植物生态学报 ›› 2025, Vol. 49 ›› Issue (2): 320-330.DOI: 10.17521/cjpe.2023.0158 cstr: 32100.14.cjpe.2023.0158
收稿日期:
2023-05-31
接受日期:
2024-04-09
出版日期:
2025-02-20
发布日期:
2025-02-20
通讯作者:
*杨允菲: (yangyf@mail.nenu.edu.cn)基金资助:
HAN Da-Yong1, LI Hai-Yan2, ZHANG Wei1, YANG Yun-Fei1,2,*()
Received:
2023-05-31
Accepted:
2024-04-09
Online:
2025-02-20
Published:
2025-02-20
Contact:
*YANG Yun-Fei: (yangyf@mail.nenu.edu.cn)Supported by:
摘要: 芦苇(Phragmites australis)是长根茎型克隆植物, 是世界广布种, 具有随着环境的变化改变其形态甚至生长型的可塑性与适应性。芦苇匍匐型分株是根茎伸出碱斑地面的一种特殊生长形式, 该研究旨在探讨匍匐型分株的生长规律及形成机制。采用挂标签定期对分株生长跟踪测量、不同叶龄叶片光合生理测定和15N同位素转移测定等方法, 测定并分析了芦苇匍匐型分株超速生长的节律与格局、光合特性及分株间生理整合指标。结果表明: 在碱斑极端生境, 芦苇匍匐型分株与对照(直立型分株)有着不同的生长节律和格局。经过120 d生长, 芦苇匍匐样本分株长度平均为(685.25 ± 118.75) cm, 在整个观测期间平均生长速率为(6.64 ± 3.51) cm·d-1, 是对照分株的15.4倍, 呈先快速再减缓的对数异速生长过程; 而对照呈相对稳定的线性同速生长过程。芦苇匍匐型分株顶部幼叶具有与壮龄级功能叶相同的最大光合生产能力, 随着叶序增加, 其叶片的净光合速率呈逻辑斯蒂曲线变化, 对照则呈先增加再下降的二次曲线变化。匍匐型分株净光合速率的理论最大值也比对照高19.4%。经15N同位素处理的匍匐型分株各器官15N丰度均显著高于未处理的匍匐型分株。匍匐型分株是广布种芦苇在碱斑极端严酷生境形成的一种新的适应特征, 顶端幼叶的高光合速率以及丛生化基生分株与匍匐型分株之间的生理整合过程, 是匍匐型分株得以快速生长的物质基础。该研究拓展了对芦苇在极端生境适应的新认识, 提供了以物质生产和生理整合为佐证解析匍匐分株快速生长的研究方法, 具有重要的理论意义。
韩大勇, 李海燕, 张维, 杨允菲. 东北碱化草甸芦苇匍匐型分株超速生长过程及生理机制. 植物生态学报, 2025, 49(2): 320-330. DOI: 10.17521/cjpe.2023.0158
HAN Da-Yong, LI Hai-Yan, ZHANG Wei, YANG Yun-Fei. Superior growth process of creeping ramets of Phragmites australis and its physiological mechanisms in an alkaline meadow in Northeast China. Chinese Journal of Plant Ecology, 2025, 49(2): 320-330. DOI: 10.17521/cjpe.2023.0158
图1 7月中旬羊草草甸围栏样地裸斑(A)和丛生的芦苇生长型组成(B)。CR, 匍匐型分株; LR, 伏生型分株; NR, 节生型分株; OR, 斜生型分株; UR, 直立型分株。
Fig. 1 Bare patches (A) and composition of the tufted Phragmites australis growth form (B) in fenced plots in a salinized Leymus chinensis meadow during mid-July. CR, creeping ramet; LR, lying ramet; NR, nodal ramet; OR, oblique ramet; UR, upright ramet.
