植物生态学报 ›› 2006, Vol. 30 ›› Issue (1): 90-96.DOI: 10.17521/cjpe.2006.0013
收稿日期:
2004-07-29
接受日期:
2005-05-19
出版日期:
2006-07-29
发布日期:
2006-01-30
通讯作者:
刘庆
作者简介:
*E-mail:liuqing@eib.ac.cn基金资助:
LIU Yi CHEN, CHEN Jin-Song, LIU Qing*(), WU Yan
Received:
2004-07-29
Accepted:
2005-05-19
Online:
2006-07-29
Published:
2006-01-30
Contact:
LIU Qing
摘要:
采用气压过程分离(Barometric process separation, BaPS)技术对川西亚高山针叶林不同恢复阶段土壤的总硝化和反硝化作用速率进行了测定,结果表明:川西亚高山针叶林不同恢复阶段土壤的总硝化和反硝化速率差异不显著(p<0.05),不同恢复阶段土壤总硝化作用的Q10值差异不显著(p<0.05);总硝化作用速率与土壤含水量呈显著正相关(p<0.05),与土壤pH值、土壤有机质、全氮及C/N相关不显著;不同恢复阶段土壤反硝化速率均维持在一个较低的水平,反硝化速率与土壤中的C/N显著正相关(p<0.05),与土壤含水量、pH值、有机质及全氮相关不显著。与反硝化作用相比,硝化作用对亚高山针叶林土壤氮损失的影响可能更大。
刘义, 陈劲松, 刘庆, 吴彦. 川西亚高山针叶林不同恢复阶段土壤的硝化和反硝化作用. 植物生态学报, 2006, 30(1): 90-96. DOI: 10.17521/cjpe.2006.0013
LIU Yi CHEN, CHEN Jin-Song, LIU Qing, WU Yan. NITRIFICATION AND DENITRIFICATION IN SUBALPINE CONIFEROUS FORESTS OF DIFFERENT RESTORATION STAGES IN WESTERN SICHUAN, CHINA. Chinese Journal of Plant Ecology, 2006, 30(1): 90-96. DOI: 10.17521/cjpe.2006.0013
图1 总硝化作用速率与反硝化作用速率在川西亚高山针叶林不同恢复阶段中的变化 Ⅰ:20年人工云杉林The spruce plantation of 20 years Ⅱ: 30年人工云杉林The spruce plantation of 30 years Ⅲ: 40年人工云杉林The spruce plantation of 40 years Ⅳ: 60年人工云杉林 The spruce plantation of 60 years Ⅴ:原始针叶林The natural coniferous forest Ⅵ:针阔混交林 The coniferous broadleaved forest RGN:总硝化速率Gross nitrification rate RDN:反硝化速率 Denitrification rate NA:表示数据不可用Not application 柱上标相同字母表示没有显著性差异 Bars with the same alphabetical are not significantly different (p<0.05)
Fig.1 The variation of gross nitrification rate and denitrification rate in subalpine coniferous forests of different restoration stages
图2 总硝化作用的Q10值在川西亚高山针叶林不同恢复阶段中的变化 Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ:同图1
Fig.2 The variation of Q10 for gross nitrification in subalpine coniferous forests of differentrestoration stages See Fig.1
相关系数 Correlation coefficient | 有机质 Organic matter | 全氮 Total nitrogen | C/N |
---|---|---|---|
总硝化速率 Gross nitrification rate | 0.257 | 0.143 | 0.600 |
反硝化速率 Denitrification rate | 0.029 | -0.543 | 0.829* |
表1 总硝化和反硝化速率分别与土壤有机质、全氮及C/N的相关系数(R)
Table 1 The respective correlation coefficient of gross nitrification rate and denitrification rate to organic matter, total nitrogen and C/N (R)
相关系数 Correlation coefficient | 有机质 Organic matter | 全氮 Total nitrogen | C/N |
---|---|---|---|
总硝化速率 Gross nitrification rate | 0.257 | 0.143 | 0.600 |
反硝化速率 Denitrification rate | 0.029 | -0.543 | 0.829* |
