植物生态学报 ›› 2007, Vol. 31 ›› Issue (5): 937-945.DOI: 10.17521/cjpe.2007.0119
陈惠哲1, Natalia Ladatko2, 朱德峰1, 林贤青1, 张玉屏1, 孙宗修1,*()
收稿日期:
2006-05-08
接受日期:
2006-09-08
出版日期:
2007-05-08
发布日期:
2007-09-30
通讯作者:
孙宗修
作者简介:
* E-mail: sunzx405@163.com第二作者对本文有同等贡献
基金资助:
CHEN Hui-Zhe1, Natalia Ladatko2, ZHU De-Feng1, LIN Xian-Qing1, ZHANG Yu-Ping1, SUN Zong-Xiu1,*()
Received:
2006-05-08
Accepted:
2006-09-08
Online:
2007-05-08
Published:
2007-09-30
Contact:
SUN Zong-Xiu
摘要:
选择苗期耐盐性较强的水稻(Oryza sativa)品种(株系)‘AB52’、‘02402’和‘02435’及敏感品种‘日本晴’,在网室周转箱内,设置5 000和8 000 mg·L-1 NaCl两种盐处理,以清水为对照,研究盐胁迫下苗期水稻植株不同部位Na+和K+的吸收和分配与品种耐盐性的关系。结果表明,盐胁迫下,株高、绿叶干重和绿叶面积下降,绿叶中的水分含量降低,但茎鞘中的水分含量有所上升。5 000 mg·L-1 NaCl胁迫处理10 d,耐盐品种所受的生长影响和叶片伤害程度低于敏感品种,但8 000 mg·L-1 NaCl胁迫处理下品种间差异变小。盐胁迫下,水稻植株吸收Na+和置换出K+,但不同器官部位中Na+和K+的区域化分布特征明显,各部位的Na+含量由低到高依次为绿叶、根、茎鞘和枯叶。下部老叶能优先积累较多Na+而枯黄;绿叶吸收Na+相对较少,维持较低的Na+水平,同时保持较高且稳定的K+含量;植株茎鞘通过选择性吸收大量Na+和置换出一部分K+到叶片中,保持绿叶较稳定的K+含量和相对较低的Na+含量,维持较高的K+/Na+比,从而使植株少受盐害。敏感品种‘日本晴’在盐胁迫下绿叶中的Na+含量相对较高,且5 000 mg·L-1 NaCl胁迫下绿叶Na+含量已接近高值,与在8 000 mg·L-1 NaCl胁迫下差异不大,而耐盐品种绿叶吸收较少的Na+。另一方面,耐盐品种茎鞘的含K+相对较高,在盐胁迫下能吸收容纳较多的Na+,而绿叶中K+/Na+比较高。可以认为,绿叶的K+/Na+比可作为一个衡量耐盐性的相对指标。
陈惠哲, Natalia Ladatko, 朱德峰, 林贤青, 张玉屏, 孙宗修. 盐胁迫下水稻苗期Na+和K+吸收与分配规律的初步研究. 植物生态学报, 2007, 31(5): 937-945. DOI: 10.17521/cjpe.2007.0119
CHEN Hui-Zhe, Natalia Ladatko, ZHU De-Feng, LIN Xian-Qing, ZHANG Yu-Ping, SUN Zong-Xiu. ABSORPTION AND DISTRIBUTION OF Na+ AND K+ IN RICE SEEDLING UNDER SALT STRESS. Chinese Journal of Plant Ecology, 2007, 31(5): 937-945. DOI: 10.17521/cjpe.2007.0119
品种 Variety | 盐处理 Treatment | 苗长 Seedling length (cm) | 干重 Dry weight (mg) | 含水量 Moisture content (%) | 绿叶面积 Green leaf area (cm2) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
绿叶 Green leaf | 茎鞘 Stem and sheath | 绿叶 Green leaf | 茎鞘 Stem and sheath | ||||||||||||||
‘日本晴’ | CK | 34.5±4.0 | 67.6±4.3 | 65.6±3.7 | 74.9±0.6 | 83.7±0.4 | 19.0±4.8 | ||||||||||
Nipponbare | 5 000 mg·L-1 | 32.6±0.4 | 40.6±7.1 | 46.5±9.5 | 73.4±1.7 | 86.8±2.0 | 12.7±1.3 | ||||||||||
8 000 mg·L-1 | 32.9±1.9 | 41.4±7.0 | 48.2±6.7 | 71.7±1.4 | 85.9±0.2 | 12.3±3.0 | |||||||||||
‘AB52’ | CK | 37.2±4.5 | 75.3±9.1 | 72.9±8.9 | 74.7±1.0 | 83.4±1.0 | 23.3±5.9 | ||||||||||
5 000 mg·L-1 | 35.7±3.7 | 77.1±2.3 | 74.0±6.0 | 74.2±1.7 | 87.1±0.6 | 23.1±7.6 | |||||||||||
