植物生态学报 ›› 2013, Vol. 37 ›› Issue (2): 122-131.DOI: 10.3724/SP.J.1258.2013.00013
收稿日期:
2012-11-08
接受日期:
2012-12-10
出版日期:
2013-11-08
发布日期:
2013-01-31
通讯作者:
田长彦
作者简介:
** (E-mail: tianchy@ms.xjb.ac.cn)基金资助:
YIN Hai-Long1,2,3,*(), TIAN Chang-Yan1,3,**(
)
Received:
2012-11-08
Accepted:
2012-12-10
Online:
2013-11-08
Published:
2013-01-31
Contact:
TIAN Chang-Yan
摘要:
采用盆栽试验方法, 以NaCl为盐分模拟不同盐度环境, 研究了施氮(N)对盐环境下生长的甜菜(Beta vulgaris)功能叶光系统II (PSII)荧光特性的影响及光合色素含量的变化。结果表明: 在轻度、中度及重度盐环境下, 施N均能增大PSII最大光化学效率(Fv/Fm)、PSII潜在活性(Fv/Fo)、PSII实际光量子产量(Y(II))、非调节性能量耗散的量子产量(Y(NO))、相对电子传递速率(ETR)及光化学猝灭系数(qP), 且在适宜的施N范围内(0-1.2 g·kg-1)上述参数随施N量的增加而增大。各叶绿素荧光参数光响应的结果表明, 随着光强的增加, 各处理下调节性能量耗散的量子产量(Y(NPQ))、ETR及非光化学猝灭系数(NPQ)呈上升趋势, 相反, Y(II)、Y(NO)及qP则呈下降趋势, 在有效的光强范围内(0-1000 μmol·m-2·s-1)施N提高了甜菜功能叶PSII反应中心的开放程度, 并且在高光强下调节PSII耗散掉过剩的光能以避免对其反应中心造成伤害。各盐度环境下施N也显著增加了甜菜功能叶叶绿素与类胡萝卜素含量, 增大了叶绿素a/叶绿素b值, 且叶绿素与类胡萝卜素含量随施N水平的增加而增加。说明盐环境下施N能够增强甜菜功能叶PSII的活性, 提高PSII光能利用率, 从而增强其对盐渍环境的适应性。
尹海龙, 田长彦. 氮调控对盐环境下甜菜功能叶光系统II荧光特性的影响. 植物生态学报, 2013, 37(2): 122-131. DOI: 10.3724/SP.J.1258.2013.00013
YIN Hai-Long, TIAN Chang-Yan. Effects of nitrogen regulation on photosystem II chlorophyll fluorescence characteristics of functional leaves in sugar beet (Beta vulgaris) under salt environment. Chinese Journal of Plant Ecology, 2013, 37(2): 122-131. DOI: 10.3724/SP.J.1258.2013.00013
图1 不同氮素水平对盐环境下甜菜叶片PSII最大光化学效率(Fv/Fm)与PSII潜在活性(Fv/Fo)的影响(平均值±标准偏差)。不同小写字母表示差异显著(p < 0.05)。
Fig. 1 Effects of different nitrogen levels on PSII maximum photochemical efficiency (Fv/Fm) and PSII potential activity (Fv/Fo) of sugar beet leaves under salt environment (mean ± SD). Different small letters mean significant difference (p < 0.05).
图2 不同氮素水平对盐环境下甜菜叶片PSII实际光合量子产量(Y(II))的影响(平均值±标准偏差)。
Fig. 2 Effects of different nitrogen levels on effective PSII quantum yield (Y(II)) of sugar beet leaves under salt environment (mean ± SD). PAR, photosynthetically active radiation.
图3 不同氮素水平对盐环境下甜菜叶片非调节性能量耗散量子产量(Y(NO))的影响(平均值±标准偏差)。
Fig. 3 Effects of different nitrogen levels on quantum yield of non-regulated energy dissipation (Y(NO)) of sugar beet leaves under salt environment (mean ± SD). PAR, photosynthetically active radiation.