时间段(月-日) Time period (month-day) | 样本数 n | 最大值 Max | 最小值 Min | 平均值 Mean | 标准差 SD | 变异系数 CV (%) |
---|---|---|---|---|---|---|
4-25-6-04 | 7 | 4.20 | 1.26 | 2.94c | 1.12 | 38.0 |
6-05-6-14 | 7 | 15.72 | 2.09 | 8.59ab | 4.72 | 54.9 |
6-15-6-24 | 7 | 15.08 | 7.92 | 11.46a | 2.67 | 23.3 |
6-25-7-04 | 7 | 16.22 | 8.21 | 10.74a | 2.78 | 25.9 |
7-05-7-14 | 7 | 12.95 | 5.27 | 8.51ab | 2.88 | 33.9 |
7-15-7-24 | 7 | 10.94 | 1.70 | 6.06b | 3.50 | 57.8 |
7-25-8-04 | 7 | 11.06 | 1.70 | 6.66b | 4.41 | 66.2 |
8-05-8-14 | 7 | 8.39 | 0.33 | 3.17bc | 2.75 | 86.6 |
8-15-8-24 | 7 | 6.71 | 0.04 | 1.64c | 2.29 | 139.8 |
表1 不同时间段芦苇种群匍匐型分株生长速率的基本统计参数(cm·d-1)
Table 1 Basic statistics on the growth rate of the creeping ramets of Phragmites australis at different time periods (cm·d-1)
时间段(月-日) Time period (month-day) | 样本数 n | 最大值 Max | 最小值 Min | 平均值 Mean | 标准差 SD | 变异系数 CV (%) |
---|---|---|---|---|---|---|
4-25-6-04 | 7 | 4.20 | 1.26 | 2.94c | 1.12 | 38.0 |
6-05-6-14 | 7 | 15.72 | 2.09 | 8.59ab | 4.72 | 54.9 |
6-15-6-24 | 7 | 15.08 | 7.92 | 11.46a | 2.67 | 23.3 |
6-25-7-04 | 7 | 16.22 | 8.21 | 10.74a | 2.78 | 25.9 |
7-05-7-14 | 7 | 12.95 | 5.27 | 8.51ab | 2.88 | 33.9 |
7-15-7-24 | 7 | 10.94 | 1.70 | 6.06b | 3.50 | 57.8 |
7-25-8-04 | 7 | 11.06 | 1.70 | 6.66b | 4.41 | 66.2 |
8-05-8-14 | 7 | 8.39 | 0.33 | 3.17bc | 2.75 | 86.6 |
8-15-8-24 | 7 | 6.71 | 0.04 | 1.64c | 2.29 | 139.8 |
图2 不同时间段芦苇种群匍匐型与直立型对照分株之间生长速率(平均值±标准差)差异的比较。*, 相同时间段不同分株之间的差异显著(p < 0.05); ns, 差异不显著(p > 0.05)。
Fig. 2 Comparison of differences in growth rate (mean ± SD) between the creeping ramets and the control upright ramets of Phragmites australis at different time periods. *, significant difference (p < 0.05) between different ramets at the same period; ns, no significant difference (p > 0.05).
分株 Ramet | 样本号 No. | 样本数 n | 函数类型 Function type | 方程参数 Equation parameters | R2 | p | |
---|---|---|---|---|---|---|---|
a | b | ||||||
匍匐型 CR | 1 | 9 | 对数 Logarithmic | -1 322.8 | 378.34 | 0.92 | <0.01 |
2 | 9 | 对数 Logarithmic | -1 686.9 | 502.44 | 0.99 | <0.01 | |
3 | 9 | 对数 Logarithmic | -1 727.7 | 522.14 | 0.93 | <0.01 | |
4 | 9 | 对数 Logarithmic | -2 316.3 | 635.67 | 0.98 | <0.01 | |
5 | 9 | 对数 Logarithmic | -1 682.3 | 514.24 | 0.95 | <0.01 | |
6 | 9 | 线性 Linear | -238.1 | 8.33 | 0.99 | <0.01 | |
7 | 9 | 对数 Logarithmic | -2 577.9 | 709.60 | 0.96 | <0.01 | |
平均值 Mean | 9 | 对数 Logarithmic | -1 946.3 | 556.36 | 0.99 | <0.01 | |
直立型对照 CK | 1 | 9 | 线性 Linear | 17.80 | 0.27 | 0.99 | <0.01 |
2 | 9 | 对数 Logarithmic | -57.88 | 23.10 | 0.98 | <0.01 | |