[1] | Bailey JE, Ollis DF (1986). Biochemical Engineering Fundamentals 2nd edn. McGraw-Hill, New York. |
[2] | Berg MP, Verhoef HA, Bolger T, Anderson JM, Beese F, Couteaux MM, Ineson P, McCarthy F, Palka L, Raubuch M, Splatt P, Willison T (1997). Effects of air pollutant-temperature interactions on mineral-N dynamics and cation leaching in replicate forest soil transplantation experiments. Biogeochemistry, 39,295-326. |
[3] | Binkley D, Hart SC (1989). The components of nitrogen availability methods in forest soils. Advances in Soil Science, 10,57-112. |
[4] | Blackmer AM, Bremner JM (1978). Inhibitory effect of nitrate on reduction of N 2O to N 2 by soil microorganisms. Soil Biology and Biochemistry, 10,187-191. |
[5] | Bremner JM, McCarty GW (1988). Effects of terpenoids on nitrification in soil. Soil Science Society of America Journal, 52,1630-1633. |
[6] | Breuer L, Kiese R, Butterbach-Bahl K (2002). Temperature and moisture effects on nitrification rates in tropical rain forest soils. Soil Science Society of America Journal, 66,834-844. |
[7] | Carmosini N, Devito KJ, Prepas EE (2002). Gross nitrogen transformations in harvested and mature aspen-conifer mixed forest soils from the Boreal Plain. Soil Biology and Biochemistry, 34,1949-1951. |
[8] | Davidson EA, Hart SC, Firestone MK (1992). Internal cycling of nitrate in soils of a mature coniferous forest. Ecology, 73,1148-1156. |
[9] | de Boer W, Tietema A, Klein Gunnewiek PJA, Laanbroek HJ (1992). The chemolithotrophic ammonium-oxidizing community in a nitrogen saturated acid forest soil in relation to pH-dependent nitrifying activities. Soil Biology and Biochemistry, 24,229-234. |
[10] | Duggin JA, Voight GK, Bormann FH (1991). Autotrophic and heterotrophic nitrification in response to clear-cutting northern hardwood forest. Soil Biology and Biochemistry, 23,779-787. |
[11] | Gosz JR (1981). Nitrogen cycling in coniferous ecosystems. In: Clark FE, Roswall T eds. Terrestrial Nitrogen Cycles. Ecological Bulletins-NFR, Stockholm, 33,405-426. |
[12] | Groffman PM, Tiedje JM (1989). Denitrification in north temperate forest soils: spatial and temporal patterns at the landscape and seasonal scales. Soil Biology and Biochemistry, 21,613-620. |
[13] |
Hankinson TR, Schmidt EL (1988). An acidophilic and a neutrophilic Nitrobacter strain isolated from the numerically predominant nitrite-oxidizing population of an acid forest soil. Applied and Environmental Microbiology, 54,1536-1540.
