3 0.000 1 0.790 0
Ca 4.432 7 0.572 2 2.216 3 3.873 3 0.050 4 0.889 0 10.950 6 19.137 5 0.000 0 0.842 0
Cb 0.349 8 0.080 4 0.174 9 2.175 4 0.156 3 0.854 0 1.132 9 14.090 5 0.000 1 0.879 0
Y(II) 0.004 6 0.000 6 0.002 3 4.174 3 0.042 1 0.877 0 0.009 4 17.093 1 0.000 0 0.826 0
Y(NPQ) 0.008 1 0.000 4 0.004 1 10.662 2 0.002 2 0.977 0 0.039 1 102.532 8 0.000 0 0.968 0
Y(NO) 0.016 0 0.000 1 0.008 0 136.047 6 0.000 0 0.991 0 0.015 2 259.079 1 0.000 0 0.987 0
QP 0.024 7 0.003 4 0.012 4 3.592 8 0.059 9 0.832 0 0.041 0 11.919 5 0.000 3 0.763 0
NPQ 0.023 4 0.000 5 0.011 7 22.825 4 0.000 1 0.987 0 0.093 1 181.178 3 0.000 0 0.981 0

Table 6

Correlation analysis between leaf traits and chlorophyll fluorescence characteristics of Saussurea salsa in salt marshes of Xiao Sugan Lake"

Ca Cb SLA Y(II) Y(NPQ) Y(NO) NPQ QP
Ca 1.00
Cb 1.00** 1.00
SLA -0.14 -0.18 1.00
Y(II) 0.06 0.10 -1.00** 1.00
Y(NPQ) -0.53 -0.57 0.91** -0.88* 1.00
Y(NO) 0.79* 0.82* -0.71 0.65 -0.94** 1.00
NPQ -0.58 -0.61 0.89* -0.85* 1.00** -0.95** 1.00
QP -0.02 0.02 -0.99** 1.00** -0.84* 0.59 -0.81* 1.00

Fig. 3

Conversion of quantum yields in photosynthetic system II (PSII) under different flooding gradient leaves of Saussurea salsa (mean ± SD). Y(II), photochemical quantum yields in PSII; Y(NPQ), quantum yield of thermal dissipation used in regulatory energy dissipation; Y(NO), the quantum yield of non-regulated energy dissipation. Photosynthetically active radiation = 1 200 μmol·m-2·s-1."

[1] Adebowale A, Naidoo Y, Lamb J, Nicholas A (2014). Comparative foliar epidermal micromorphology of Southern African Strychnos L.(Loganiaceae): Taxonomic, ecological and cytological considerations. Plant Systematics and Evolution, 300, 127-138.
[2] Bai XF, Bu QM, Tan YQ, Zhu JJ, Liu LD (2012). Effect of NaCl on photosynthesis and water status in arrowleaf saltbush under osmotic stress. Chinese Bulletin of Botany, 47, 500-507.
[ 柏新富, 卜庆梅, 谭永芹, 朱建军, 刘林德 (2012). NaCl对渗透胁迫下三角叶滨藜光合作用和水分状况的调节. 植物学报, 47, 500-507.]
[3] Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. New Phytologist, 192, 437-448.
[4] Campitelli BE, Stinchcombe JR (2013). Natural selection maintains a single-locus leaf shape cline in ivyleaf morning glory, Ipomoea hederacea. Molecular Ecology, 22, 552-564.
[5] Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
[6] di Bella CE, Striker GG, Escaray FJ, Lattanzi FA, Rodríguez AM, Grimoldi AA (2014). Saline tidal flooding effects on Spartina densiflora plants from different positions of the salt marsh. Diversities and similarities on growth, anatomical and physiological responses. Environmental and Experimental Botany, 102, 27-36.
[7] Gao Y, Xia JB, Chen YP, Zhao YY, Kong QX, Lang Y (2017). Effects of extreme soil water stress on photosynthetic efficiency and water consumption characteristics of Tamarix chinensis in China’s Yellow River Delta. Journal of Forestry Research, 28, 491-501.
