植物生态学报 ›› 2012, Vol. 36 ›› Issue (5): 456-462.DOI: 10.3724/SP.J.1258.2012.00456
王星星1, 刘琳1, 张洁1, 王玉魁3, 温国胜1, 高荣孚2, 高岩1, 张汝民1,*()
发布日期:
2012-05-04
通讯作者:
张汝民
作者简介:
* E-mail: ruminzhang@sohu.com)
WANG Xing-Xing1, LIU Lin1, ZHANG Jie1, WANG Yu-Kui3, WEN Guo-Sheng1, GAO Rong-Fu2, GAO Yan1, ZHANG Ru-Min1,*()
Published:
2012-05-04
Contact:
ZHANG Ru-Min
摘要:
为了探讨毛竹(Phyllostachys pubescens)非同化器官茎秆的光合特性, 测定了毛竹出笋后快速生长期内(2011年4月13日到6月2日)的光合色素含量以及光合酶活性, 并通过激光共聚焦显微镜对其叶绿体分布进行了观察。结果表明: 毛竹茎秆中的叶绿体主要集中分布在表皮以下的基本组织中, 此外维管束鞘周围的细胞内也存在大量的叶绿体, 此特征类似于C4植物的花环结构。在毛竹出笋后快速生长期内, 随着茎秆不断生长, 叶绿素a、叶绿素b和类胡萝卜素含量均极显著(p < 0.01)增加。在出笋10天时, 茎秆中核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)活性、磷酸烯醇式丙酮酸羧化酶(PEPC)活性和NADP-苹果酸酶(NADP-ME)活性最高, 之后随茎秆生长逐渐降低, 生长30天时酶活性与10天时相比分别降低了88.55% (p < 0.01)、77.46% (p < 0.01)和72.50% (p < 0.01), 而PEPC/Rubisco比值则随茎秆生长逐渐增加, 30天时比值达到12.83, 明显高于C3植物。这表明毛竹茎秆内可能存在C4光合途径, 此途径有利于毛竹提高光合效率, 进而促进其出笋后的快速生长。
王星星, 刘琳, 张洁, 王玉魁, 温国胜, 高荣孚, 高岩, 张汝民. 毛竹出笋后快速生长期内茎秆中光合色素和光合酶活性的变化. 植物生态学报, 2012, 36(5): 456-462. DOI: 10.3724/SP.J.1258.2012.00456
WANG Xing-Xing, LIU Lin, ZHANG Jie, WANG Yu-Kui, WEN Guo-Sheng, GAO Rong-Fu, GAO Yan, ZHANG Ru-Min. Changes of photosynthetic pigment and photosynthetic enzyme activity in stems of Phyllostachys pubescens during rapid growth stage after shooting. Chinese Journal of Plant Ecology, 2012, 36(5): 456-462. DOI: 10.3724/SP.J.1258.2012.00456
图1 毛竹茎秆中的叶绿体分布。A, 表皮下的基本组织。B, 维管束周围的基本组织。Chl, 叶绿体(红色); E, 表皮; F, 纤维; Gr, 基本组织; Va, 维管束。
Fig. 1 Distribution of chloroplast in the stems of Phyllostachys pubescens. A, Ground tissue under epidermis. B, Ground tissue around the vascular bundle. Chl, chloroplast (red); E, epidermis; F, fiber; Gr, ground tissue; Va, vascular bundle.
