植物生态学报 ›› 2015, Vol. 39 ›› Issue (7): 762-772.DOI: 10.17521/cjpe.2015.0073
• 研究论文 • 上一篇
胡俊靖1,2, 陈双林1, 郭子武1,*(), 陈卫军2, 杨清平1, 李迎春1
出版日期:
2015-07-01
发布日期:
2015-07-22
通讯作者:
郭子武
作者简介:
*作者简介:E-mail:
基金资助:
HU Jun-Jing1,2, CHEN Shuang-Lin1, GUO Zi-Wu1,*(), CHEN Wei-Jun2, YANG Qing-Ping1, LI Ying-Chun1
Online:
2015-07-01
Published:
2015-07-22
Contact:
Zi-Wu GUO
About author:
# Co-first authors
摘要:
生理整合是克隆植物实现资源共享, 增强对异质生境适应能力的重要手段。其中, 水分生理整合是克隆植物最为重要的生理整合, 解析竹子水分生理整合特征对于竹林水分科学管理具有重要意义。该研究以分株地下茎相连的美丽箬竹(Indocalamus decorus)盆栽苗为试验材料, 设置2个盆栽基质相对含水率(高水势(90% ± 5%)和低水势(30% ± 5%))和5个分株比例(1:3、1:2、1:1、2:1、3:1, 高水势分株与低水势分株数量比值, 地下茎相连的分株总数12株)处理。处理后15、30、45、60天分别取不同处理的克隆分株成熟叶测定抗氧化酶活性、相对电导率和丙二醛含量、可溶性蛋白质含量、光合色素含量, 分析基于分株比例的美丽箬竹水分生理整合方向、强度和效率的变化规律。结果表明: 在异质水分条件下, 美丽箬竹分株间存在着从高水势供体分株向低水势受体分株进行水分转移的生理整合作用, 并随着分株比例的增大, 整合强度增强, 受体分株获益提高, 供体分株耗损增大。随着处理时间的延长, 处理前期分株间水分生理整合强度增强, 处理后期整合强度减弱, 反映出供体分株与受体分株间耗-益在时间序列上是有变化的, 处理前期耗-益更为明显。研究表明克隆系统分株比例对竹子水分生理整合有重要影响, 分株间水分梯度差是水分传导的潜在驱动力, 决定水分生理整合方向、强度和效率的是分株间水分供需关系。
胡俊靖, 陈双林, 郭子武, 陈卫军, 杨清平, 李迎春. 美丽箬竹水分生理整合的分株比例效应——基于叶片抗氧化系统与光合色素. 植物生态学报, 2015, 39(7): 762-772. DOI: 10.17521/cjpe.2015.0073
HU Jun-Jing,CHEN Shuang-Lin,GUO Zi-Wu,CHEN Wei-Jun,YANG Qing-Ping,LI Ying-Chun. Divergent ramet ratio affects water physiological integration in Indocalamus decorus: Activity of antioxidant system and photosynthetic pigment content. Chinese Journal of Plant Ecology, 2015, 39(7): 762-772. DOI: 10.17521/cjpe.2015.0073
变异来源 Variation source | 处理 Treatment | 测定指标 Determined indexes | df | F | p |
---|---|---|---|---|---|
分株比例 Ramet ratio (R) | 高水势分株 High water potential ramet | CAT活性 CAT activity | 4 | 76 | <0.001 |
POD活性 POD activity | 4 | 9 | 0.002 | ||
SOD活性 SOD activity | 4 | 15 | <0.001 | ||
低水势分株 Low water potential ramet | CAT活性 CAT activity | 4 | 25 | <0.001 | |
POD活性 POD activity | 4 | 39 | <0.001 | ||
SOD活性 SOD activity | 4 | 50 | <0.001 | ||
处理时间 Treatment time (T) | 高水势分株 High water potential ramet | CAT活性 CAT activity | 3 | 217 | <0.001 |
POD活性 POD activity | 3 | 101 | <0.001 | ||
SOD活性 SOD activity | 3 | 743 | <0.001 | ||
低水势分株 Low water potential ramet | CAT活性 CAT activity | 3 | 2 257 | <0.001 | |
POD活性 POD activity | 3 | 70 | <0.001 | ||
SOD活性 SOD activity | 3 | 384 | <0.001 | ||
R × T | 高水势分株 High water potential ramet | CAT活性 CAT activity | 12 | 12 | <0.001 |
POD活性 POD activity | 12 | 3 | 0.007 | ||
SOD活性 SOD activity | 12 | 39 | <0.001 | ||
低水势分株 Low water potential ramet | CAT活性 CAT activity | 12 | 18 | <0.001 | |
POD活性 POD activity | 12 | 6 | <0.001 | ||
SOD活性 SOD activity | 12 | 5 | <0.001 |
表1 实验处理美丽箬竹克隆分株叶片抗氧化酶活性重复测量方差分析结果
Table 1 Statistical results of a repeated-measures ANOVA for leaf antioxidant enzyme activity of Indocalamus decorus ramets
变异来源 Variation source | 处理 Treatment | 测定指标 Determined indexes | df | F | p |
---|---|---|---|---|---|
分株比例 Ramet ratio (R) | 高水势分株 High water potential ramet | CAT活性 CAT activity | 4 | 76 | <0.001 |
POD活性 POD activity | 4 | 9 | 0.002 | ||
SOD活性 SOD activity | 4 | 15 | <0.001 | ||