[8] Gimeno V, Syvertsen JP, Simón I, Nieves M, Díaz-López L, Martínez V, García-Sánchez F (2012). Physiological and morphological responses to flooding with fresh or saline water in Jatropha curcas. Environmental and Experimental Botany, 78, 47-55.
[9] Gong CM, Bai J, Deng JM, Wang GX, Liu XP (2011). Leaf anatomy and photosynthetic carbon metabolic characteristics in Phragmites communis in different soil water availability. Plant Ecology, 212, 675-687.
[10] Jin Y, Wang CK (2015). Trade-offs between plant leaf hydraulic and economic traits. Chinese Journal of Plant Ecology, 39, 1021-1032.
[ 金鹰, 王传宽 (2015). 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 39, 1021-1032.]
[11] Kalaji HM, Govindjee, Bosa K, Kościelniak J, Żuk-‌Gołaszewska K (2011). Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environmental and Experimental Botany, 73, 64-72.
[12] Kang SZ, Zhang JH (2004). Controlled alternate partial rootzone irrigation: Its physiological consequences and impact on water use efficiency. Journal of Experimental Botany, 55, 2437-2446.
[13] Larcher W (1995). Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups. 3rd ed. Springer-‌‌Verlag, New York, Berlin.
[14] Li Q, Zhao CZ, Yao WX, Wang JL, Zhang WT (2018). The relationship between transpiration rate and leaf traits of Phragmites australis in response to soil moisture in Zhangye wetland. Chinese Journal of Ecology, 37, 1095-1101.
[ 李群, 赵成章, 姚文秀, 王建良, 张伟涛 (2018). 张掖湿地芦苇蒸腾速率与叶性状关系对土壤水分的响应. 生态学杂志, 37, 1095-1101.]
[15] Li Q, Zhao CZ, Zhao LC, Wang JL, Zhang WT, Yao WX (2017). Empirical relationship between specific leaf area and thermal dissipation of Phragmites australis in salt marshes of Qinwangchuan. Chinese Journal of Plant Ecology, 41, 985-994.
[ 李群, 赵成章, 赵连春, 王建良, 张伟涛, 姚文秀 (2017). 秦王川盐沼湿地芦苇比叶面积与叶片热耗散的关联性分析. 植物生态学报, 41, 985-994.]
[16] Li R, Jiang ZM, Zhang SX, Cai J (2015). A review of new research progress on the vulnerability of xylem embolism of woody plants. Chinese Journal of Plant Ecology, 39, 838-848.
[ 李荣, 姜在民, 张硕新, 蔡靖 (2015). 木本植物木质部栓塞脆弱性研究新进展. 植物生态学报, 39, 838-848.]
[17] Liao FY, Li HM, He P (2004). Effect of high irradiance and high temperature on chloroplast composition and structure of Dioscorea zingiberensis. Photosynthetica, 42, 487-492.
[18] Liu X, Li LM, Li MJ, Su LC, Lian SM, Zhang BH, Li XY, Ge K, Li L (2018). AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought. Scientific Reports, 8, 2250. DOI: 10.1038/‌s41598-018-20542-7.
[19] Mao W, Li YL, Zhang TH, Zhao XY, Huang YX, Song LL (2012). Research advances of plant leaf traits at different ecology scales. Journal of Desert Research, 32(1), 33-41.
[ 毛伟, 李玉霖, 张铜会, 赵学勇, 黄迎新, 宋琳琳 (2012). 不同尺度生态学中植物叶性状研究概述. 中国沙漠, 32(1), 33-41.]
[20] Maxwell K, Johnson GN (2000). Chlorophyll fluorescence—A practical guide. Journal of Experimental Botany, 51, 659-668.
[21] Milla R, Reich PB (2007). The scaling of leaf area and mass: The cost of light interception increases with leaf size. Proceedings of the Royal Society B: Biological Sciences, 274, 2109-2115.
[22] Ogburn RM, Edwards EJ (2012). Quantifying succulence: A rapid, physiologically meaningful metric of plant water storage. Plant, Cell & Environment, 35, 1533-1542.