3 | 9 | 线性 Linear | 23.25 | 0.32 | 0.94 | <0.01 | |
4 | 9 | 线性 Linear | 13.50 | 0.44 | 0.99 | <0.01 | |
5 | 9 | 线性 Linear | 24.51 | 0.37 | 0.99 | <0.01 | |
6 | 9 | 线性 Linear | 17.38 | 0.45 | 0.99 | <0.01 | |
7 | 9 | 对数 Logarithmic | -97.72 | 35.43 | 0.99 | <0.01 | |
平均值 Mean | 9 | 线性 Linear | 0.38 | 19.18 | 0.97 | <0.01 |
表2 芦苇种群匍匐型和对照直立型分株长度(y, cm)与生长时间(x, d)关系的拟合方程参数及显著性检验
Table 2 Parameters and significance tests of the fitting relationships between the length (y, cm) of the creeping (CR) and control upright ramets (CK), and growth time (x, d) of Phragmites australis
分株 Ramet | 样本号 No. | 样本数 n | 函数类型 Function type | 方程参数 Equation parameters | R2 | p | |
---|---|---|---|---|---|---|---|
a | b | ||||||
匍匐型 CR | 1 | 9 | 对数 Logarithmic | -1 322.8 | 378.34 | 0.92 | <0.01 |
2 | 9 | 对数 Logarithmic | -1 686.9 | 502.44 | 0.99 | <0.01 | |
3 | 9 | 对数 Logarithmic | -1 727.7 | 522.14 | 0.93 | <0.01 | |
4 | 9 | 对数 Logarithmic | -2 316.3 | 635.67 | 0.98 | <0.01 | |
5 | 9 | 对数 Logarithmic | -1 682.3 | 514.24 | 0.95 | <0.01 | |
6 | 9 | 线性 Linear | -238.1 | 8.33 | 0.99 | <0.01 | |
7 | 9 | 对数 Logarithmic | -2 577.9 | 709.60 | 0.96 | <0.01 | |
平均值 Mean | 9 | 对数 Logarithmic | -1 946.3 | 556.36 | 0.99 | <0.01 | |
直立型对照 CK | 1 | 9 | 线性 Linear | 17.80 | 0.27 | 0.99 | <0.01 |
2 | 9 | 对数 Logarithmic | -57.88 | 23.10 | 0.98 | <0.01 | |
3 | 9 | 线性 Linear | 23.25 | 0.32 | 0.94 | <0.01 | |
4 | 9 | 线性 Linear | 13.50 | 0.44 | 0.99 | <0.01 | |
5 | 9 | 线性 Linear | 24.51 | 0.37 | 0.99 | <0.01 | |
6 | 9 | 线性 Linear | 17.38 | 0.45 | 0.99 | <0.01 | |
7 | 9 | 对数 Logarithmic | -97.72 | 35.43 | 0.99 | <0.01 | |
平均值 Mean | 9 | 线性 Linear | 0.38 | 19.18 | 0.97 | <0.01 |
图3 芦苇种群匍匐型(A)和直立型对照(B)平均分株长度与生长时间的观测值和拟合曲线/直线(平均值±标准差)。
Fig. 3 Observed values and fitting curves on the relationship between the growth time and the average length of creeping ramets (A) and control upright ramets (B) of Phragmites australis (mean ± SD).
图4 芦苇匍匐型分株不同叶序光合速率(Pn)和蒸腾速率(Tr)差异的比较(平均值±标准差)。叶序间不同小写字母表示差异显著(p < 0.05)。
Fig. 4 Comparison of photosynthetic rate (Pn) and transpiration rate (Tr) (mean ± SD) of leaves at different orders of creeping Phragmites australis. Different lowercase letters indicate significant difference (p < 0.05) between leaf orders.
图5 芦苇种群匍匐型分株(A1、B1)、节生型分株(A2、B2)和直立型分株(对照A3、B3)的光合速率与蒸腾速率随着叶序变化的观测值及拟合曲线。
Fig. 5 Observed values and fitting curves of photosynthetic rate (Pn) and transpiration rate (Tr) of Phragmites australis leaves with varying leaf order on creeping ramets (A1, B1), nodal ramets (A2, B2) and control upright ramets (A3, B3).