8 000 mg·L-1 | 35.6±2.5 | 64.2±10.3 | 71.0±6.3 | 71.9±0.3 | 86.8±0.2 | 16.0±2.7 | |||||||||||
‘02402’ | CK | 44.2±7.8 | 139.3±5.7 | 125.0±5.6 | 75.3±0.3 | 85.0±0.8 | 39.4±11.2 | ||||||||||
5 000 mg·L-1 | 41.7±3.4 | 118.5±9.9 | 104.3±4.9 | 75.0±0.9 | 86.2±0.3 | 34.4±5.6 | |||||||||||
8 000 mg·L-1 | 38.6±0.4 | 71.3±3.2 | 77.4±4.2 | 72.6±1.1 | 83.7±1.0 | 22.5±5.6 | |||||||||||
‘02435’ | CK | 39.1±3.8 | 99.2±2.5 | 88.0±2.0 | 76.3±0.8 | 86.6±1.4 | 32.3±8.1 | ||||||||||
5 000 mg·L-1 | 37.7±0.7 | 75.8±7.3 | 78.7±1.8 | 75.8±0.3 | 88.4±0.3 | 24.5±2.6 | |||||||||||
8 000 mg·L-1 | 36.6±2.2 | 58.8±11.6 | 69.5±10.2 | 73.7±0.3 | 86.8±0.4 | 16.9±3.1 |
表1 不同盐浓度处理对水稻生长的影响(平均值±标准偏差)
Table 1 Effect of NaCl treatment on rice seedling growth (Mean±SD)
品种 Variety | 盐处理 Treatment | 苗长 Seedling length (cm) | 干重 Dry weight (mg) | 含水量 Moisture content (%) | 绿叶面积 Green leaf area (cm2) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
绿叶 Green leaf | 茎鞘 Stem and sheath | 绿叶 Green leaf | 茎鞘 Stem and sheath | ||||||||||||||
‘日本晴’ | CK | 34.5±4.0 | 67.6±4.3 | 65.6±3.7 | 74.9±0.6 | 83.7±0.4 | 19.0±4.8 | ||||||||||
Nipponbare | 5 000 mg·L-1 | 32.6±0.4 | 40.6±7.1 | 46.5±9.5 | 73.4±1.7 | 86.8±2.0 | 12.7±1.3 | ||||||||||
8 000 mg·L-1 | 32.9±1.9 | 41.4±7.0 | 48.2±6.7 | 71.7±1.4 | 85.9±0.2 | 12.3±3.0 | |||||||||||
‘AB52’ | CK | 37.2±4.5 | 75.3±9.1 | 72.9±8.9 | 74.7±1.0 | 83.4±1.0 | 23.3±5.9 | ||||||||||
5 000 mg·L-1 | 35.7±3.7 | 77.1±2.3 | 74.0±6.0 | 74.2±1.7 | 87.1±0.6 | 23.1±7.6 | |||||||||||
8 000 mg·L-1 | 35.6±2.5 | 64.2±10.3 | 71.0±6.3 | 71.9±0.3 | 86.8±0.2 | 16.0±2.7 | |||||||||||
‘02402’ | CK | 44.2±7.8 | 139.3±5.7 | 125.0±5.6 | 75.3±0.3 | 85.0±0.8 | 39.4±11.2 | ||||||||||
5 000 mg·L-1 | 41.7±3.4 | 118.5±9.9 | 104.3±4.9 | 75.0±0.9 | 86.2±0.3 | 34.4±5.6 | |||||||||||
8 000 mg·L-1 | 38.6±0.4 | 71.3±3.2 | 77.4±4.2 | 72.6±1.1 | 83.7±1.0 | 22.5±5.6 | |||||||||||
‘02435’ | CK | 39.1±3.8 | 99.2±2.5 | 88.0±2.0 | 76.3±0.8 | 86.6±1.4 | 32.3±8.1 | ||||||||||
5 000 mg·L-1 | 37.7±0.7 | 75.8±7.3 | 78.7±1.8 | 75.8±0.3 | 88.4±0.3 | 24.5±2.6 | |||||||||||
8 000 mg·L-1 | 36.6±2.2 | 58.8±11.6 | 69.5±10.2 | 73.7±0.3 | 86.8±0.4 | 16.9±3.1 |
品种 Variety | 盐处理 Treatment | 总叶数 Total leaves (平均值±标准偏差) (Mean±SD) | 枯叶数 Dried leaf (平均值±标准偏差) (Mean±SD) | 相对枯叶数率 Relative dried leaf rate (%) | 绿叶干重 Green leaf DW (mg) | 枯叶干重 Dried leaf DW (mg) | 相对枯叶干重率 Relative dried leaf DW rate (%) |