低水势分株 Low water potential ramet | CAT活性 CAT activity | 4 | 25 | <0.001 | |
POD活性 POD activity | 4 | 39 | <0.001 | ||
SOD活性 SOD activity | 4 | 50 | <0.001 | ||
处理时间 Treatment time (T) | 高水势分株 High water potential ramet | CAT活性 CAT activity | 3 | 217 | <0.001 |
POD活性 POD activity | 3 | 101 | <0.001 | ||
SOD活性 SOD activity | 3 | 743 | <0.001 | ||
低水势分株 Low water potential ramet | CAT活性 CAT activity | 3 | 2 257 | <0.001 | |
POD活性 POD activity | 3 | 70 | <0.001 | ||
SOD活性 SOD activity | 3 | 384 | <0.001 | ||
R × T | 高水势分株 High water potential ramet | CAT活性 CAT activity | 12 | 12 | <0.001 |
POD活性 POD activity | 12 | 3 | 0.007 | ||
SOD活性 SOD activity | 12 | 39 | <0.001 | ||
低水势分株 Low water potential ramet | CAT活性 CAT activity | 12 | 18 | <0.001 | |
POD活性 POD activity | 12 | 6 | <0.001 | ||
SOD活性 SOD activity | 12 | 5 | <0.001 |
图1 实验处理美丽箬竹克隆分株叶片抗氧化酶活性(平均值±标准偏差)。H, 高水势分株; L, 低水势分株。1, 1:3分株比例; 2, 1:2分株比例; 3, 1:1 分株比例; 4, 2:1分株比例; 5, 3:1分株比例。大写字母示同一处理相同指标不同时间比较, 小写字母示不同处理相同指标同一时间比较。字母不同示差异显著(p < 0.05)。
Fig. 1 Leaf antioxidant enzyme activity of Indocalamus decorus ramets in different experimental treatments (mean ± SD). H, high water potential ramet; L, low water potential ramet; 1, 1:3 ramet ratio; 2, 1:2 ramet ratio; 3, 1:1 ramet ratio; 4, 2:1 ramet ratio; 5, 3:1 ramet ratio. Capital letters indicated the comparison between the same treatments with same index at the different time periods; lowercase letters indicated the comparison between the different treatments with same index at the same time. Different letters indicated significance at 0.05 levels. CAT, POD, SOD see Table 1.
变异来源 Variation source | 处理 Treatment | 测定指标 Determined indexes | df | F | p |
---|---|---|---|---|---|
分株比例 Ramet ratio (R) | 高水势分株 High water potential ramet | MDA | 4 | 108.6 | <0.001 |
REC | 4 | 21.3 | <0.001 | ||
SP | 4 | 38.0 | <0.001 | ||
低水势分株 Low water potential ramet | MDA | 4 | 22.7 | <0.001 | |
REC | 4 | 130.4 | <0.001 | ||
SP | 4 | 22.9 | <0.001 | ||
处理时间 Treatment time (T) | 高水势分株 High water potential ramet | MDA | 3 | 364.2 | <0.001 |
REC | 3 | 152.2 | <0.001 | ||
SP | 3 | 690.0 | <0.001 | ||
低水势分株 Low water potential ramet | MDA | 3 | 165.1 | <0.001 | |
REC | 3 | 112.6 | <0.001 | ||
SP | 3 | 1 447.3 | <0.001 | ||
R × T | 高水势分株 High water potential ramet | MDA | 12 | 17.4 | <0.001 |
REC | 12 | 23.2 | <0.001 | ||
SP | 12 | 17.7 | <0.001 | ||
低水势分株 Low water potential ramet | MDA | 12 | 22.0 | <0.001 | |
REC | 12 | 7.4 | <0.001 | ||
SP | 12 | 14.9 | <0.001 |
表2 实验处理美丽箬竹克隆分株叶片相对电导率(REC)、丙二醛含量(MDA)和可溶性蛋白质含量(SP)重复测量方差分析结果
Table 2 ANOVA results of the repeated-measures for leaf relative electric conductivity (REC), malondialdehyde content (MDA), soluble protein content (SP) of Indocalamus decorus ramets
变异来源 Variation source | 处理 Treatment | 测定指标 Determined indexes | df | F | p |
---|---|---|---|---|---|
分株比例 Ramet ratio (R) | 高水势分株 High water potential ramet | MDA | 4 | 108.6 | <0.001 |
REC | 4 | 21.3 | <0.001 | ||
SP | 4 | 38.0 | <0.001 | ||