图4 不同氮素水平对盐环境下甜菜叶片调节性能量耗散量子产量(Y(NPQ))的影响(平均值±标准偏差)。
Fig. 4 Effects of different nitrogen levels on quantum yield of regulated energy dissipation (Y(NPQ)) of sugar beet leaves under salt environment (mean ± SD). PAR, photosynthetically active radiation.
图5 不同氮素水平对盐环境下甜菜叶片表观光合电子传递速率(ETR)的影响(平均值±标准偏差)。
Fig. 5 Effects of different nitrogen levels on electron transport rate (ETR) of sugar beet leaves under salt environment (mean ± SD). PAR, photosynthetically active radiation.
图6 不同氮素水平对盐环境下甜菜叶片非光化学淬灭系数(NPQ)的影响(平均值±标准偏差)。
Fig. 6 Effects of different nitrogen levels on coefficient of nonphotochemical quenching (NPQ) of sugar beet leaves under salt environment (mean ± SD). PAR, photosynthetically active radiation.
图7 不同氮素水平对盐环境下甜菜叶片光化学淬灭系数(qP)的影响(平均值±标准偏差)。
Fig. 7 Effects of different nitrogen levels on coefficient of photochemical quenching (qP) of sugar beet leaves under salt environment (mean ± SD). PAR, photosynthetically active radiation.
处理 Treatment | 叶绿素a含量 Chl a content (mg·g-1) | 叶绿素b含量 Chl b content (mg·g-1) | 叶绿素含量 Chl content (mg·g-1) | 类胡萝卜素含量 Car Content (mg·g-1) | 叶绿素a / 叶绿素b Chl a/ Chl b | |
---|---|---|---|---|---|---|
盐度 Salinity (g·kg-1) | 氮素 Nitrogen (g·kg-1) | |||||
2.5 (S1) | 0 (N0) | 0.494 ± 0.066a | 0.185 ± 0.032a | 0.678 ± 0.097a | 0.104 ± 0.015a | 2.688 ± 0.168ab |
0.3 (N1) | 0.857 ± 0.139b | 0.255 ± 0.032a | 1.112 ± 0.171b | 0.184 ± 0.040b | 3.349 ± 0.169d | |
0.6 (N2) | 1.299 ± 0.171c | 0.396 ± 0.044b | 1.695 ± 0.216c | 0.264 ± 0.047cd | 3.273 ± 0.080cd | |
1.2 (N3) | 1.578 ± 0.164d | 0.480 ± 0.069c | 2.058 ± 0.233d | 0.303 ± 0.008de | 3.298 ± 0.134cd | |
2.4 (N4) | 1.582 ± 0.068d | 0.496 ± 0.024c | 2.079 ± 0.092d | 0.322 ± 0.033e | 3.189 ± 0.022bcd | |
5.0 (S2) | 0 (N0) | 0.558 ± 0.144a | 0.242 ± 0.088a | 0.800 ± 0.159a | 0.117 ± 0.062a | 2.509 ± 0.952a |
0.3 (N1) | 1.245 ± 0.074c | 0.392 ± 0.008b | 1.637 ± 0.082c | 0.239 ± 0.013c | 3.178 ± 0.123bcd | |
0.6 (N2) | 1.670 ± 0.221d | 0.518 ± 0.073c | 2.189 ± 0.295d | 0.321 ± 0.040e | 3.225 ± 0.033cd | |
1.2 (N3) | 1.744 ± 0.109d | 0.522 ± 0.041c | 2.266 ± 0.150d | 0.334 ± 0.031e | 3.342 ± 0.055d | |
2.4 (N4) | 1.728 ± 0.164d | 0.549 ± 0.050c | 2.278 ± 0.213d | 0.348 ± 0.018e | 3.147 ± 0.078bcd | |
7.5 (S3) | 0 (N0) | 0.589 ± 0.060a | 0.211 ± 0.020a | 0.800 ± 0.079a | 0.133 ± 0.011ab | 2.792 ± 0.102abc |
0.3 (N1) | 1.593 ± 0.157d | 0.509 ± 0.055c | 2.101 ± 0.211d | 0.334 ± 0.043e | 3.134 ± 0.084bcd | |