出笋后的生长天数 Growth days after shooting (d) | 叶绿素a Chlorophyll a | 叶绿素b Chlorophyll b | 叶绿素总量 Total chlorophyll | 类胡萝卜素Carotenoids | 叶绿素a/b Chlorophyll a/b |
---|---|---|---|---|---|
10 | 3.9 ± 0.6eE | 3.3 ± 1.2eE | 7.2 ± 1.8eE | 1.0 ± 0.3eE | 1.2 ± 0.8 bB |
20 | 5.5 ± 0.8eE | 4.2 ± 1.2eDE | 9.7 ± 2.1eE | 0.9 ± 0.3eE | 1.3 ± 0.4bB |
30 | 17.7 ± 1.6dD | 7.2 ± 0.7dD | 24.9 ± 0.9dD | 6.5 ± 0.6dD | 2.5 ± 0.5aA |
40 | 135.3 ± 0.1cC | 65.3 ± 2.2cC | 200.7 ± 2.2cC | 42.1 ± 0.1cC | 2.0 ± 0.2aA |
50 | 179.8 ± 0.9bB | 94.6 ± 1.7bB | 274.4 ± 1.9bB | 46.2 ± 0.3bB | 2.0 ± 0.3aA |
60 | 269.6 ± 4.0aA | 128.0 ± 1.2aA | 397.6 ± 5.2aA | 49.8 ± 3.6aA | 2.1 ± 0.1aA |
表1 毛竹出笋后快速生长期茎秆中色素含量的变化(平均值±标准偏差)
Table 1 Changes of pigment contents in the stems of Phyllostachys pubescens under rapid growth stage after shooting (μg·g-1 FW) (mean ± SD)
出笋后的生长天数 Growth days after shooting (d) | 叶绿素a Chlorophyll a | 叶绿素b Chlorophyll b | 叶绿素总量 Total chlorophyll | 类胡萝卜素Carotenoids | 叶绿素a/b Chlorophyll a/b |
---|---|---|---|---|---|
10 | 3.9 ± 0.6eE | 3.3 ± 1.2eE | 7.2 ± 1.8eE | 1.0 ± 0.3eE | 1.2 ± 0.8 bB |
20 | 5.5 ± 0.8eE | 4.2 ± 1.2eDE | 9.7 ± 2.1eE | 0.9 ± 0.3eE | 1.3 ± 0.4bB |
30 | 17.7 ± 1.6dD | 7.2 ± 0.7dD | 24.9 ± 0.9dD | 6.5 ± 0.6dD | 2.5 ± 0.5aA |
40 | 135.3 ± 0.1cC | 65.3 ± 2.2cC | 200.7 ± 2.2cC | 42.1 ± 0.1cC | 2.0 ± 0.2aA |
50 | 179.8 ± 0.9bB | 94.6 ± 1.7bB | 274.4 ± 1.9bB | 46.2 ± 0.3bB | 2.0 ± 0.3aA |
60 | 269.6 ± 4.0aA | 128.0 ± 1.2aA | 397.6 ± 5.2aA | 49.8 ± 3.6aA | 2.1 ± 0.1aA |
图2 毛竹茎秆中核酮糖-1,5-二磷酸羧化酶/加氧酶(Ru- bisco)活性的变化(平均值±标准偏差)。
Fig. 2 Changes of ribulose-1,5-bisphosphate carboxylase change/add oxygen enzymes (Rubisco) activity in the stems of Phyllostachys pubescens (mean ± SD).
图3 毛竹茎秆中磷酸烯醇式丙酮酸羧化酶(PEPC)和烟酰胺腺嘌呤二核苷酸磷酸-苹果酸酶(NADP-ME)活性的变化(平均值±标准偏差)。
Fig. 3 Changes of phosphoenolpyruvate carboxylase (PEPC) and nicotinamide-adenine dinucleotide phosphate-malic enzyme (NADP-ME) activities in the stems of Phyllostachys pubescens (mean ± SD).
图4 毛竹茎秆中磷酸烯醇式丙酮酸羧化酶和核酮糖-1,5-二磷酸羧化酶/加氧酶比值(PEPC/Rubisco) (平均值±标准偏差)。
Fig. 4 Ratio of phosphoenolpyruvate carboxylase and ribulose-1,5-bisphosphate carboxylase change/add oxygen enzymes (PEPC/Rubisco) in the stems of Phyllostachys pubescens (mean ± SD).
[1] | Aschan G, Pfanz H, Vodnik D, Batič F (2005). Photosynthetic performance of vegetative and reproductive structures of green hellebore (Helleborus viridis L. agg.). Photosynthetica, 43, 55-64. |
[2] | Aschan G, Wittman C, Pfanz H (2001). Age-dependent bark photosynthesis of aspen twigs. Trees, 15, 431-437. |
[3] | Berveiller D, Damesin C (2008). Carbon assimilation by tree stems: potential involvement of phosphoenolpyruvate carboxylase. Trees, 22, 149-157. |
[4] | Berveiller D, Kierzkowski D, Damesin C (2007). Interspecific variability of stem photosynthesis among tree species. Tree Physiology, 27, 53-61. |
[5] |
Cemusak LA, Hutley LB (2011). Stable isotopes reveal the contribution of corticular photosynthesis to growth in branches of Eucalyptus miniata. Plant Physiology, 155, 515-523.
URL PMID |
[6] | Chen JH (陈建华), Mao D (毛丹), Ma ZY (马宗艳), Gong JH (龚建海) (2006). Physiological characteristics of leaves of bamboo Phyllostachys pubescens. Journal of Central South Forestry University (中南林学院学报), 26(6), 76-80. (in Chinese with English abstract) |
[7] | Damesin C (2003). Respiration and photosynthesis characteristics of current-year stems of Fagus sylvatica: from the seasonal pattern to an annual balance. New Phytologist, 158, 465-475. |
[8] | Häusler RE, Rademacher T, Li J, Lipka V, Fischer KL, Schubert S, Kreuzaler F, Hirsch HJ (2001). Single and double overexpression of C4-cycle genes had differential effects on the pattern of endogenous enzymes, attenuation of photorespiration and on contents of UV protectants in transgenic potato and tobacco plants. Journal of Experimental Botany, 52, 1785-1803. |
[9] |
Hibberd JM, Quick WP (2002). Characteristics of C4 photosynthesis in stems and petioles of flowering plants. Nature, 415, 451-454.