---|---|---|---|---|---|---|---|
‘日本晴’ | CK | 5.3±0.3 | 0.9±0.04 | 0 | 67.6 | 2.1C | 0 |
Nipponbare | 5 000 mg·L-1 | 4.9±0.1 | 2.4±0.12 | 31.1 | 40.6 | 10.3B | 17.2 |
8 000 mg·L-1 | 5.1±0.2 | 3.0±0.03 | 41.2 | 41.4 | 15.2A | 23.9 | |
‘AB52’ | CK | 4.7±0.1 | 1.3±0.05 | 0 | 75.3 | 4.8B | 0 |
5 000 mg·L-1 | 4.7±0.2 | 2.0±0.29 | 15.9 | 77.1 | 17.2A | 12.3 | |
8 000 mg·L-1 | 4.7±0.1 | 2.8±0.26 | 32.0 | 64.2 | 24.9A | 22.0 | |
‘02402’ | CK | 5.3±0.5 | 0.8±0.16 | 0 | 139.3 | 2.8C | 0 |
5 000 mg·L-1 | 4.9±0.2 | 1.6±0.17 | 17.1 | 118.5 | 15.0B | 9.2 | |
8 000 mg·L-1 | 4.2±0.1 | 2.2±0.13 | 35.1 | 71.3 | 22.7A | 22.2 | |
‘02435’ | CK | 5.1±0.5 | 0.9±0.08 | 0 | 99.2 | 1.8C | 0 |
5 000 mg·L-1 | 5.0±0.0 | 2.4±0.07 | 29.0 | 75.8 | 15.0B | 14.8 | |
8 000 mg·L-1 | 4.6±0.3 | 2.7±0.03 | 39.3 | 58.8 | 20.3A | 23.9 |
表2 盐对水稻叶片的伤害影响
Table 2 Damage degree of NaCl treatment on rice leaves
品种 Variety | 盐处理 Treatment | 总叶数 Total leaves (平均值±标准偏差) (Mean±SD) | 枯叶数 Dried leaf (平均值±标准偏差) (Mean±SD) | 相对枯叶数率 Relative dried leaf rate (%) | 绿叶干重 Green leaf DW (mg) | 枯叶干重 Dried leaf DW (mg) | 相对枯叶干重率 Relative dried leaf DW rate (%) |
---|---|---|---|---|---|---|---|
‘日本晴’ | CK | 5.3±0.3 | 0.9±0.04 | 0 | 67.6 | 2.1C | 0 |
Nipponbare | 5 000 mg·L-1 | 4.9±0.1 | 2.4±0.12 | 31.1 | 40.6 | 10.3B | 17.2 |
8 000 mg·L-1 | 5.1±0.2 | 3.0±0.03 | 41.2 | 41.4 | 15.2A | 23.9 | |
‘AB52’ | CK | 4.7±0.1 | 1.3±0.05 | 0 | 75.3 | 4.8B | 0 |
5 000 mg·L-1 | 4.7±0.2 | 2.0±0.29 | 15.9 | 77.1 | 17.2A | 12.3 | |
8 000 mg·L-1 | 4.7±0.1 | 2.8±0.26 | 32.0 | 64.2 | 24.9A | 22.0 | |
‘02402’ | CK | 5.3±0.5 | 0.8±0.16 | 0 | 139.3 | 2.8C | 0 |
5 000 mg·L-1 | 4.9±0.2 | 1.6±0.17 | 17.1 | 118.5 | 15.0B | 9.2 | |
8 000 mg·L-1 | 4.2±0.1 | 2.2±0.13 | 35.1 | 71.3 | 22.7A | 22.2 | |
‘02435’ | CK | 5.1±0.5 | 0.9±0.08 | 0 | 99.2 | 1.8C | 0 |
5 000 mg·L-1 | 5.0±0.0 | 2.4±0.07 | 29.0 | 75.8 | 15.0B | 14.8 | |
8 000 mg·L-1 | 4.6±0.3 | 2.7±0.03 | 39.3 | 58.8 | 20.3A | 23.9 |
品种 Variety | 盐处理 Treatment | 绿叶 Green leaf | 茎鞘 Stem and sheath | 枯叶 Dried leaf | 根 Root |
---|---|---|---|---|---|
‘日本晴’ | CK | 136.8bB | 255.2bB | 860.0cA | 646.6cB |
Nipponbare | 5 000 mg·L-1 | 2 595.0aA | 4 356.0aA | 5 197.1aA | 2 445.7bA |
8 000 mg·L-1 | 2 519.1aA | 4 913.5aA | 4 382.7 bB | 3 032.3aA | |