低水势分株 Low water potential ramet | MDA | 4 | 22.7 | <0.001 | |
REC | 4 | 130.4 | <0.001 | ||
SP | 4 | 22.9 | <0.001 | ||
处理时间 Treatment time (T) | 高水势分株 High water potential ramet | MDA | 3 | 364.2 | <0.001 |
REC | 3 | 152.2 | <0.001 | ||
SP | 3 | 690.0 | <0.001 | ||
低水势分株 Low water potential ramet | MDA | 3 | 165.1 | <0.001 | |
REC | 3 | 112.6 | <0.001 | ||
SP | 3 | 1 447.3 | <0.001 | ||
R × T | 高水势分株 High water potential ramet | MDA | 12 | 17.4 | <0.001 |
REC | 12 | 23.2 | <0.001 | ||
SP | 12 | 17.7 | <0.001 | ||
低水势分株 Low water potential ramet | MDA | 12 | 22.0 | <0.001 | |
REC | 12 | 7.4 | <0.001 | ||
SP | 12 | 14.9 | <0.001 |
分株 Ramet | 分株水势 Water potential | 分株比例 Ramet ratio | 处理时间 Treatment time (d) | ||||
---|---|---|---|---|---|---|---|
15 | 30 | 45 | 60 | ||||
H1 | 高 High | 1:3 | MDA | 0.328 ± 0.032bD | 0.448 ± 0.006bB | 0.571 ± 0.027cA | 0.390 ± 0.010cC |
REC | 0.197 ± 0.027abB | 0.233 ± 0.024bcA | 0.185 ± 0.007aB | 0.129 ± 0.008cC | |||
SP | 8.83 ± 0.56aC | 12.67 ± 1.82bcB | 27.80 ± 2.25aA | 13.38 ± 0.46aB | |||
H2 | 高 High | 1:2 | MDA | 0.388 ± 0.006aC | 0.462 ± 0.010bB | 0.549 ± 0.044cA | 0.433 ± 0.045cBC |
REC | 0.192 ± 0.023abA | 0.213 ± 0.034cA | 0.187 ± 0.008aA | 0.135 ± 0.001bB | |||
SP | 8.07 ± 0.12aC | 12.31 ± 0.65cB | 26.00 ± 0.87aA | 12.35 ± 0.68bB | |||
H3 | 高 High | 1:1 | MDA | 0.377 ± 0.010abC | 0.544 ± 0.025aB | 0.871 ± 0.047abA | 0.574 ± 0.038bB |
REC | 0.179 ± 0.006bB | 0.244 ± 0.017bcA | 0.108 ± 0.008cD | 0.141 ± 0.002bC | |||
SP | 6.47 ± 0.49aC | 14.40 ± 0.58abB | 19.70 ± 1.97bA | 7.95 ± 0.61cC | |||
H4 | 高 High | 2:1 | MDA | 0.378 ± 0.023abD | 0.562 ± 0.017aC | 0.820 ± 0.053bA | 0.645 ± 0.032aB |
REC | 0.171 ± 0.019bB | 0.261 ± 0.008bA | 0.137 ± 0.018bC | 0.176 ± 0.016aB | |||
SP | 6.40 ± 0.49bD | 14.74 ± 0.34aB | 19.29 ± 0.54bA | 7.48 ± 0.44cdC | |||
H5 | 高 High | 3:1 | MDA | 0.362 ± 0.059abD | 0.552 ± 0.017aC | 0.892 ± 0.006aA | 0.691 ± 0.017aB |
REC | 0.225 ± 0.009aB | 0.369 ± 0.019aA | 0.113 ± 0.009cD | 0.190 ± 0.012aC | |||
SP | 8.12 ± 0.99aC | 16.06 ± 1.06aB | 21.11 ± 0.77bA | 6.54 ± 0.42dC | |||
L1 | 低 Low | 1:3 | MDA | 0.322 ± 0.017bC | 0.522 ± 0.031abB | 0.709 ± 0.036bA | 0.740 ± 0.036aA |
REC | 0.219 ± 0.021aB | 0.282 ± 0.016aA | 0.217 ± 0.010aB | 0.242 ± 0.007aB | |||
SP | 7.15 ± 0.93aD | 16.11 ± 0.71abB | 21.02 ± 1.16cA | 10.47 ± 0.56dC | |||
L2 | 低 Low | 1:2 | MDA | 0.409 ± 0.031aB | 0.470 ± 0.066bcB | 0.488 ± 0.052cB | 0.663 ± 0.029cB |
REC | 0.216 ± 0.030aB | 0.297 ± 0.012aA | 0.187 ± 0.008bB | 0.192 ± 0.003bB | |||
SP | 5.51 ± 0.20bD | 15.13 ± 0.28bB | 22.93 ± 1.73bcA | 11.35 ± 0.30cdC | |||
L3 | 低 Low | 1:1 | MDA | 0.429 ± 0.044aC | 0.574 ± 0.046aB | 0.985 ± 0.061aA | 0.536 ± 0.059cB |
REC | 0.198 ± 0.010abB | 0.228 ± 0.008bA | 0.142 ± 0.006cD | 0.170 ± 0.003cC | |||
SP | 5.59 ± 0.58bD | 16.22 ± 0.52aB | 23.80 ± 0.34bA | 11.76 ± 0.11bcC | |||
L4 | 低 Low | 2:1 | MDA | 0.438 ± 0.031aB | 0.439 ± 0.036cB | 0.731 ± 0.064bA | 0.493 ± 0.035cB |
REC | 0.170 ± 0.004bcA | 0.179 ± 0.016cA | 0.135 ± 0.019cB | 0.139 ± 0.003dB | |||