[23] Sánchez E, Scordia D, Lino G, Arias C, Cosentino SL, Nogués S (2015). Salinity and water stress effects on biomass production in different Arundo donax L. clones. BioEnergy Research, 8, 1461-1479.
[24] Schreiber U (2004). Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: An overview. In: Papageorgiou GC, Govindjee eds. Chlorophyll a Fluorescence. Springer, Dordrecht, Netherlands. 279-319.
[25] Schreiber U, Bilger W, Neubauer C (1994). Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Caldwell MM eds. Ecophysiology of Photosynthesis. Springer-Verlag, Berlin. 49-70.
[26] Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture. Plant Physiology, 156, 832-843.
[27] Sello S, Meneghesso A, Alboresi A, Baldan B, Morosinotto T (2019). Plant biodiversity and regulation of photosynthesis in the natural environment. Planta, 249, 1217-1228.
[28] Shi SB, Shang YX, Shi R, Zhang B (2012). Responses of PSII photochemistry efficiency and photosynthetic pigments of Saussurea superba to short-term UV-B-supplementation. Chinese Journal of Plant Ecology, 36, 420-430.
[ 师生波, 尚艳霞, 师瑞, 张波 (2012). 高山植物美丽风毛菊PSII光化学效率和光合色素对短期增补UV-B辐射的响应. 植物生态学报, 36, 420-430.]
[29] Song LL, Fan JW, Wu SH, Zhong HP, Wang N (2012). Response characteristics of leaf traits of common species along an altitudinal gradient in Hongchiba Grassland, Chongqing. Acta Ecologica Sinica, 32, 2759-2767.
[ 宋璐璐, 樊江文, 吴绍洪, 钟华平, 王宁 (2012). 红池坝草地常见物种叶片性状沿海拔梯度的响应特征. 生态学报, 32, 2759-2767.]
[30] van den Brink FWB, van der Velde G, Bosman WW, Coops H (1995). Effects of substrate parameters on growth responses of eight helophyte species in relation to flooding. Aquatic Botany, 50, 79-97.
[31] Wang T, Hu JT, Wang RQ, Liu CH, Yu D (2018). Tolerance and resistance facilitate the invasion success of Alternanthera philoxeroides in disturbed habitats: A reconsideration of the disturbance hypothesis in the light of phenotypic variation. Environmental and Experimental Botany, 153, 135-142.
[32] Wang XK (2006). Principles and Techniques of Plant Physiological and Biochemical Experiments. 2nd edn. Higher Education Press, Beijing. 134-136.
[ 王学奎 (2006). 植物生理生化实验原理和技术(第2版). 高等教育出版社, 北京. 134-136.]
[33] Wang Y, Wei XL (2010). Advance on the effects of different light environments on growth, physiological biochemistry and morphostructure of plant. Journal of Mountain Agriculture and Biology, 29, 353-359, 370.
[ 王艺, 韦小丽 (2010). 不同光照对植物生长、生理生化和形态结构影响的研究进展. 山地农业生物学报, 29, 353-359, 370.]
[34] Wang YF, Liu QQ, Pei ZY, Li HY (2012). Correlation between altitude and reproductive allocation in three Saussurea species on China’s Qinghai-Tibetan Plateau. Chinese Journal of Plant Ecology, 36, 39-46.
[ 王一峰, 刘启茜, 裴泽宇, 李海燕 (2012). 青藏高原3种风毛菊属植物的繁殖分配与海拔高度的相关性. 植物生态学报, 36, 39-46.]
[35] Wei ZG, Wang YC (2015). The Corresponding Mechanisms of Plant Drought Stress. Science Press, Beijing. 8-11.
[ 魏志刚, 王玉成 (2015). 植物干旱胁迫响应机制. 科学出版社, 北京. 8-11.]
[36] Ye NN, Shen NP, Shang TQ, Gao HD, Guan JR, Yi LT (2017). Vegetation structure and internal relationship between distribution patterns of vegetation and environment in ecological service forest of Rui’an city in Zhejiang Province. Chinese Bulletin of Botany, 52, 496-510.