‘AB52’ | CK | 98.7cB | 307.8 bB | 365.1 bB | 471.1cB |
5 000 mg·L-1 | 2 039.8bA | 4 555.5aA | 6 225.7aA | 2 243.6bA | |
8 000 mg·L-1 | 2 516.2aA | 4 503.2aA | 6 052.3aA | 2 637.2aA | |
‘02402’ | CK | 173.0cB | 213.3cC | 983.0bB | 542.4bB |
5 000 mg·L-1 | 1 679.7bA | 2 716.0bB | 3 450.5aAB | 2 773.0aA | |
8 000 mg·L-1 | 2 286.0aA | 4 940.8aA | 5 413.6aA | 2 974.4aA | |
‘02435’ | CK | 98.6cC | 232.8cC | 658.2cB | 515.6cC |
5 000 mg·L-1 | 1 954.3bB | 4 191.0bB | 5 042.8bA | 2 365.7bB | |
8 000 mg·L-1 | 2 447.4aA | 5 977.5aA | 5 883.3aA | 2 904.0aA |
表3 植株不同部位Na+含量
Table 3 Contents of Na+ in different organs of rice seedling (mg·kg-1)
品种 Variety | 盐处理 Treatment | 绿叶 Green leaf | 茎鞘 Stem and sheath | 枯叶 Dried leaf | 根 Root |
---|---|---|---|---|---|
‘日本晴’ | CK | 136.8bB | 255.2bB | 860.0cA | 646.6cB |
Nipponbare | 5 000 mg·L-1 | 2 595.0aA | 4 356.0aA | 5 197.1aA | 2 445.7bA |
8 000 mg·L-1 | 2 519.1aA | 4 913.5aA | 4 382.7 bB | 3 032.3aA | |
‘AB52’ | CK | 98.7cB | 307.8 bB | 365.1 bB | 471.1cB |
5 000 mg·L-1 | 2 039.8bA | 4 555.5aA | 6 225.7aA | 2 243.6bA | |
8 000 mg·L-1 | 2 516.2aA | 4 503.2aA | 6 052.3aA | 2 637.2aA | |
‘02402’ | CK | 173.0cB | 213.3cC | 983.0bB | 542.4bB |
5 000 mg·L-1 | 1 679.7bA | 2 716.0bB | 3 450.5aAB | 2 773.0aA | |
8 000 mg·L-1 | 2 286.0aA | 4 940.8aA | 5 413.6aA | 2 974.4aA | |
‘02435’ | CK | 98.6cC | 232.8cC | 658.2cB | 515.6cC |
5 000 mg·L-1 | 1 954.3bB | 4 191.0bB | 5 042.8bA | 2 365.7bB | |
8 000 mg·L-1 | 2 447.4aA | 5 977.5aA | 5 883.3aA | 2 904.0aA |
品种 Variety | 盐处理 Treatment | 绿叶 Green leaf | 茎鞘 Stem and sheath | 枯叶 Dried leaf | 根 Root |
---|---|---|---|---|---|
‘日本晴’ | CK | 11 478.1aA | 15 785.0aA | 6 380.5aA | 10 376.3aA |
Nipponbare | 5 000 mg·L-1 | 11 170.6aA | 9 532.5bB | 9 271.7aA | 6 118.2bB |
8 000 mg·L-1 | 12 188.5aA | 8 157.5bB | 10 269.4aA | 5 357.4bB | |
‘AB52’ | CK | 12 145.0 abA | 16 585.0aA | 5 804.7cC | 9 451.8aA |
5 000 mg·L-1 | 10 557.5bA | 10 855.0bB | 9 873.5bB | 6 652.0 aAB | |
8 000 mg·L-1 | 12 818.9aA | 8 696.9bB | 12 624.1aA | 5 218.0bB | |
‘02402’ | CK | 11 815.5aA | 17 602.5aA | 4 464.2bA | 11 146.6aA |
5 000 mg·L-1 | 10 627.1aA | 12 522.5bB | 4 143.3bA | 7 212.2bB | |
8 000 mg·L-1 | 10 545.2aA | 8 255.0cC | 9 702.3aA | 6 086.7bB | |
‘02435’ | CK | 11 955.0aA | 18 230.0aA | 7 383.5cC | 11 022.1aA |