SP | 7.99 ± 0.73aC | 13.58 ± 0.50cB | 22.74 ± 0.71bcA | 12.60 ± 0.97bB | |||
L5 | 低 Low | 3:1 | MDA | 0.390 ± 0.012aB | 0.427 ± 0.031cB | 0.768 ± 0.061bA | 0.422 ± 0.010dB |
REC | 0.148 ± 0.004cB | 0.191 ± 0.003cA | 0.149 ± 0.008cB | 0.120 ± 0.006eC | |||
SP | 5.44 ± 0.39bD | 16.47 ± 0.61aB | 28.01 ± 0.98aA | 14.70 ± 0.41aC |
表3 实验处理美丽箬竹克隆分株叶片相对电导率(REC) (%)、丙二醛含量(MDA) (μmol·L-1)和可溶性蛋白质含量(SP) (mg·g-1)
Table 3 Leaf relative electric conductivity (REC) (%), malondialdehyde content (MDA) (μmol·L-1), soluble protein content (SP) (mg·g-1)
分株 Ramet | 分株水势 Water potential | 分株比例 Ramet ratio | 处理时间 Treatment time (d) | ||||
---|---|---|---|---|---|---|---|
15 | 30 | 45 | 60 | ||||
H1 | 高 High | 1:3 | MDA | 0.328 ± 0.032bD | 0.448 ± 0.006bB | 0.571 ± 0.027cA | 0.390 ± 0.010cC |
REC | 0.197 ± 0.027abB | 0.233 ± 0.024bcA | 0.185 ± 0.007aB | 0.129 ± 0.008cC | |||
SP | 8.83 ± 0.56aC | 12.67 ± 1.82bcB | 27.80 ± 2.25aA | 13.38 ± 0.46aB | |||
H2 | 高 High | 1:2 | MDA | 0.388 ± 0.006aC | 0.462 ± 0.010bB | 0.549 ± 0.044cA | 0.433 ± 0.045cBC |
REC | 0.192 ± 0.023abA | 0.213 ± 0.034cA | 0.187 ± 0.008aA | 0.135 ± 0.001bB | |||
SP | 8.07 ± 0.12aC | 12.31 ± 0.65cB | 26.00 ± 0.87aA | 12.35 ± 0.68bB | |||
H3 | 高 High | 1:1 | MDA | 0.377 ± 0.010abC | 0.544 ± 0.025aB | 0.871 ± 0.047abA | 0.574 ± 0.038bB |
REC | 0.179 ± 0.006bB | 0.244 ± 0.017bcA | 0.108 ± 0.008cD | 0.141 ± 0.002bC | |||
SP | 6.47 ± 0.49aC | 14.40 ± 0.58abB | 19.70 ± 1.97bA | 7.95 ± 0.61cC | |||
H4 | 高 High | 2:1 | MDA | 0.378 ± 0.023abD | 0.562 ± 0.017aC | 0.820 ± 0.053bA | 0.645 ± 0.032aB |
REC | 0.171 ± 0.019bB | 0.261 ± 0.008bA | 0.137 ± 0.018bC | 0.176 ± 0.016aB | |||
SP | 6.40 ± 0.49bD | 14.74 ± 0.34aB | 19.29 ± 0.54bA | 7.48 ± 0.44cdC | |||
H5 | 高 High | 3:1 | MDA | 0.362 ± 0.059abD | 0.552 ± 0.017aC | 0.892 ± 0.006aA | 0.691 ± 0.017aB |
REC | 0.225 ± 0.009aB | 0.369 ± 0.019aA | 0.113 ± 0.009cD | 0.190 ± 0.012aC | |||
SP | 8.12 ± 0.99aC | 16.06 ± 1.06aB | 21.11 ± 0.77bA | 6.54 ± 0.42dC | |||
L1 | 低 Low | 1:3 | MDA | 0.322 ± 0.017bC | 0.522 ± 0.031abB | 0.709 ± 0.036bA | 0.740 ± 0.036aA |
REC | 0.219 ± 0.021aB | 0.282 ± 0.016aA | 0.217 ± 0.010aB | 0.242 ± 0.007aB | |||
SP | 7.15 ± 0.93aD | 16.11 ± 0.71abB | 21.02 ± 1.16cA | 10.47 ± 0.56dC | |||
L2 | 低 Low | 1:2 | MDA | 0.409 ± 0.031aB | 0.470 ± 0.066bcB | 0.488 ± 0.052cB | 0.663 ± 0.029cB |
REC | 0.216 ± 0.030aB | 0.297 ± 0.012aA | 0.187 ± 0.008bB | 0.192 ± 0.003bB | |||
SP | 5.51 ± 0.20bD | 15.13 ± 0.28bB | 22.93 ± 1.73bcA | 11.35 ± 0.30cdC | |||
L3 | 低 Low | 1:1 | MDA | 0.429 ± 0.044aC | 0.574 ± 0.046aB | 0.985 ± 0.061aA | 0.536 ± 0.059cB |
REC | 0.198 ± 0.010abB | 0.228 ± 0.008bA | 0.142 ± 0.006cD | 0.170 ± 0.003cC | |||
SP | 5.59 ± 0.58bD | 16.22 ± 0.52aB | 23.80 ± 0.34bA | 11.76 ± 0.11bcC | |||
L4 | 低 Low | 2:1 | MDA | 0.438 ± 0.031aB | 0.439 ± 0.036cB | 0.731 ± 0.064bA | 0.493 ± 0.035cB |
REC | 0.170 ± 0.004bcA | 0.179 ± 0.016cA | 0.135 ± 0.019cB | 0.139 ± 0.003dB | |||
SP | 7.99 ± 0.73aC | 13.58 ± 0.50cB | 22.74 ± 0.71bcA | 12.60 ± 0.97bB | |||