URL PMID |
[14] | Ingwersen J, Butterbach-Bahl K, Gasche R, Richter O, Papen H (1999). Barometric process separation: new method for quantifying nitrification, denitrification, and nitrous oxide sources in soils. Soil Science Society of America Journal, 63,117-128. |
[15] | Kiese R, Papen H, Zumbusch E, Butterbach-Bahl K (2002). Nitrification activity in tropical rain forest soils of the Coastal Lowlands and Atherton Tablelands, Queensland, Australia. Journal of Plant Nutrition and Soil Science, 165,682-685. |
[16] | Killham K (1990). Nitrification in coniferous forest soils. Plant Soil, 128,31-44. |
[17] | Kronzucker HJ, Siddiqi MY, Glass ADM (1997). Conifer root discrimina-tion against soil nitrate and the ecology of forest succession. Nature, 385,59-61. |
[18] | Laanbroek HJ, Woldendorp JW (1995). Activity of chemolitho- trophic nitrifying bacteria under stress in natural soils. Advances in Microbial Ecology, 14,275-304. |
[19] | Levenspiel O (1972). Chemical Reaction Engineering 2nd edn. John Wiley & Sons, New York. |
[20] | Lin B (林波), Liu Q (刘庆), Wu Y (吴彦), He H (何海), Qiao YK (乔永康) (2004). Dynamics of litters in artificial restoration process of subalpine coniferous forest. Chinese Journal of Applied Ecology (应用生态学报), 15,1491-1496. (in Chinese with English abstract) |
[21] | Liu Q (刘庆) (2002). Ecological Research on Subalpine Coniferous Forests in China (亚高山针叶林生态学研究). Sichuan University Press, Chengdu. (in Chinese) |
[22] | Martikainen PJ, de Boer W (1993). Nitrous oxide production and nitrification in acidic soil from a Dutch coniferous forest. Soil Biology and Biochemistry, 25,343-347. |
[23] | Martin HW, Graetz DA, Locascio SJ, Hensel DR (1993). Nitrification inhibitor influences on potato. Agronomy Journal, 85,651-655. |
[24] | Menyailo OV, Huwe B (1999). Activity of denitrification and dynamics of N 2O release in soils under six tree species and grassland in central Siberia. Journal of Plant Nutrition and Soil Science, 162,533-538. |
[25] | Mummey DL, Smith JL, Bolton H (1994). Nitrous oxide flux from a shrub-steppe ecosystem: sources and regulation. Soil Biology and Biochemistry, 26,279-286. |
[26] |
Nägele W, Conrad R (1990). Influence of soil pH on the nitrate-reducing microbial populations and their potential to reduce nitrate to NO and N 2O. FEMS Microbiology Ecology, 74,49-58.
DOI URL PMID |
[27] | Papen H, von Berg R (1998). A most probable number method (MPN) for the estimation of cell numbers of heterotrophic nitrifying bacteria in soil. Plant and Soil, 199,123-130. |
[28] | Paul EA, Clark FE (1989). Soil Microbiology and Biochemistry. Academic Press, San Diego, California. |
[29] | Rice EL, Pancholy SK (1972). Inhibition of nitrification by climax ecosystems. American Journal of Botany, 59,1033-1040. |
[30] | Robertson GP (1982). Nitrification in forested ecosystems. Philosophical Transactions of the Royal Society of London Bulletin, 296,445-457. |
[31] | Rochester L, Constable G, Saffigna P (1996). Effective nitrification inhibitors may improve fertilizer recovery in irrigated cotton. Biology and Fertility of Soils, 23,1-6. |
[32] | SchjØnning P, Thomsen IK, Moldrup P, Christensen BT (2003). Linking soil microbial activity to water- and air-phase contents and diffusivities. Soil Science Society of America Journal, 67,156-165. |
[33] | Shi LX (史立新), Wang JX (王金锡), Su YM (宿以明), Hou GW (侯广维) (1988). Earlier-stage succession of vegetation on the clear-cuts in Miyaluo forest district in western Sichuan. Acta Phytoecologica et Geobotanica Sinica (植物生态与地植物学学报), 12,306-313. (in Chinese with English abstract) |
[34] | Shi W, Norton JM (2000). Microbial control of nitrate concentrations in an agricultural soil treated with dairy waste compost or ammonium fertilizer. Soil Biology and Biochemistry, 32,1453-1457. |
[35] |
Stark JM, Firestone MK (1995). Mechanisms for soil moisture effects on activity of nitrifying bacteria. Applied and Environmental Microbiology, 61,218-221.