0.6 (N2) | 1.731 ± 0.059d | 0.524 ± 0.035c | 2.255 ± 0.085d | 0.349 ± 0.025e | 3.312 ± 0.176cd | |
1.2 (N3) | 1.741 ± 0.032d | 0.535 ± 0.028c | 2.276 ± 0.057d | 0.361 ± 0.02e | 3.256 ± 0.087cd | |
2.4 (N4) | 1.818 ± 0.109d | 0.554 ± 0.028c | 2.373 ± 0.137d | 0.361 ± 0.025e | 3.279 ± 0.032cd |
表1 不同氮素水平对盐环境下甜菜叶片光合色素含量的影响(平均值±标准偏差)
Table 1 Effects of different nitrogen levels on photosynthetic pigments contents of sugar beet leaves under salt environment (mean ± SD)
处理 Treatment | 叶绿素a含量 Chl a content (mg·g-1) | 叶绿素b含量 Chl b content (mg·g-1) | 叶绿素含量 Chl content (mg·g-1) | 类胡萝卜素含量 Car Content (mg·g-1) | 叶绿素a / 叶绿素b Chl a/ Chl b | |
---|---|---|---|---|---|---|
盐度 Salinity (g·kg-1) | 氮素 Nitrogen (g·kg-1) | |||||
2.5 (S1) | 0 (N0) | 0.494 ± 0.066a | 0.185 ± 0.032a | 0.678 ± 0.097a | 0.104 ± 0.015a | 2.688 ± 0.168ab |
0.3 (N1) | 0.857 ± 0.139b | 0.255 ± 0.032a | 1.112 ± 0.171b | 0.184 ± 0.040b | 3.349 ± 0.169d | |
0.6 (N2) | 1.299 ± 0.171c | 0.396 ± 0.044b | 1.695 ± 0.216c | 0.264 ± 0.047cd | 3.273 ± 0.080cd | |
1.2 (N3) | 1.578 ± 0.164d | 0.480 ± 0.069c | 2.058 ± 0.233d | 0.303 ± 0.008de | 3.298 ± 0.134cd | |
2.4 (N4) | 1.582 ± 0.068d | 0.496 ± 0.024c | 2.079 ± 0.092d | 0.322 ± 0.033e | 3.189 ± 0.022bcd | |
5.0 (S2) | 0 (N0) | 0.558 ± 0.144a | 0.242 ± 0.088a | 0.800 ± 0.159a | 0.117 ± 0.062a | 2.509 ± 0.952a |
0.3 (N1) | 1.245 ± 0.074c | 0.392 ± 0.008b | 1.637 ± 0.082c | 0.239 ± 0.013c | 3.178 ± 0.123bcd | |
0.6 (N2) | 1.670 ± 0.221d | 0.518 ± 0.073c | 2.189 ± 0.295d | 0.321 ± 0.040e | 3.225 ± 0.033cd | |
1.2 (N3) | 1.744 ± 0.109d | 0.522 ± 0.041c | 2.266 ± 0.150d | 0.334 ± 0.031e | 3.342 ± 0.055d | |
2.4 (N4) | 1.728 ± 0.164d | 0.549 ± 0.050c | 2.278 ± 0.213d | 0.348 ± 0.018e | 3.147 ± 0.078bcd | |
7.5 (S3) | 0 (N0) | 0.589 ± 0.060a | 0.211 ± 0.020a | 0.800 ± 0.079a | 0.133 ± 0.011ab | 2.792 ± 0.102abc |
0.3 (N1) | 1.593 ± 0.157d | 0.509 ± 0.055c | 2.101 ± 0.211d | 0.334 ± 0.043e | 3.134 ± 0.084bcd | |
0.6 (N2) | 1.731 ± 0.059d | 0.524 ± 0.035c | 2.255 ± 0.085d | 0.349 ± 0.025e | 3.312 ± 0.176cd | |
1.2 (N3) | 1.741 ± 0.032d | 0.535 ± 0.028c | 2.276 ± 0.057d | 0.361 ± 0.02e | 3.256 ± 0.087cd | |
2.4 (N4) | 1.818 ± 0.109d | 0.554 ± 0.028c | 2.373 ± 0.137d | 0.361 ± 0.025e | 3.279 ± 0.032cd |
[1] | Chen THH, Murata N (2011). Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant, Cell & Environment, 34, 1-20. |
[2] | Chen YT, Li CF, Zhao LY, Yue P, Wang YY, Teng XY, Wang NB (2010). Screening of salinity tolerance and response of seedling to salt stress in sugar beet (Beta vulgaris L.). Plant Physiology Communications, 46, 1121-1128. (in Chinese with English abstract) |