L5 | 低 Low | 3:1 | MDA | 0.390 ± 0.012aB | 0.427 ± 0.031cB | 0.768 ± 0.061bA | 0.422 ± 0.010dB |
REC | 0.148 ± 0.004cB | 0.191 ± 0.003cA | 0.149 ± 0.008cB | 0.120 ± 0.006eC | |||
SP | 5.44 ± 0.39bD | 16.47 ± 0.61aB | 28.01 ± 0.98aA | 14.70 ± 0.41aC |
变异来源 Variation source | 处理 Treatment | 测定指标 Determined indexes | df | F | p |
---|---|---|---|---|---|
分株比例 Ramet ratio (R) | 高水势分株 High water potential ramet | Chl a | 4 | 7.6 | 0.004 |
Chl b | 4 | 45.9 | <0.001 | ||
Car | 4 | 12.3 | 0.001 | ||
低水势分株 Low water potential ramet | Chl a | 4 | 22.9 | <0.001 | |
Chl b | 4 | 25. | <0.001 | ||
Car | 4 | 59.4 | <0.001 | ||
处理时间 Treatment time (T) | 高水势分株 High water potential ramet | Chl a | 3 | 71.5 | <0.001 |
Chl b | 3 | 199.5 | <0.001 | ||
Car | 3 | 34.1 | <0.001 | ||
低水势分株 Low water potential ramet | Chl a | 3 | 23.9 | <0.001 | |
Chl b | 3 | 40.9 | <0.001 | ||
Car | 3 | 118.9 | <0.001 | ||
R × T | 高水势分株 High water potential ramet | Chl a | 12 | 7.9 | <0.001 |
Chl b | 12 | 14.8 | <0.001 | ||
Car | 12 | 1.8 | 0.088 | ||
低水势分株 Low water potential ramet | Chl a | 12 | 1.3 | 0.269 | |
Chl b | 12 | 0.9 | 0.553 | ||
Car | 12 | 6.2 | <0.001 |
表4 实验处理美丽箬竹克隆分株叶片光合色素含量重复测量方差分析结果
Table 4 ANOVA results for repeated measurements in leaf photosynthetic pigment contents content of Indocalamus decorus ramets
变异来源 Variation source | 处理 Treatment | 测定指标 Determined indexes | df | F | p |
---|---|---|---|---|---|
分株比例 Ramet ratio (R) | 高水势分株 High water potential ramet | Chl a | 4 | 7.6 | 0.004 |
Chl b | 4 | 45.9 | <0.001 | ||
Car | 4 | 12.3 | 0.001 | ||
低水势分株 Low water potential ramet | Chl a | 4 | 22.9 | <0.001 | |
Chl b | 4 | 25. | <0.001 | ||
Car | 4 | 59.4 | <0.001 | ||
处理时间 Treatment time (T) | 高水势分株 High water potential ramet | Chl a | 3 | 71.5 | <0.001 |
Chl b | 3 | 199.5 | <0.001 | ||
Car | 3 | 34.1 | <0.001 | ||
低水势分株 Low water potential ramet | Chl a | 3 | 23.9 | <0.001 | |
Chl b | 3 | 40.9 | <0.001 | ||
Car | 3 | 118.9 | <0.001 | ||
R × T | 高水势分株 High water potential ramet | Chl a | 12 | 7.9 | <0.001 |
Chl b | 12 | 14.8 | <0.001 | ||
Car | 12 | 1.8 | 0.088 | ||
低水势分株 Low water potential ramet | Chl a | 12 | 1.3 | 0.269 | |
Chl b | 12 | 0.9 | 0.553 | ||
Car | 12 | 6.2 | <0.001 |
图2 实验处理美丽箬竹克隆分株光合色素含量(平均值±标准偏差)。H, 高水势分株; L, 低水势分株。1, 1:3分株比例; 2, 1:2分株比例; 3, 1:1 分株比例; 4, 2:1分株比例; 5, 3:1分株比例。大写字母示同一处理相同指标不同时间比较, 小写字母示不同处理相同指标同一时间比较。字母不同表示差异显著(p < 0.05)。
Fig. 2 Leaf photosynthetic pigment contents in Indocalamus decorus ramets under different water conditions (mean ± SD). H, high water potential ramet; L, low water potential ramet; 1, 1:3 ramet ratio; 2, 1:2 ramet ratio; 3, 1:1 ramet ratio; 4, 2:1 ramet ratio; 5, 3;1 ramet ratio. Capital letters indicated the comparison between the same treatments with same index at the different times; lowercase letters indicated the comparison between the different treatment with same index at the same time. Different letters indicated significant level of p = 0.05. Chl a, Chl b, Car see Table 4.