5 000 mg·L-1 | 10 982.5bA | 11 255.0bB | 8 576.3bB | 5 975.9bB | |
8 000 mg·L-1 | 11 866.9aA | 8 655.0cC | 13 574.0aA | 5007.3cB |
表4 植株不同部位K+含量
Table 4 Contents of K+ in different organs of rice seedling (mg·kg-1)
品种 Variety | 盐处理 Treatment | 绿叶 Green leaf | 茎鞘 Stem and sheath | 枯叶 Dried leaf | 根 Root |
---|---|---|---|---|---|
‘日本晴’ | CK | 11 478.1aA | 15 785.0aA | 6 380.5aA | 10 376.3aA |
Nipponbare | 5 000 mg·L-1 | 11 170.6aA | 9 532.5bB | 9 271.7aA | 6 118.2bB |
8 000 mg·L-1 | 12 188.5aA | 8 157.5bB | 10 269.4aA | 5 357.4bB | |
‘AB52’ | CK | 12 145.0 abA | 16 585.0aA | 5 804.7cC | 9 451.8aA |
5 000 mg·L-1 | 10 557.5bA | 10 855.0bB | 9 873.5bB | 6 652.0 aAB | |
8 000 mg·L-1 | 12 818.9aA | 8 696.9bB | 12 624.1aA | 5 218.0bB | |
‘02402’ | CK | 11 815.5aA | 17 602.5aA | 4 464.2bA | 11 146.6aA |
5 000 mg·L-1 | 10 627.1aA | 12 522.5bB | 4 143.3bA | 7 212.2bB | |
8 000 mg·L-1 | 10 545.2aA | 8 255.0cC | 9 702.3aA | 6 086.7bB | |
‘02435’ | CK | 11 955.0aA | 18 230.0aA | 7 383.5cC | 11 022.1aA |
5 000 mg·L-1 | 10 982.5bA | 11 255.0bB | 8 576.3bB | 5 975.9bB | |
8 000 mg·L-1 | 11 866.9aA | 8 655.0cC | 13 574.0aA | 5007.3cB |
盐处理 Treatment | 品种 Variety | 绿叶 Green leaf | 茎鞘 Stem and sheath | 枯叶 Dried leaf | 根 Root |
---|---|---|---|---|---|
CK | ‘日本晴’‘Nipponbare’ | 84.77 abA | 62.45aA | 8.48bcAB | 16.24bB |
‘AB52’ | 125.27aA | 57.87aA | 15.98aA | 20.00aA | |
‘02402’ | 68.29bA | 83.24aA | 4.46cB | 20.55aA | |
‘02435’ | 124.40aA | 79.71aA | 11.28abAB | 21.40aA | |
5 000 mg·L-1 | ‘日本晴’‘Nipponbare’ | 4.97aA | 2.28bB | 1.81aA | 2.50aA |
‘AB52’ | 5.31aA | 2.54bB | 1.61aAB | 3.01aA | |
‘02402’ | 6.63aA | 4.67aA | 1.21bB | 2.65aA | |
‘02435’ | 5.62aA | 2.69bB | 1.70aAB | 2.54aA | |
8 000 mg·L-1 | ‘日本晴’‘Nipponbare’ | 4.86aA | 1.66aA | 2.36aA | 1.77bcA |
‘AB52’ | 5.09aA | 1.93aA | 2.09bAB | 1.98abA | |
‘02402’ | 4.68aA | 1.76aA | 1.78bB | 2.04aA | |
‘02435’ | 4.85aA | 1.46aA | 2.31aA1.72 c A |
表5 植株不同部位K+/Na+比
Table 5 Content ratio of K+ to Na+ in different organ of rice seedling
盐处理 Treatment | 品种 Variety | 绿叶 Green leaf | 茎鞘 Stem and sheath | 枯叶 Dried leaf | 根 Root |
---|---|---|---|---|---|
CK | ‘日本晴’‘Nipponbare’ | 84.77 abA | 62.45aA | 8.48bcAB | 16.24bB |
‘AB52’ | 125.27aA | 57.87aA | 15.98aA | 20.00aA | |