[ 陈业婷, 李彩凤, 赵丽影, 越鹏, 王园园, 滕祥勇, 王南博 (2010). 甜菜耐盐性筛选及其幼苗对盐胁迫的响应. 植物生理学通讯, 46, 1121-1128.] | |
[3] | Genty B, Briantais JM, Baker NR (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA): General Subjects, 990, 87-92. |
[4] | Gong HM, Tang YL, Wang J, Wen XG, Zhang LX, Lu CM (2008). Characterization of photosystem II in salt-stressed cyanobacterial Spirulina platensis cells. Biochimica et Biophysica Acta (BBA): Bioenergetics, 1777, 488-495. |
[5] | Govin JD, Zedler JB (1988). Nitrogen effects on Spartina foliosa and Salicornia virginica in the salt marsh at Tijuana estuary, California. Wetlands, 8, 51-65. |
[6] | Hao JJ, Kang ZL, Yu Y (2007). Plant Physiology Experiment Technology. Chemical Industry Press, Beijing. (in Chinese) |
[ 郝建军, 康宗利, 于洋 (2007). 植物生理学实验技术. 化学工业出版社, 北京.] | |
[7] | Hao XY, Han X, Li P, Yang HB, Lin ED (2011). Effects of elevated atmospheric CO2 concentration on mung bean leaf photosynthesis and chlorophyll fluorescence parameters. Chinese Journal of Applied Ecology, 22, 2776-2780. (in Chinese with English abstract) |
[ 郝兴宇, 韩雪, 李萍, 杨宏斌, 林而达 (2011). 大气CO2浓度升高对绿豆叶片光合作用及叶绿素荧光参数的影响. 应用生态学报, 22, 2776-2780.] | |
[8] | Loveland DG, Ungar IA (1983). The effect of nitrogen fertilization on the production of halophytes in an inland salt marsh. The American Midland Naturalist, 109, 346-354. |
[9] | Qian YQ, Zhou XX, Han L, Sun ZY, Ju GS (2011). Rapid light-response curves of PSII chlorophyll fluorescence parameters in leaves of Salix leucopithecia subjected to cadmiumion stress. Acta Ecologica Sinica, 31, 6134-6142. (in Chinese with English abstract) |
[ 钱永强, 周晓星, 韩蕾, 孙振元, 巨关升 (2011). Cd2+胁迫对银芽柳PSII叶绿素荧光光响应曲线的影响 . 生态学报, 31, 6134-6142.] | |
[10] | Qiao M, Tian CY, Wang XP (2008). Soil Salinization and Improved Treatment Pattern in Xinjiang Irrigated Area. Xinjiang Science and Technology Press, Ürümqi. (in Chinese) |
[ 乔木, 田长彦, 王新平 (2008). 新疆灌区土壤盐渍化及改良治理模式. 新疆科学技术出版社, 乌鲁木齐.] | |
[11] | Rabhi M, Ferchichi S, Jouini J, Hamrouni MH, Koyro HW, Ranieri A, Abdelly C, Smaoui A (2010). Phytodesalin- ation of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Biore- source Technology, 101, 6822-6828. |
[12] | Rake DR, Ungar IA (1989). Effects of salinity, nitrogen, and population density on the survival, growth, and reproduction of Atriplex triangularis (Chenopodiaceae). American Journal of Botany, 76, 1125-1135. |