[1] | Alpert P (1999). Clonal integration in Fragaria chiloensis differs between populations: Ramets from grassland are selfish.Oecologia, 120, 69-76. |
[2] | de Kroons H, Hutchings MJ (1995). Morphological plasticity in clonal plants: The foraging concept reconsidered.Journal of Ecology, 83, 143-152. |
[3] | Dong M (2011). Clonal Plant Ecology. Science Press, Beijing. |
(in Chinese) [董鸣 (2011). 克隆植物生态学. 科学出版社, 北京.] | |
[4] | Dong WY (2002). Current situation about the research of bamboo clonal population ecology and its application prospect.Forest Research, 15, 235-241. |
(in Chinese with English abstract) [董文渊 (2002). 竹类无性系种群生态学研究现状及其应用前景. 林业科学研究, 15, 235-241.] | |
[5] | Gu DX, Chen SL (2012). Physiological adaptation of Oligostachyum lubricum under water stress.Acta Botanica Boreali-Occidentalia Sinica, 32, 751-758. |
(in Chinese with English abstract) [顾大形, 陈双林 (2012). 四季竹对土壤水分胁迫的生理适应. 西北植物学报, 32, 751-758.] | |
[6] | He Y (2014). Effects of Water Heterogenous Condition on Photosynthesis and Antioxidant Enzymes of Clonal Plant Zoysia japonica. Master degree dissertation, Liaoning University, Shenyang. |
(in Chinese with English abstract) [何月 (2014). 水分异质性对克隆植物结缕草光合和抗氧化酶的影响. 硕士学位论文, 辽宁大学, 沈阳.] | |
[7] | Hu JJ, Chen WJ, Guo ZW, Chen SL, Yang QP, Li YC (2015). Effect analysis of water physiological integration of Indocalamus decorus based on antioxidant system.Chinese Journal of Ecology, 34, 962-966. |
(in Chinese with English abstract) [胡俊靖, 陈卫军, 郭子武, 陈双林, 杨清平, 李迎春 (2015). 基于抗氧化系统的美丽箬竹水分生理整合作用分析. 生态学杂志, 34, 962-966.] | |
[8] | Jónsdóttir IS, Callaghan TV (1990). Intraclonal translocation of ammonium and nitrate nitrogen in Carex bigelowii Torr. ex Schwein. using 15N and nitrate reductase assays.New Phytologist, 114, 419-426. |
[9] | Li HS (2000). Principles and Techniques of Plant Physiological Biochemical Experiment. Higher Education Press, Beijing. |
(in Chinese) [李合生 (2000). 植物生理生化实验原理和技术. 高等教育出版社, 北京.] | |
[10] | Li Q, Liu X, Yue M, Tang WT, Meng QC (2011). Response of physiological integration in Trifolium repens to heterogeneity of UV-B radiation.Flora, 206, 712-719. |
[11] | Li Q, Liu X, Zhang XF, Zhang RC, Chai YF, Yue M (2014). Effects of UV-B radiation direction on physiological integration in Trifolium repens.Acta Ecologica Sinica, 34, 3568-3575. |
(in Chinese with English abstract) [李倩, 刘晓, 张晓飞, 张瑞昌, 柴永福, 岳明 (2014). UV-B辐射方向对白三叶克隆整合的影响. 生态学报, 34, 3568-3575.] | |
[12] | Li YH (2008). Study on Clonal Physiological Integration of Kingdonia uniflora. Master degree dissertation, Northwest University, Xi’an. |
(in Chinese with English abstract) [李育花 (2008). 独叶草无性系种群生理整合研究. 硕士学位论文, 西北大学, 西安.] | |
[13] | Liu FH, Liu J, Yu FH, Dong M (2007). Water integration patterns in two rhizomatous dune perennials of different clonal fragment size.Flora, 202, 106-110. |
[14] | Mao SY, Liu DH, Jiang CD, Shi L, Zhang JZ, Xing Q, Liu LA (2009). The effects of water stress on water translocation and photosynthetic characteristics between clonal ramets in Strawberry.Acta Ecologica Sinica, 29, 6446-6457. |