DOI URL PMID |
[10] | Holl W (1974). Dark CO2 fixation by cell-free preparations of the wood of Robinia pseudoacacia. Canadian Journal of Botany, 52, 727-734. |
[11] | Ivanov AG, Krol M, Sveshnikov D, Malmberg G, Gardeström P, Hurry V, Öquist Q, Huner NPA (2006). Characteriza- tion of the photosynthetic apparatus in cortical bark chlorenchyma of Scots pine. Planta, 223, 1165-1177. |
[12] | Jiang ZS (姜振升), Sun XQ (孙晓琦), Ai XZ (艾希珍), Wang ML (王美玲), Bi HG (毕焕改), Wang HT (王洪涛) (2010). Responses of Rubisco and Rubisco activase in cucumber seedlings to low temperature and weak light. Chinese Journal of Applied Ecology (应用生态学报), 21, 2045-2050. (in Chinese with English abstract) |
[13] | Kauppi A (1991). Seasonal fluctuations in chlorophyll content in birch stems with special reference to bark thickness and light transmission, a comparison between sprouts and seedlings. Flora, 185, 107-125. |
[14] | Lasa B, Frechilla S, Aparicio-Tejo PM, Lamsfus C (2002). Role of glutamate dehydrogenase and phosphoenol- pyruvate carboxylase activity in ammonium nutrition tolerance in roots. Plant Physiology and Biochemistry, 40, 969-976. |
[15] | Levizou E, Petropoulou Y, Manetas Y (2004). Carotenoid composition of peridermal twigs does not fully conform to a shade acclimation hypothesis. Photosynthetica, 42, 591-596. |
[16] | Lichtenthaler HK (1987). Chorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382. |
[17] | Nilsen ET (1995). Stem photosynthesis: extent, patterns and role in plant carbon economy. In: Garter B ed. Plant Stems: Physiology and Functional Morphology. Academic Press, San Diego. 223-240. |
[18] | Pfanz H (2008). Bark photosynthesis. Trees, 22, 137-138. |
[19] | Pfanz H, Aschan G (2001). The existence of bark and stem photosynthesis in woody plants and its significance for the overall carbon gain. An eco-physiological and ecological approach. Botany, 62, 478-510. |
[20] |
Rosendahl L, Vance CP, Pedersen WB (1990). Products of dark CO2 fixation in pea root nodules support bacteroid metabolism. Plant Physiology, 93, 12-19.
URL PMID |
[21] | Shi JM (施建敏), Guo QR (郭起荣), Yang GY (杨光耀) (2005). Study on the photosynthetic dynamic variation of Phyllostachys edulis. Forest Research (林业科学研究), 18, 551-555. (in Chinese with English abstract) |
[22] | Tokarz K, Pilarski J (2005). Optical properties and the content of photosynthetic pigments in the stems and leaves of the apple-tree. Acta Physiologiae Plantarum, 27, 183-191. |
[23] |
Valenini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grllnwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala1 T, Rannik1 U, Berbigier P, Loustau D, Gumundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG (2000). Respiration as the main determinant of carbon balance in European forests. Nature, 404, 861-865.
DOI URL PMID |
[24] | Wang WJ (王文杰), Zhang ZH (张衷华), Zu YG (祖元刚), He HS (贺海升), Guan Y (关宇), Li WX (李文馨) (2009). Photosynthetic characteristics of the non-photosynthetic organs of Mikania micrantha and its ecological significance. Acta Ecologica Sinica (生态学报), 29, 28-36. (in Chinese with English abstract) |
[25] | Wang WJ (王文杰), Zu YG (祖元刚), Wang HM (王慧梅) (2007). Review on the photosynthetic function of non- photosynthetic woody organs of stem and branches. Acta Ecologica Sinica (生态学报), 27, 1583-1595. (in Chinese with English abstract) |
[26] | Wang WJ, Watanabe Y, Endo I, Kitaoka S, Koike T (2006a). Seasonal changes in the photosynthetic capacity of cones on a larch (Larix kaempferi) canopy. Photosynthetica, 44, 345-348. |
[27] |
Wang WJ, Zu YG, Cui S, Hirano T, Watanabe Y, Koike T (2006 b). Carbon dioxide exchange of larch (Larix gmelinii) cones during development. Tree Physiology, 26, 1363-1368.