[13] | Rapacz M (2007). Chlorophy a fluorescence transient during freezing and recovery in winter wheat. Photosynthetica, 45, 409-418. |
[14] | Rhodes D, Hanson AD (1993). Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 44, 357-384. |
[15] | Rozema J, Dueck T, Wesselman H, Bijl F (1983). Nitrogen dependent growth stimulation by salt in strand-line species. Acta Oecologica Plantarum, 4, 41-52. |
[16] | Saneoka H, Nagasaka C, Hahn DT, Yang WJ, Premachandra GS, Joly RJ, Rhodes D (1995). Salt tolerance of glycinebetaine-deficient and containing maize lines. Plant Physiology, 107, 631-638. |
[17] | Siddiqui MH, Mohammad F, Khan MN, Al-Whaibi MH, Bahkali AHA (2010). Nitrogen in relation to photosynthetic capacity and accumulation of osmoprotectant and nutrients in Brassica genotypes grown under salt stress. Agricultural Sciences in China, 9, 671-680. |
[18] | Smart RM, Barko JW (1980). Nitrogen nutrition and salinity tolerance of Distichlis spicata and Spartina alterniflora. Ecology, 61, 630-638. |
[19] | Wang L, Long XH, Hao LX, Liu ZP (2012). Effects of nitrogen form on the photochemical efficiency of PSII and antioxidant characteristics of jerusalem artichoke seedling under salt stress. Acta Prataculturae Sinica, 21(1), 133-140. (in Chinese with English abstract) |
[ 王磊, 隆小华, 郝连香, 刘兆普 (2012). 氮素形态对盐胁迫下菊芋幼苗PSⅡ光化学效率及抗氧化特性的影响. 草业学报, 21(1), 133-140.] | |
[20] | Xu JZ, Peng SZ, Wei Z, Hou HJ (2012). Characteristics of rice leaf photosynthetic light response curve with different water and nitrogen regulation. Transactions of the Chinese Society of Agricultural Engineering, 28(2), 72-76. (in Chinese with English abstract) |
[ 徐俊增, 彭世彰, 魏征, 侯会静 (2012). 不同供氮水平及水分调控条件下水稻光合作用光响应特征. 农业工程学报, 28(2), 72-76.] | |
[21] | Xue YF, Liu ZP (2008). Effects of NaCl and Na2CO3 stresses on photosynthesis and parameters of chlorophyll fluorescence in Helianthus tuberosus seedlings. Journal of Plant Ecology (Chinese Version), 32, 161-167. (in Chinese with English abstract) |
[ 薛延丰, 刘兆普 (2008). 不同浓度NaCl和Na2CO3处理对菊芋幼苗光合及叶绿素荧光的影响. 植物生态学报, 32, 161-167.] | |
[22] | Yue P, Li CF, Chen YT, Zhao LY, Wang YY, Teng XY, Wang NB (2010). Effect of nitrogen level on photosynthetic characteristics in functional leave of sugar beet (Beta Vulgaris L.). Journal of Nuclear Agricultural Sciences, 24, 1080-1085. (in Chinese with English abstract) |
[ 越鹏, 李彩凤, 陈业婷, 赵丽影, 王园园, 滕祥勇, 王南博 (2010). 氮素水平对甜菜功能叶片光合特性的影响. 核农学报, 24, 1080-1085.] | |