(in Chinese with English abstract) [毛舒燕, 刘东焕, 姜闯道, 石雷, 张金政, 邢权, 刘立安 (2009). 水分胁迫条件下草莓克隆分株间水分调控及其对光合功能的影响. 生态学报, 29, 6446-6457.] | |
[15] | Oborny B, Kum Á (2001). Fragmentation of clones: How does it influence dispersal and competitive ability?Evolutionary Ecology, 15, 319-346. |
[16] | Qian YQ (2008). Physiological Integration and Its Regulation between Inter-ramet of Buffalograss under Heterogeneous Water Stress. PhD dissertation, Chinese Academy of Forestry, Beijing. |
(in Chinese with English abstract) [钱永强 (2008). 异质性水分胁迫下野牛草克隆分株间生理整合及其调控机理. 博士学位论文, 中国林业科学研究院, 北京.] | |
[17] | Saitoh T, Seiwa K, Nishiwaki A (2002). Importance of physiological integration of dwarf bamboo to persistence in forest understorey: A field experiment.Journal of Ecology, 90, 78-85. |
[18] | Saitoh T, Seiwa K, Nishiwaki A (2006). Effects of resource heterogeneity on nitrogen translocation within clonal fragments of Sasa palmata: An isotopic (15N) assessment.Annals of Botany, 98, 657-663. |
[19] | Shi JM, Ye XH, Chen FS, Yang QP, Li ZY, Fang K, Yang GY (2014). Adaptation of bamboo to heterogeneous habitat: Phenotypic plasticity.Acta Ecologica Sinica, 34, 5687-5695. |
(in Chinese with English abstract) [施建敏, 叶学华, 陈伏生, 杨清培, 黎祖尧, 方楷, 杨光耀 (2014). 竹类植物对异质生境的适应——表型可塑性. 生态学报, 34, 5687-5695.] | |
[20] | Slade AJ, Hutchings MJ (1987a). The effects of nutrient availability on foraging in the clonal herb Glechoma hederacea.Journal of Ecology, 75, 95-112. |
[21] | Slade AJ, Hutchings MJ (1987b). The effects of light intensity on foraging in the clonal herb Glechoma hederacea. Journal of Ecology, 75, 639-650. |
[22] | Stuefer JF (1996). Potential and limitations of current concepts regarding the response of clonal plants to environmental heterogeneity.Vegetatio, 127, 55-70. |
[23] | Whitlock MC, Davis BH, Yeaman S (2007). The costs and benefits of resource sharing: Reciprocity requires resource heterogeneity.Journal of Evolutionary Biology, 20, 1772-1782. |
[24] | Ying YQ, Guo J, Wei JF, Jiang Q, Xie NN (2011). Effects of drought stress on physiological characteristics of Phyllostachys edulis seedlings.Chinese Journal of Ecology, 30, 262-266. |
(in Chinese with English abstract) [应叶青, 郭璟, 魏建芬, 姜琴, 解楠楠 (2011). 干旱胁迫对毛竹幼苗生理特性的影响. 生态学杂志, 30, 262-266.] | |
[25] | You WH, Yu D, Liu CH, Xie D, Xie W (2013). Clonal integration facilitates invasiveness of the alien aquatic plant Myriophyllum aquaticum L. under heterogeneous water availability.Hydrobiologia, 718, 27-39. |
[26] | Yu FH, Dong M, Krüsi B (2004). Clonal integration helps Psammochloa villosa survive sand burial in an inland dune.New Phytologist, 162, 697-704. |
[27] | Yu FH, Dong M, Zhang CY (2002). Intraclonal resource sharing and functional specialization of ramets in response to resource heterogeneity in three stoloniferous herbs.Acta Botanica Sinica, 44, 468-473. |