因变量 Dependent variable (y) | 分株 Ramet | 样本数 n | 方程参数 Equation parameter | R2 | p | |||
---|---|---|---|---|---|---|---|---|
A1/a | A2/b | x0/c | m | |||||
光合速率 Pn (μmol·m-2·s-1) | 匍匐型分株 CR | 15 | 14.40 | 22.83 | 11.62 | 10.21 | 0.96 | <0.01 |
节生型分株 NR | 8 | 2.89 | 4.81 | -0.35 | 0.88 | <0.01 | ||
直立型分株 CK | 8 | -8.50 | 6.59 | -0.40 | 0.94 | <0.01 | ||
蒸腾速率 Tr (µmol·m-2·s-1) | 匍匐型分株 CR | 15 | 5.04 | 7.21 | 12.09 | 15.63 | 0.94 | <0.01 |
节生型分株 NR | 8 | 1.33 | 2.18 | -0.19 | 0.93 | <0.01 | ||
直立型分株 CK | 8 | -4.71 | 2.90 | -0.19 | 0.92 | <0.01 |
表3 芦苇种群匍匐型分株(CR)、节生分株(NR)和直立型分株(对照, CK)的光合生理参数(y)与叶序(x)之间关系的拟合方程参数及显著性检验
Table 3 Parameters and significance tests of the relationships between the photosynthetic physiological indices (y) and leaf order (x) of Phragmites australis creeping ramets (CR), nodal ramets (NR) and control upright ramets (CK)
因变量 Dependent variable (y) | 分株 Ramet | 样本数 n | 方程参数 Equation parameter | R2 | p | |||
---|---|---|---|---|---|---|---|---|
A1/a | A2/b | x0/c | m | |||||
光合速率 Pn (μmol·m-2·s-1) | 匍匐型分株 CR | 15 | 14.40 | 22.83 | 11.62 | 10.21 | 0.96 | <0.01 |
节生型分株 NR | 8 | 2.89 | 4.81 | -0.35 | 0.88 | <0.01 | ||
直立型分株 CK | 8 | -8.50 | 6.59 | -0.40 | 0.94 | <0.01 | ||
蒸腾速率 Tr (µmol·m-2·s-1) | 匍匐型分株 CR | 15 | 5.04 | 7.21 | 12.09 | 15.63 | 0.94 | <0.01 |
节生型分株 NR | 8 | 1.33 | 2.18 | -0.19 | 0.93 | <0.01 | ||
直立型分株 CK | 8 | -4.71 | 2.90 | -0.19 | 0.92 | <0.01 |
图6 芦苇匍匐型分株不同器官和部位的15N丰度在示踪元素处理与对照(A)及示踪元素处理的各器官(B)之间的差异比较(平均值±标准差)。L, 叶; LS, 叶鞘; S, 茎。1、2、3代表上中下部位。*表示示踪元素处理与对照差异显著(p < 0.05)。不同小写字母表示器官间差异显著(p < 0.05)。
Fig. 6 Comparison of 15N abundance between tracer-treated and control Phragmites australis creeping ramets in different organs and sections (A), and among tracer-treated organs (B) (mean ± SD). L, leaf; LS, leaf sheath; S, stem. 1, 2 and 3 represent upper, middle and lower sections. *, significant difference (p < 0.05) between tracer treated (15N) and control treatments. Different lowercase letters indicate significant difference (p < 0.05) among organs.
[1] |
Ahmad I, Ahmad S, Kamran M, Yang XN, Hou FJ, Yang BP, Ding RX, Liu T, Han QF (2021). Uniconazole and nitrogen fertilization trigger photosynthesis and chlorophyll fluorescence, and delay leaf senescence in maize at a high population density. Photosynthetica, 59, 192-202.