[23] | Zhang SR (1999). A discussion on chlorophyll fluorescence kinetics parameters and their significance. Chinese Bulletin of Botany, 16, 444-448. (in Chinese with English abstract) |
[ 张守仁 (1999). 叶绿素荧光动力学参数的意义及讨论. 植物学通报, 16, 444-448.] | |
[24] | Zhang YF, Lin HM, Yang ZH, He FY, Liu HJ (2005). Study on the effects of land cover on salt content and moisture content in saline or alkaline soil during thawing. Arid Zone Research, 22, 17-23. (in Chinese with English abstract) |
[ 张永福, 蔺海明, 杨自辉, 贺访印, 刘虎俊 (2005). 解冻期覆盖盐渍土地表对土壤盐分和水分的影响. 干旱区研究, 22, 17-23.] | |
[25] | Zhao Z, Gong S, Duan CL, Yang SC, Ding JL, Xiao FH (2005). Effects of different N, P and K levels on growth and photosynthetic pigment contents of Erigeron breviscapus. Journal of Yunnan Agricultural University, 20, 676-679, 689. (in Chinese with English abstract) |
[ 赵峥, 龚苏, 段承俐, 杨生超, 丁金玲, 萧凤回 (2005). 氮、磷、钾对灯盏花生长发育及光合色素含量的影响. 云南农业大学学报, 20, 676-679, 689.] | |
[26] | Zou Q (2005). Plant Physiology Experiment Guidance. China Agriculture Press, Beijing. (in Chinese) |
[ 邹琦 (2005). 植物生理学实验指导. 中国农业出版社, 北京.] |
[1] | 冼应男, 张瑛, 李宝珍, 罗沛, 肖润林, 吴金水. 绿狐尾藻光合色素组成及氮磷化学计量学特征对外源铵的响应[J]. 植物生态学报, 2022, 46(4): 451-460. |
[2] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[3] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[4] | 周稳, 迟永刚, 周蕾. 基于日光诱导叶绿素荧光的北半球森林物候研究[J]. 植物生态学报, 2021, 45(4): 345-354. |
[5] | 丁键浠, 周蕾, 王永琳, 庄杰, 陈集景, 周稳, 赵宁, 宋珺, 迟永刚. 叶绿素荧光主动与被动联合观测应用前景[J]. 植物生态学报, 2021, 45(2): 105-118. |
[6] | 郭庆华, 胡天宇, 马勤, 徐可心, 杨秋丽, 孙千惠, 李玉美, 苏艳军. 新一代遥感技术助力生态系统生态学研究[J]. 植物生态学报, 2020, 44(4): 418-435. |
[7] | 刘校铭, 杨晓芳, 王璇, 张守仁. 暖温带落叶阔叶林辽东栎和五角枫生长和光合生理生态特征对模拟氮沉降的响应[J]. 植物生态学报, 2019, 43(3): 197-207. |
[8] | 蔡建国, 韦孟琪, 章毅, 魏云龙. 遮阴对绣球光合特性和叶绿素荧光参数的影响[J]. 植物生态学报, 2017, 41(5): 570-576. |
[9] | 翟占伟, 龚吉蕊, 罗亲普, 潘琰, 宝音陶格涛, 徐沙, 刘敏, 杨丽丽. 氮添加对内蒙古温带草原羊草光合特性的影响[J]. 植物生态学报, 2017, 41(2): 196-208. |
[10] | 樊大勇, 付增娟, 谢宗强, 李荣贵, 张淑敏. 调制式荧光影像新技术: 叶片内部最大光化学量子效率及其异质性的活体测定[J]. 植物生态学报, 2016, 40(9): 942-951. |
[11] | 刘畅, 孙鹏森, 刘世荣. 植物反射光谱对水分生理变化响应的研究进展[J]. 植物生态学报, 2016, 40(1): 80-91. |
[12] | 邹长明, 王允青, 刘英, 张晓红, 唐杉. 四种豆科作物的光合生理和生长发育对弱光的响应[J]. 植物生态学报, 2015, 39(9): 909-916. |
[13] | 丁文慧, 姜俊彦, 李秀珍, 黄星, 李希之, 周云轩, 汤臣栋. 崇明东滩南部盐沼植被空间分布及影响因素分析[J]. 植物生态学报, 2015, 39(7): 704-716. |
[14] | 胡俊靖, 陈双林, 郭子武, 陈卫军, 杨清平, 李迎春. 美丽箬竹水分生理整合的分株比例效应——基于叶片抗氧化系统与光合色素[J]. 植物生态学报, 2015, 39(7): 762-772. |
[15] | 安东升, 曹娟, 黄小华, 周娟, 窦美安. 基于Lake模型的叶绿素荧光参数在甘蔗苗期抗旱性研究中的应用[J]. 植物生态学报, 2015, 39(4): 398-406. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19