DOI URL PMID |
[36] | Stark JM, Hart SC (1997). High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature, 385,61-64. |
[37] | Venterea RT, Lovett GM, Groffman PM, Schwarz PA (2003). Landscape patterns of net nitrification in a northern hardwood-conifer forest. Soil Science Society of America Journal, 67,527-539. |
[38] | Verchot LV, Groffman PM, Frank DA (2002). Landscape versus ungulate control of gross mineralization and gross nitrification in semi-arid grasslands of Yellowstone National Park. Soil Biology and Biochemistry, 34,1691-1699. |
[39] | Weier KL, MacRae IC, Myers RJK (1993). Denitrification in a clay soil under pasture and annual crop: estimation of potential loss using intact soil cores. Soil Biology and Biochemistry, 25,991-997. |
[40] | Wu Y (吴彦), Liu Q (刘庆), Qiao YK (乔永康), Pan KW (潘开文), Zhao CM (赵常明), Chen QH (陈庆恒) (2001). Species diversity changes in subalpine coniferous forests of different restoration stages and their effects on soil properties. Acta Phytoecologica Sinica (植物生态学报), 25,648-655. (in Chinese with English abstract) |
[41] | Zou X, Valentine DW, Sanford RL, Binkley D (1992). Resin-core and buried-bag estimates of nitrogen transformations in Costa Rican lowland rainforests. Plant and Soil, 139,275-283. |
[1] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[2] | 高德才, 白娥. 冻融循环期间土壤氧化亚氮排放影响因素[J]. 植物生态学报, 2021, 45(9): 1006-1023. |
[3] | 蔡琴, 丁俊祥, 张子良, 胡君, 汪其同, 尹明珍, 刘庆, 尹华军. 青藏高原东缘主要针叶树种叶片碳氮磷化学计量分布格局及其驱动因素[J]. 植物生态学报, 2019, 43(12): 1048-1060. |
[4] | 邹婷婷, 张子良, 李娜, 袁远爽, 郑东辉, 刘庆, 尹华军. 川西亚高山针叶林主要树种对土壤中不同形态氮素的吸收差异[J]. 植物生态学报, 2017, 41(10): 1051-1059. |
[5] | 梁儒彪, 梁进, 乔明锋, 徐振锋, 刘庆, 尹华军. 模拟根系分泌物C:N化学计量特征对川西亚高山森林土壤碳动态和微生物群落结构的影响[J]. 植物生态学报, 2015, 39(5): 466-476. |
[6] | 尹华军, 程新颖, 赖挺, 林波, 刘庆. 川西亚高山65年人工云杉林种子雨、种子库和幼苗定居研究[J]. 植物生态学报, 2011, 35(1): 35-44. |
[7] | 陈智, 尹华军, 卫云燕, 刘庆. 夜间增温和施氮对川西亚高山针叶林土壤有效氮和微生物特性的短期影响[J]. 植物生态学报, 2010, 34(11): 1254-1264. |
[8] | 段仁燕, 王孝安, 黄敏毅, 王志高, 汪超. 太白红杉林斑块结构与群落特征[J]. 植物生态学报, 2009, 33(3): 460-468. |
[9] | 尹华军, 赖挺, 程新颖, 蒋先敏, 刘庆. 增温对川西亚高山针叶林内不同光环境下红桦和岷江冷杉幼苗生长和生理的影响[J]. 植物生态学报, 2008, 32(5): 1072-1083. |
[10] | 尹华军, 刘庆. 川西米亚罗亚高山云杉林种子雨和土壤种子库研究[J]. 植物生态学报, 2005, 29(1): 108-115. |
[11] | 赵常明, 陈庆恒, 乔永康, 潘开文. 青藏东缘岷江上游亚高山针叶林人工恢复过程中物种多样性动态[J]. 植物生态学报, 2002, 26(增刊): 20-29. |
[12] | 包维楷, 张镱锂, 王乾, 摆万奇, 郑度. 青藏高原东部采伐迹地早期人工重建序列梯度上植物多样性的变化[J]. 植物生态学报, 2002, 26(3): 330-338. |
[13] | 吴彦, 刘庆, 乔永康, 潘开文, 赵常明, 陈庆恒. 亚高山针叶林不同恢复阶段群落物种多样性变化及其对土壤理化性质的影响[J]. 植物生态学报, 2001, 25(6): 648-655. |
[14] | 吴宁. 贡嘎山东坡亚高山针叶林的林窗动态研究[J]. 植物生态学报, 1999, 23(3): 228-237. |
[15] | 史立新, 王金夕, 宿以明, 侯广维. 川西米亚罗地区暗针叶林采伐迹地早期植被演替过程的研究[J]. 植物生态学报, 1988, 12(4): 306-313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19