DOI |
[2] | Arce MI, Gómez R, del Rosario Vidal-Abarca M, Suárez ML (2009). Effects of Phragmites australis growth on nitrogen retention in a temporal stream. Limnetica, 28, 229-242. |
[3] | Bellavance ME, Brisson J (2010). Spatial dynamics and morphological plasticity of common reed (Phragmites australis) and cattails (Typha sp.) in freshwater marshes and roadside ditches. Aquatic Botany, 93, 129-134. |
[4] | Charpentier A (2001). Consequences of clonal growth for plant mating. Evolutionary Ecology, 15, 521-530. |
[5] | Diachenko TN (2011). Biological and ecological peculiarities of the reed (Phragmites australis) in the aspect of optimal use of its resources. Hydrobiological Journal, 47(6), 23-33. |
[6] | Dong M (2011). Clonal Plant Ecology. Science Press, Beijing. 80-81. |
[董鸣 (2011). 克隆植物生态学. 科学出版社, 北京. 80-81.] | |
[7] | Engloner AI (2009). Structure, growth dynamics and biomass of reed (Phragmites australis)—A review. Flora, 204, 331-346. |
[8] | Engloner AI, Major Á (2011). Clonal diversity of Phragmites australis propagating along water depth gradient. Aquatic Botany, 94, 172-176. |
[9] | Fér T, Hroudová Z (2009). Genetic diversity and dispersal of Phragmites australis in a small river system. Aquatic Botany, 90, 165-171. |
[10] | Guo XY, Yang YF, Li JD (2003). Studies on the photosynthetic characteristics of the leaves of Phragmites communis in different dry land habitats in the Songnen Plains in China. Acta Pratacultural Science, 12(3), 16-21. |
[郭晓云, 杨允菲, 李建东 (2003). 松嫩平原不同旱地生境芦苇的光合特性研究. 草业学报, 12(3), 16-21.] | |
[11] | Honnay O, Jacquemyn H (2010). Clonal plants: beyond the patterns—Ecological and evolutionary dynamics asexual reproduction. Evolutionary Ecology, 24, 1393-1397. |
[12] | Jia ZF, Ma X, Ju ZL, Liu KQ, Zhao GQ (2021). Effects of nitrogen fertilizer and plant density on oat leaf senescence characteristics and cell structure. Acta Agrestia Sinica, 29(1), 80-87. |
[贾志锋, 马祥, 琚泽亮, 刘凯强, 赵桂琴 (2021). 氮肥和种植密度对燕麦叶片衰老特性及细胞结构的影响. 草地学报, 29(1), 80-87.].
DOI |
|
[13] | Jiao DZ, Huang ZY, Zhou C, Yang YF (2017). Rhizome dynamics and age structure of Phragmites australis populations in heterogeneous habitats of Northeast grasslands in China. Pakistan Journal of Botany, 49, 579-604. |
[14] | Jiao DZ, Liu RZ, Pan L, Wang SL, Yang YF (2021). Biomass allocation and growth analysis of the ramets of Phragmites communis in different growth stages in Zhalong wetland. Chinese Journal of Ecology, 40, 940-949. |
[焦德志, 刘润泽, 潘林, 王素玲, 杨允菲 (2021). 扎龙湿地不同生长期芦苇分株构件生物量分配及生长分析. 生态学杂志, 40, 940-949.] | |
[15] | Judy CR, Graham SA, Lin QX, Hou AX, Mendelssohn IA (2014). Impacts of Macondo oil from Deepwater Horizon spill on the growth response of the common reed Phragmites australis: a mesocosm study. Marine Pollution Bulletin, 79, 69-76. |
[16] | Li JD, Zheng HY (1997). The Saline Grassland Restoration and the Biological Ecological Mechanisms on the Songnen Plain. Science Press, Beijing. 1-30. |
[李建东, 郑慧莹 (1997). 松嫩平原盐碱化草地治理及其生物生态机理. 科学出版社, 北京. 1-30.] | |
[17] | Liu J, Dong M, Miao SL, Li ZY, Song MH, Wang RQ (2006). Invasive alien plants in China: role of clonality and geographical origin. Biological Invasions, 8, 1461-1470. |
[18] | Long X (2015). The Physiological Integration of Light in Commelina benghalensis L. Master degree dissertation, Yangzhou University, Yangzhou, Jiangsu. |
[龙茜 (2015). 火柴头实生植株光照的生理整合研究. 硕士学位论文, 扬州大学, 江苏扬州.] | |
[19] | Lyu XQ, Zhang YL, You WH (2016). Growth and physiological responses of Eichhornia crassipes to clonal integration under experimental defoliation. Aquatic Ecology, 50, 153-162. |