DOI URL PMID |
[28] | Wilson DR, Martinez TR (1997). Improved heterogeneous distance functions. Journal of Artificial Intelligence Research, 6, 1-34. |
[29] | Wittmann C, Aschan G, Pfanz H (2001). Leaf and twig photosynthesis of young beech (Fagus sylvatica) and aspen(Populus tremula) trees grown under different light regime. Basic and Applied Ecology, 2, 145-154. |
[30] |
Wittmann C, Pfanz H, Loreto F, Centritto M, Pietrini F, Alessio G (2006). Stem CO2 release under illumination: corticular photosynthesis, photorespiration or inhibition of mitochondrial respiration? Plant, Cell & Environment, 29, 1149-1158.
URL PMID |
[31] | Zu YG (祖元刚), Zhang ZH (张衷华), Wang WJ (王文杰), Yang FJ (杨逢建), He HS (贺海升) (2006). Different characteristics of photosynthesis in stems and leaves of Mikania micranth. Journal of Plant Ecology (Chinese Version) (植物生态学报), 30, 998-1004. (in Chinese with English abstract) |
[1] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[2] | 冼应男, 张瑛, 李宝珍, 罗沛, 肖润林, 吴金水. 绿狐尾藻光合色素组成及氮磷化学计量学特征对外源铵的响应[J]. 植物生态学报, 2022, 46(4): 451-460. |
[3] | 王春成, 马松梅, 张丹, 王绍明. 柴达木野生黑果枸杞的空间遗传结构[J]. 植物生态学报, 2020, 44(6): 661-668. |
[4] | 赵睿宇, 李正才, 王斌, 葛晓改, 戴云喜, 赵志霞, 张雨洁. 毛竹林地表覆盖年限对土壤有机碳的影响[J]. 植物生态学报, 2017, 41(4): 418-429. |
[5] | 翟占伟, 龚吉蕊, 罗亲普, 潘琰, 宝音陶格涛, 徐沙, 刘敏, 杨丽丽. 氮添加对内蒙古温带草原羊草光合特性的影响[J]. 植物生态学报, 2017, 41(2): 196-208. |
[6] | 葛晓改, 周本智, 肖文发, 王小明, 曹永慧, 叶明. 生物质炭添加对毛竹林土壤呼吸动态和温度敏感性的影响[J]. 植物生态学报, 2017, 41(11): 1177-1189. |
[7] | 邹长明, 王允青, 刘英, 张晓红, 唐杉. 四种豆科作物的光合生理和生长发育对弱光的响应[J]. 植物生态学报, 2015, 39(9): 909-916. |
[8] | 陈永刚, 汤孟平, 杨春菊, 马天午, 王礼. 天然毛竹林竞争空间关系分析[J]. 植物生态学报, 2015, 39(7): 726-735. |
[9] | 胡俊靖, 陈双林, 郭子武, 陈卫军, 杨清平, 李迎春. 美丽箬竹水分生理整合的分株比例效应——基于叶片抗氧化系统与光合色素[J]. 植物生态学报, 2015, 39(7): 762-772. |
[10] | 潘璐, 牟溥, 白尚斌, 古牧. 毛竹林扩张对周边森林群落菌根系统的影响[J]. 植物生态学报, 2015, 39(4): 371-382. |
[11] | 郭慧媛, 马元丹, 王丹, 左照江, 高岩, 张汝民, 王玉魁. 模拟酸雨对毛竹叶片抗氧化酶活性及释放绿叶挥发物的影响[J]. 植物生态学报, 2014, 38(8): 896-903. |
[12] | 吴正锋, 孙学武, 王才斌, 郑亚萍, 万书波, 刘俊华, 郑永美, 吴菊香, 冯昊, 于天一. 弱光胁迫对花生功能叶片RuBP羧化酶活性及叶绿体超微结构的影响[J]. 植物生态学报, 2014, 38(7): 740-748. |
[13] | 行冰玉,朱楠,张洪培,杨喜玲,董娟娥. 甲基紫精对丹参培养细胞抗氧化防护系统的影响[J]. 植物生态学报, 2014, 38(5): 507-514. |
[14] | 王意锟, 金爱武, 朱强根, 邱永华, 季新良, 张四海. 施肥对毛竹种群不同年龄分株间胸径大小关系的影响[J]. 植物生态学报, 2014, 38(3): 289-297. |
[15] | 刘骏,杨清培,余定坤,宋庆妮,赵广东,王兵. 细根对竹林-阔叶林界面两侧土壤养分异质性形成的贡献[J]. 植物生态学报, 2013, 37(8): 739-749. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19