‘02402’ | 68.29bA | 83.24aA | 4.46cB | 20.55aA | |
‘02435’ | 124.40aA | 79.71aA | 11.28abAB | 21.40aA | |
5 000 mg·L-1 | ‘日本晴’‘Nipponbare’ | 4.97aA | 2.28bB | 1.81aA | 2.50aA |
‘AB52’ | 5.31aA | 2.54bB | 1.61aAB | 3.01aA | |
‘02402’ | 6.63aA | 4.67aA | 1.21bB | 2.65aA | |
‘02435’ | 5.62aA | 2.69bB | 1.70aAB | 2.54aA | |
8 000 mg·L-1 | ‘日本晴’‘Nipponbare’ | 4.86aA | 1.66aA | 2.36aA | 1.77bcA |
‘AB52’ | 5.09aA | 1.93aA | 2.09bAB | 1.98abA | |
‘02402’ | 4.68aA | 1.76aA | 1.78bB | 2.04aA | |
‘02435’ | 4.85aA | 1.46aA | 2.31aA1.72 c A |
[1] | Akita S, Cabuslay GS (1990). Physiological basis of differential response to salinity in rice cultivars. Plant and Soil, 123,277-294. |
[2] | Basu S, Gangopadhyay G, Mukherjee BB (2002). Salt tolerance in rice in vitro: implication of accumulation of Na, K and proline. Plant Cell, Tissue, and Organ Culture, 69,55-64. |
[3] | Chen DM (陈德明), Yu RP (俞仁培) (1998). Salt-resistance and ionic characteristics of three wheat varieties under salt stress. Acta Pedologica Sinica (土壤学报), 35,88-94. (in Chinese with English abstract) |
[4] | Chinnusamy V, Jagendorf A, Zhu JK (2005). Understanding and improving salt tolerance in plants. Crop Science, 45,437-448. |
[5] | Laurie S, Feeney KA, Maathuis FJM, Heard PJ, Brown SJ, Leigh RA (2002). A role for HKT1 in sodium uptake by wheat roots. The Plant Journal : for Cell and Molecular Biology, 32,39-149. |
[6] |
Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004). QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theoretical and Applied Genetics, 108,253-260.
URL PMID |
[7] | Maathuis FJM, Amtmann A (1999). K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Annals of Botany, 84,123-133. |
[8] | Munns R, Termaat A (1986). Whole plant responses to salinity. Australian Journal of Plant Physiology, 13,143-160. |
[9] | Qiu SP (邱生平), Zhou GA (周国安), Lu JF (陆驹飞), Huang J (黄骥), Pan LJ (潘丽娟), Wang JF (王建飞), Yang Q (杨清), Zhang HS (张红生) (2006). Molecular cloning and expression analysis of a new vacuolar Na+/H + antiporter gene in rice (Oryza sativa). Chinese Journal of Rice Science (中国水稻科学), 20,119-124. (in Chinese with English abstract) |
[10] |
Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005). A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 37,1141-1146.
URL PMID |