[20] | McCormick MK, Kettenring KM, Baron HM, Whigham DF (2010). Spread of invasive Phragmites australis in estuaries with differing degrees of development: genetic patterns, allee effects and interpretation. Journal of Ecology, 98, 1369-1378. |
[21] | Moi PE, Kitonyo OM, Chemining’wa GN, Kinama JM (2021). Intercropping and nitrogen fertilization altered the patterns of leaf senescence in Sorghum. International Journal of Agronomy, 2021, 5348859. DOI: 10.1155/2021/5348859. |
[22] | Pan RC (2004). Plant Physiology. 5th ed. Higher Education Press, Beijing. 142-145. |
[潘瑞炽 (2004). 植物生理学. 5版. 高等教育出版社, 北京. 142-145.] | |
[23] | Pennings SC, Callaway RM (2000). The advantages of clonal integration under different ecological conditions: a community-wide test. Ecology, 81, 709-716. |
[24] | Qiu T, Jiang LL, Li SZ, Yang YF (2017). Small-scale habitat-specific variation and adaptive divergence of photosynthetic pigments in different alkali soils in reed identified by common garden and genetic tests. Frontiers in Plant Science, 7, 2016. DOI: 10.3389/fpls.2016.02016. |
[25] | Shi M, Zhang JB, Sun JL, Li Q, Lin XC, Song XZ (2022). Unequal nitrogen translocation pattern caused by clonal integration between connected ramets ensures necessary nitrogen supply for young moso bamboo growth. Environmental and Experimental Botany, 200, 104900. DOI: 10.1016/j.envexpbot.2022.104900. |
[26] | Vallejo-Marín M, Dorken ME, Barrett SCH (2010). The ecological and evolutionary consequences of clonality for plant mating. Annual Review of Ecology, Evolution, and Systematics, 41, 193-213. |
[27] |
Wang P, Alpert P, Yu FH (2016). Clonal integration increases relative competitive ability in an invasive aquatic plant. American Journal of Botany, 103, 2079-2086.
DOI PMID |
[28] |
Xu S, Li CC, Abulahati N, Yang YF, Han DY (2023). Effects of functional leaves with different leaf positions on the formation of spike biomass in two habitats of wetland and dryland. Xinjiang Agricultural Sciences, 60, 472-478.
DOI |
[许顺, 李程程, 努尔阿力·阿布拉哈提, 杨允菲, 韩大勇 (2023). 湿地和旱地两种生境芦苇不同叶位功能叶片对穗生物量形成的影响. 新疆农业科学, 60, 472-478.]
DOI |
|
[29] | Yang YF, Li JD (2003). Biomass allocation and growth analysis on the ramets of Phragmites communis populations in different habitats in the Songnen Plains of China. Chinese Journal of Applied Ecology, 14, 30-34. |
[杨允菲, 李建东 (2003). 松嫩平原不同生境芦苇种群分株的生物量分配与生长分析. 应用生态学报, 14, 30-34.] | |
[30] | Zhai WL, Wang Y, Luan JW, Liu SR (2022). Effects of nitrogen addition on clonal integration between mother and daughter ramets of Moso bamboo: a 13C-CO2 pulse labeling study. Journal of Plant Ecology, 15, 756-770. |
[31] | Zhang YC, Liang GL, Qin Y, Liu WH, Jia ZF, Liu Y, Ma X (2022). Characteristics of chlorophyll and photosynthesis in leaves and their response to nutrients during aging of Elymus sibiricus. Acta Prataculturae Sinica, 31, 229-237. |
[张永超, 梁国玲, 秦燕, 刘文辉, 贾志锋, 刘勇, 马祥 (2022). 老芒麦衰老过程中叶片叶绿素和光合作用变化特征及对养分的响应. 草业学报, 31, 229-237.]
DOI |
|
[32] | Zhu AM, Zhang YX, Wang XG, Wang YL, Zhang QX, Hou WH, Du XY (2019). Effects of applying nitrogen fertilizer on leaf senescence characteristics of Leymus chinensis in sandy land. Grassland and Turf, 39(2), 39-46. |
[朱爱民, 张玉霞, 王显国, 王月林, 张庆昕, 侯文慧, 杜晓艳 (2019). 不同施氮水平对羊草抗衰老能力的影响. 草原与草坪, 39(2), 39-46.] | |
[33] | Zhu CG, Li WH, Chen YP, Ma JX (2017). Clonal water integration contributes to more survival advantages for Populus euphratica young ramets in the hyper-arid habitat. Chinese Journal of Applied Ecology, 28, 1448-1454. |
[朱成刚, 李卫红, 陈亚鹏, 马建新 (2017). 克隆水分整合有助胡杨无性系幼株在极端干旱生境下保持更高生存优势. 应用生态学报, 28, 1448-1454.]