[28] | Zhang CY, Yang C, Dong M (2001). The clonal integration of photosynthates in the rhizomatous halfshrub Hedysarum laeve.Acta Ecologica Sinica, 21, 1986-1993. |
(in Chinese with English abstract) [张称意, 杨持, 董鸣 (2001). 根茎半灌木羊柴对光合同化物的克隆整合. 生态学报, 21, 1986-1993.] | |
[29] | Zhang LL, Dong M, Li RQ, Wang YH, Cui GQ, He WM (2007). Soil-nutrient patch contrast modifies intensity and direction of clonal integration in Glechoma longituba. Journal of Plant Ecology (Chinese Version), 31, 619-624. |
(in Chinese with English abstract) [张丽丽, 董鸣, 李仁强, 王艳红, 崔清国, 何维明 (2007). 土壤养分斑块对比度改变活血丹克隆整合强度和方向. 植物生态学报, 31, 619-624.] | |
[30] | Zhang XY, Fan DY, Xie ZQ, Xiong GM, Li ZJ (2010). Clonal integration enhances performance of Cynodon dactylon subjected to submergence. Chinese Journal of Plant Ecology, 34, 1075-1083. |
(in Chinese with English abstract) [张想英, 樊大勇, 谢宗强, 熊高明, 李兆佳 (2010). 克隆整合有助于狗牙根抵御水淹. 植物生态学报, 34, 1075-1083.] | |
[31] | Zhu ZL, Li DZ, Wang XP, Sheng LJ, Shi Q (2006). Water physiology integration and its ecological effect of clonal plants.Acta Botanica Boreali-Occidentalia Sinica, 26, 2602-2614. |
(in Chinese with English abstract) [朱志玲, 李德志, 王绪平, 盛丽娟, 石强 (2006). 克隆植物的水分生理整合及其生态效应. 西北植物学报, 26, 2602-2614.] | |
[32] | Zhuang MH, Li YC, Chen SL (2011). Advances in the researches of bamboo physiological integration and its ecological significance.Journal of Bamboo Research, 30(2), 5-9. |
(in Chinese with English abstract) [庄明浩, 李迎春, 陈双林 (2011). 竹子生理整合作用的生态学意义及研究进展. 竹子研究汇刊, 30(2), 5-9.] |
[1] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[2] | 冼应男, 张瑛, 李宝珍, 罗沛, 肖润林, 吴金水. 绿狐尾藻光合色素组成及氮磷化学计量学特征对外源铵的响应[J]. 植物生态学报, 2022, 46(4): 451-460. |
[3] | 杨丽婷, 谢燕燕, 左珂怡, 徐森, 谷瑞, 陈双林, 郭子武. 分株比例对异质光环境下美丽箬竹克隆系统光合生理的影响[J]. 植物生态学报, 2022, 46(1): 88-101. |
[4] | 翟占伟, 龚吉蕊, 罗亲普, 潘琰, 宝音陶格涛, 徐沙, 刘敏, 杨丽丽. 氮添加对内蒙古温带草原羊草光合特性的影响[J]. 植物生态学报, 2017, 41(2): 196-208. |
[5] | 邹长明, 王允青, 刘英, 张晓红, 唐杉. 四种豆科作物的光合生理和生长发育对弱光的响应[J]. 植物生态学报, 2015, 39(9): 909-916. |
[6] | 尹海龙, 田长彦. 氮调控对盐环境下甜菜功能叶光系统II荧光特性的影响[J]. 植物生态学报, 2013, 37(2): 122-131. |
[7] | 唐钢梁, 李向义, 林丽莎, 李磊, 鲁建荣. 短期环割对塔克拉玛干沙漠南缘两种荒漠植物的生理影响[J]. 植物生态学报, 2013, 37(12): 1101-1113. |
[8] | 王星星, 刘琳, 张洁, 王玉魁, 温国胜, 高荣孚, 高岩, 张汝民. 毛竹出笋后快速生长期内茎秆中光合色素和光合酶活性的变化[J]. 植物生态学报, 2012, 36(5): 456-462. |
[9] | 师生波, 尚艳霞, 师瑞, 张波. 高山植物美丽风毛菊PSII光化学效率和光合色素对短期增补UV-B辐射的响应[J]. 植物生态学报, 2012, 36(5): 420-430. |
[10] | 焦娟玉, 尹春英, 陈珂. 土壤水、氮供应对麻疯树幼苗光合特性的影响[J]. 植物生态学报, 2011, 35(1): 91-99. |
[11] | 张涛, 安黎哲, 陈拓, 代春艳, 陈年来. 不同海拔青海云杉与祁连圆柏叶片抗氧化系统[J]. 植物生态学报, 2009, 33(4): 802-811. |
[12] | 张巍巍, 郑飞翔, 王效科, 冯兆忠, 欧阳志云. 臭氧对水稻根系活力、可溶性蛋白含量与抗氧化系统的影响[J]. 植物生态学报, 2009, 33(3): 425-432. |
[13] | 康华靖, 刘鹏, 徐根娣, 陈子林, 韦福民. 大盘山自然保护区香果树对不同海拔生境的生理生态响应[J]. 植物生态学报, 2008, 32(4): 865-872. |
[14] | 王强, 张其德, 卢从明, 匡廷云, 李成荃. 超高产杂交稻不同生育期的光合色素含量、净光合速率和水分利用效率[J]. 植物生态学报, 2002, 26(6): 647-651. |
[15] | 张教林, 曹坤芳. 光照对两种热带雨林树种幼苗光合能力、热耗散和抗氧化系统的影响[J]. 植物生态学报, 2002, 26(6): 639-646. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19