[ 叶诺楠, 沈娜娉, 商天其, 高洪娣, 管杰然, 伊力塔 (2017). 浙江瑞安公益林群落结构及其与环境的相关性. 植物学报, 52, 496-510. ]
[37] Zhang HY, Xie BT, Duan WX, Dong SX, Wang BQ, Zhang LM, Shi CY (2018). Effects of drought stress at different growth stages on photosynthetic efficiency and water consumption characteristics in sweet potato. Chinese Journal of Applied Ecology, 29, 1943-1950.
[ 张海燕, 解备涛, 段文学, 董顺旭, 汪宝卿, 张立明, 史春余 (2018). 不同时期干旱胁迫对甘薯光合效率和耗水特性的影响. 应用生态学报, 29, 1943-1950.]
[38] Zhang YQ, Liang CZ, Wang W, Wang LX, Peng JT, Yan JC, Jia CZ (2010). Soil salinity and Achnatherum splendens distribution. Chinese Journal of Ecology, 29, 2438-2443.
[ 张雅琼, 梁存柱, 王炜, 王立新, 彭江涛, 闫建成, 贾成朕 (2010). 芨芨草群落土壤盐分特征. 生态学杂志, 29, 2438-2443.]
[39] Zhao KF, Li FZ, Zhang FS (2013). Chinese Halophytes. 2nd edn. Science Press, Beijing. 71-74.
[ 赵可夫, 李法曾, 张福锁 (2013). 中国盐生植物(第二版). 科学出版社, 北京. 71-74.]
[1] PENG Xi, YAN Wen-De, WANG Feng-Qi, WANG Guang-Jun, YU Fang-Yong, ZHAO Mei-Fang. Specific leaf area estimation model building based on leaf dry matter content of Cunninghamia lanceolata [J]. Chin J Plan Ecolo, 2018, 42(2): 209-219.
[2] Qun LI, Cheng-Zhang ZHAO, Lian-Chun ZHAO, Jian-Liang WANG, Wei-Tao ZHANG, Wen-Xiu YAO. Empirical relationship between specific leaf area and thermal dissipation of Phragmites australis in salt marshes of Qinwangchuan [J]. Chin J Plan Ecolo, 2017, 41(9): 985-994.
[3] Zhi-Min LI, Chuan-Kuan WANG, Dan-Dan LUO. Variations and interrelationships of foliar hydraulic and photosynthetic traits for Larix gmelinii [J]. Chin J Plan Ecolo, 2017, 41(11): 1140-1148.
[4] XU Ming-Shan,ZHAO Yan-Tao,YANG Xiao-Dong,SHI Qing-Ru,ZHOU Liu-Li,ZHANG Qing-Qing,Ali ARSHAD,YAN En-Rong. Geostatistical analysis of spatial variations in leaf traits of woody plants in Tiantong, Zhejiang Province [J]. Chin J Plan Ecolo, 2016, 40(1): 48-59.
[5] Ziyan Zhang, Zhijie Zhang, Xiaoyun Pan. Phenotypic plasticity of Alternanthera philoxeroides in response to shading: introduced vs. native populations [J]. Biodiv Sci, 2015, 23(1): 18-22.
[6] LI Yin-Gang, LIU Xin-Hong, MA Jun-Wei, SHI Cong-Guang, ZHU Guang-Quan. Phenotypic variations in populations of Phoebe chekiangensis [J]. Chin J Plan Ecolo, 2014, 38(12): 1315-1324.
[7] HUANG Hai-Xia, YANG Xiao-Dong, SUN Bao-Wei, ZHANG Zhi-Hao, and YAN En-Rong. Variability and association of leaf traits between current-year and former-year leaves in evergreen trees in Tiantong, Zhejiang, China [J]. Chin J Plan Ecolo, 2013, 37(10): 912-921.
[8] Yanming Miao, Jinzhi Lü, Runcheng Bi, Guiqin Yan. Dynamic Changes of Traits of Leaves from Elaeagnus mollis [J]. Chin Bull Bot, 2012, 47(3): 257-263.
[9] HU Meng-Yao, ZHANG Lin, LUO Tian-Xiang, and SHEN Wei. Variations in leaf functional traits of Stipa purpurea along a rainfall gradient in Xizang, China [J]. Chin J Plan Ecolo, 2012, 36(2): 136-143.