[11] | Sun XF (孙小芳), Liu YL (刘友良) (2000). Distribution of Na+ and K+ in cotton plant under NaCl stress and salt tolerance. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 20,1027-1033. (in Chinese with English abstract) |
[12] |
Tester M, Davenport RJ (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91,503-527.
URL PMID |
[13] | Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Mutos S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI (2000). The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in saccharomyces cerevisiae. Plant Physiology, 122,1249-1259. |
[14] |
Wu SJ, Ding L, Zhu JK (1996). SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell, 8,617-627.
DOI URL PMID |
[15] | Yan B (晏斌), Dai QJ (戴秋杰) (1994). Effect of external K+ level on salt tolerance of rice seedlings. Chinese Journal of Rice Science (中国水稻科学), 8,119-122. (in Chinese with English abstract) |
[16] | Yan B (晏斌), Wang ZL (汪宗立) (1992). Absorption of sodium ion and function of plasma membrane ATPase in roots of two rice varieties under salt stress. Chinese Journal of Rice Science (中国水稻科学), 6,29-34. (in Chinese with English abstract) |
[17] | Yan B (晏斌), Wang ZL (汪宗立) (1994). Sodium ion distribution in rice seedling and varietal salt tolerance. Jiangsu Journal of Agricultural Sciences (江苏农业学报), 10(1),1-6. (in Chinese with English abstract) |
[18] | Yan XL (严小龙), Zheng SL (郑少玲), Lian ZH (连兆煌) (1992). Studies on the mechanisms of salt tolerance in rice. Ⅰ. Comparisons of whote-plant salt tolerance among different genotypes. Journal of South China Agricultural University (华南农业大学学报), 13(4),19-24. (in Chinese with English abstract) |
[19] | Yang XY (杨晓英), Zhang WH (章文华), Wang QY (王庆亚), Liu YL (刘友良) (2003). Salt tolerance of wild soybeans in Jiangsu and its relation with ionic distribution and selective transportation. Chinese Joural of Applied Ecology (应用生态学报), 14,2237-2240. (in Chinese with English abstract) |
[20] | Yeo AR, Flowers TJ (1983). Varietal differences in the toxicity of sedium ion in rice leaves. Physiologia Plantarum, 59,189-195. |
[21] | Yeo AR, Flowers TJ (1986). Salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soil. Australian Journal of Plant Physiology, 13,161-173. |
[22] |
Zhu JK (2003). Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6,441-445.