DOI |
|
[34] | Zhuang Y, Sun YX, Wang ZS, Yang LL, Deng ZF, Yao ZG, An SQ (2010). Research advances in ecotypes of Phragmites australis. Acta Ecologica Sinica, 30, 2173-2181. |
[庄瑶, 孙一香, 王中生, 杨琳璐, 邓自发, 姚志刚, 安树青 (2010). 芦苇生态型研究进展. 生态学报, 30, 2173-2181.] |
[1] | 廖丹, 王艺彤, 雷晶晶, 王映霓, 张新娜, 王娟. 雌雄异株克隆植物髭脉槭对种间竞争的性别差异响应[J]. 植物生态学报, 2024, 48(12): 1623-1636. |
[2] | 杨丽婷, 谢燕燕, 左珂怡, 徐森, 谷瑞, 陈双林, 郭子武. 分株比例对异质光环境下美丽箬竹克隆系统光合生理的影响[J]. 植物生态学报, 2022, 46(1): 88-101. |
[3] | 叶学华, 薛建国, 谢秀芳, 黄振英. 外部干扰对根茎型克隆植物甘草自然种群植株生长及主要药用成分含量的影响[J]. 植物生态学报, 2020, 44(9): 951-961. |
[4] | 胡俊靖, 陈双林, 郭子武, 陈卫军, 杨清平, 李迎春. 美丽箬竹水分生理整合的分株比例效应——基于叶片抗氧化系统与光合色素[J]. 植物生态学报, 2015, 39(7): 762-772. |
[5] | 王意锟, 金爱武, 朱强根, 邱永华, 季新良, 张四海. 施肥对毛竹种群不同年龄分株间胸径大小关系的影响[J]. 植物生态学报, 2014, 38(3): 289-297. |
[6] | 彭一可, 罗芳丽, 李红丽, 于飞海. 根状茎型植物扁秆荆三棱对土壤养分异质性尺度和对比度的生长响应[J]. 植物生态学报, 2013, 37(4): 335-343. |
[7] | 罗维成, 曾凡江, 刘波, 宋聪, 彭守兰, Stefan K. ARNDT. 疏叶骆驼刺母株与子株间的水分整合[J]. 植物生态学报, 2013, 37(2): 164-172. |
[8] | 葛俊, 邢福. 克隆植物对种间竞争的适应策略[J]. 植物生态学报, 2012, 36(6): 587-596. |
[9] | 朱志红, 席博, 李英年, 臧岳铭, 王文娟, 刘建秀, 郭华. 高寒草甸不同生境粗喙薹草补偿生长研究[J]. 植物生态学报, 2010, 34(3): 348-358. |
[10] | 张道远, 王建成, 施翔. 根茎型木本克隆植物准噶尔无叶豆的种群数量动态[J]. 植物生态学报, 2009, 33(5): 893-900. |
[11] | 张淑敏, 于飞海, 董鸣. 土壤养分水平影响绢毛匍匐委陵菜匍匐茎生物量投资[J]. 植物生态学报, 2007, 31(4): 652-657. |
[12] | 张丽丽, 董鸣, 李仁强, 王艳红, 崔清国, 何维明. 土壤养分斑块对比度改变活血丹克隆整合强度和方向[J]. 植物生态学报, 2007, 31(4): 619-624. |
[13] | 王琼, 廖咏梅. 林缘和荒草坡不同草本层盖度小生境中积雪草的等级可塑性[J]. 植物生态学报, 2007, 31(4): 576-587. |
[14] | 魏晓慧, 殷东生, 祝宁. 自然条件下风箱果的克隆构型[J]. 植物生态学报, 2007, 31(4): 625-629. |
[15] | 陆建英, 马瑞君, 孙坤. 珠芽蓼种群克隆多样性及克隆结构的初步研究[J]. 植物生态学报, 2007, 31(4): 561-567. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19