[10] ZHU Jie-Dong, MENG Ting-Ting, NI Jian, SU Hong-Xin, XIE Zong-Qiang, ZHANG Shou-Ren, ZHENG Yuan-Run and XIAO Chun-Wang. Within-leaf allometric relationships of mature forests in different bioclimatic zones vary with plant functional types [J]. Chin J Plan Ecolo, 2011, 35(7): 687-698.
[11] LU Xing-Hui, DING Yi, ZANG Run-Guo, ZOU Zheng-Chong, and HUANG Lu-Biao. Analysis of functional traits of woody plant seedlings in an old-growth tropical lowland rain forest on Hainan Island, China [J]. Chin J Plan Ecolo, 2011, 35(12): 1300-1309.
[12] XI Xin-Qiang, ZHAO Yu-Jie, LIU Yu-Guo, WANG Xin, and GAO Xian-Ming. Variation and correlation of plant functional traits in karst area of central Guizhou Province, China [J]. Chin J Plan Ecolo, 2011, 35(10): 1000-1008.
[13] ZHOU Peng, GENG Yan, MA Wen-Hong, HE Jin-Sheng. Linkages of functional traits among plant organs in the dominant species of the Inner Mongolia grassland, China [J]. Chin J Plan Ecolo, 2010, 34(1): 7-16.
[14] XU Bing, CHENG Yu-Xi, GAN Hui-Jie, ZHOU Wen-Jia, HE Jin-Sheng. Correlations between leaf and fine root traits among and within species of typical temperate grassland in Xilin River Basin, Inner Mongolia, China [J]. Chin J Plan Ecolo, 2010, 34(1): 29-38.
[15] WAN Hong-Wei, YANG Yang, BAI Shi-Qin, XU Yun-Hu, BAI Yong-Fei. VARIATIONS IN LEAF FUNCTIONAL TRAITS OF SIX SPECIES ALONG A NITROGEN ADDITION GRADIENT IN LEYMUS CHINENSIS STEPPE IN INNER MONGOLIA [J]. Chin J Plan Ecolo, 2008, 32(3): 611-621.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yang Ying-gen;Zhang Li-jun and Li yu. Studies on the Postharvest Physiology properties of Peach Fruits[J]. Chin Bull Bot, 1995, 12(04): 47 -49 .
[2] Zhou Shi-gong. Applications of Lanthanum in Botanical Research[J]. Chin Bull Bot, 1992, 9(02): 26 -29 .
[3] . [J]. Chin Bull Bot, 1996, 13(专辑): 105 .
[4] 杜维广 王彬如 谭克辉 郝迺斌. An Approach to the Breeding of Soybean with High Photosynthetic Efficiency[J]. Chin Bull Bot, 1984, 2(23): 7 -11 .
[5] ZHAO Yun-Yun ZHOU Xiao-Mei YANG Cai. Production of Hybrid F1 Between Avena magna and Avena nuda and It''s Identification[J]. Chin Bull Bot, 2003, 20(03): 302 -306 .
[6] . Professor Jiayang Li, a Plant Molecular Genetist[J]. Chin Bull Bot, 2003, 20(03): 370 -372 .
[7] . [J]. Chin Bull Bot, 1996, 13(专辑): 100 -101 .
[8] Qiong Jiang, Youning Wang, Lixiang Wang, Zhengxi Sun, Xia Li. Validation of Reference Genes for Quantitative RT-PCR Analysis in Soybean Root Tissue under Salt Stress[J]. Chin Bull Bot, 2015, 50(6): 754 -764 .
[9] MA Ke-Ming. Advances of the Study on Species Abundance Pattern[J]. Chin J Plan Ecolo, 2003, 27(3): 412 -426 .
[10] ZHANG Zhi-Meng, WAN Shu-Bo, NING Tang-Yuan, DAI Liang-Xiang. EFFECTS OF NITROGEN LEVEL ON NITROGEN METABOLISM AND CORRELATING ENZYME ACTIVITY IN PEANUT[J]. Chin J Plan Ecolo, 2008, 32(6): 1407 -1416 .