URL PMID |
[1] | 杨升, 张华新, 陈秋夏, 杨秀艳. 沙枣幼苗根尖离子流对NaCl胁迫的响应[J]. 植物生态学报, 2017, 41(4): 489-496. |
[2] | 孔庆仙, 夏江宝, 赵自国, 屈凡柱. 不同地下水矿化度对柽柳光合特征及树干液流的影响[J]. 植物生态学报, 2016, 40(12): 1298-1309. |
[3] | 郭瑞, 李峰, 周际, 李昊儒, 夏旭, 刘琪. 亚麻响应盐、碱胁迫的生理特征[J]. 植物生态学报, 2016, 40(1): 69-79. |
[4] | 孟德云, 侯林琳, 杨莎, 孟静静, 郭峰, 李新国, 万书波. 外源多胺对盆栽花生盐胁迫的缓解作用[J]. 植物生态学报, 2015, 39(12): 1209-1215. |
[5] | 胡楚琦, 刘金珂, 王天弘, 王文琳, 卢山, 周长芳. 三种盐胁迫对互花米草和芦苇光合作用的影响[J]. 植物生态学报, 2015, 39(1): 92-103. |
[6] | 沙依然·外力,李秉柏,张佳华,杨沈斌. 水稻模拟模型在高温敏感性研究中的应用[J]. 植物生态学报, 2014, 38(5): 515-528. |
[7] | 陆嘉惠, 吕新, 梁永超, 林海荣. 新疆胀果甘草幼苗耐盐性及对NaCl胁迫的离子响应[J]. 植物生态学报, 2013, 37(9): 839-850. |
[8] | 吕晋慧,任磊,李艳锋,王玄,赵夏陆,张春来. 不同基因型茶菊对盐胁迫的响应[J]. 植物生态学报, 2013, 37(7): 656-664. |
[9] | 陈坚,李妮亚,刘强,钟才荣,黄敏,曾佳. NaCl处理下两种引进红树的光合及抗氧化防御能力[J]. 植物生态学报, 2013, 37(5): 443-453. |
[10] | 慈敦伟,戴良香,宋文武,张智猛. 花生萌发至苗期耐盐胁迫的基因型差异[J]. 植物生态学报, 2013, 37(11): 1018-1027. |
[11] | 邹媛媛, 刘琳, 刘洋, 赵亮, 邓启云, 吴俊, 庄文, 宋未. 不同水稻品种种子固有细菌群落的多样性[J]. 植物生态学报, 2012, 36(8): 880-890. |
[12] | 隗溟,廖学群,李冬霞,段海龙. 水稻分蘖节位生产力比较[J]. 植物生态学报, 2012, 36(4): 324-332. |
[13] | 宋旭丽, 胡春梅, 孟静静, 侯喜林, 何启伟, 李新国. NaCl胁迫加重强光胁迫下超大甜椒叶片的光系统II和光系统I的光抑制[J]. 植物生态学报, 2011, 35(6): 681-686. |
[14] | 顾东祥, 汤亮, 徐其军, 雷晓俊, 曹卫星, 朱艳. 水氮处理下不同品种水稻根系生长分布特征[J]. 植物生态学报, 2011, 35(5): 558-566. |
[15] | 陈洁, 汤亮, 刘小军, 曹卫星, 朱艳. 基于植株碳流的水稻籽粒淀粉积累模拟模型[J]. 植物生态学报, 2011, 35(4): 431-440. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 3268
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 5944
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La