植物生态学报 ›› 2013, Vol. 37 ›› Issue (2): 164-172.DOI: 10.3724/SP.J.1258.2013.00017
罗维成1,2,3,4,5, 曾凡江1,2,3,4,*(), 刘波1,2,3,4,5, 宋聪1,2,3,4,5, 彭守兰1,2,3,4,5, Stefan K. ARNDT6
收稿日期:
2012-09-24
接受日期:
2012-12-20
出版日期:
2013-09-24
发布日期:
2013-01-31
通讯作者:
曾凡江
作者简介:
* (E-mail: fjzeng369@sohu.com)基金资助:
LUO Wei-Cheng1,2,3,4,5, ZENG Fan-Jiang1,2,3,4,*(), LIU Bo1,2,3,4,5, SONG Cong1,2,3,4,5, PENG Shou-Lan1,2,3,4,5, Stefan K. ARNDT6
Received:
2012-09-24
Accepted:
2012-12-20
Online:
2013-09-24
Published:
2013-01-31
Contact:
ZENG Fan-Jiang
摘要:
在未灌溉的土地上, 疏叶骆驼刺(Alhagi sparsifolia)通常不能进行有性繁殖, 克隆繁殖是其种群维持和延续的唯一方式。因此, 克隆性及其相关克隆性状(如水分整合)在疏叶骆驼刺自然种群的维持过程中可能扮演了极其重要的角色。该文通过疏叶骆驼刺母株和子株之间的间隔子切断和给母株补充水分的方法, 研究了母株和子株在各处理下的水势、叶形态和植株生长变化情况。结果表明: (1)间隔子切断后, 疏叶骆驼刺母株和子株正午水势均明显增大(p < 0.01), 说明间隔子切断使得母株和子株水分亏缺值都增大。(2)给母株补水后, 间隔子切断组和间隔子相连组中的母株水势均有明显增加, 同时间隔子相连组的子株水势明显增加(p < 0.01), 而间隔子切断组子株水势没有明显变化(p > 0.05)。(3)间隔子切断组的子株叶片含水率明显低于间隔子相连组子株, 而其株高、冠幅、分枝数和基径的增长量都明显小于间隔子相连组的子株(p < 0.01)。疏叶骆驼刺母株和子株间存在水分整合, 母株会通过根系向子株传输水分。研究成果对塔克拉玛干沙漠南缘的植被恢复以及水资源的合理利用有着重要的意义。
罗维成, 曾凡江, 刘波, 宋聪, 彭守兰, Stefan K. ARNDT. 疏叶骆驼刺母株与子株间的水分整合. 植物生态学报, 2013, 37(2): 164-172. DOI: 10.3724/SP.J.1258.2013.00017
LUO Wei-Cheng, ZENG Fan-Jiang, LIU Bo, SONG Cong, PENG Shou-Lan, Stefan K. ARNDT. Water integration between mother and daughter ramet of Alhagi sparsifolia. Chinese Journal of Plant Ecology, 2013, 37(2): 164-172. DOI: 10.3724/SP.J.1258.2013.00017
图2 不同处理下疏叶骆驼刺母株(A)和子株(B)的水势图(平均值±标准误差)。不同小写字母表示不同处理间差异显著(p < 0. 05)。
Fig. 2 Water potential of mother ramet (A) and daughter ramet (B) of Alhagi sparsifolia under different treatments (mean ± SE). Different lowercase letters indicate significant differences among different treatments (p < 0. 05).
图3 母株水分补充前后各处理下母株和子株土壤含水量的变化(平均值±标准误差)。A, 间隔子相连组母株。B, 间隔子相连组子株。C, 间隔子切断组母株。D, 间隔子切断组子株。
Fig. 3 Changes of soil water content of the mother and daughter ramets under different treatments before and after water supplement to mother ramet (mean ± SE). A, Mother ramet in spacer connected group. B, Daughter ramet in spacer connected group. C, Mother ramet in spacer severed group. D, Daughter ramet in spacer severed group.
图4 母株补水前后不同处理组母株水势日变化(平均值±标准误差)。A, 间隔子相连。B, 间隔子切断。
Fig. 4 Diurnal change of water potential of the mother ramet under different treatments before and after water supplement to mother ramet (mean ± SE). A, Spacer connected. B, Spacer severed.
图5 母株补水后不同处理下子株水势日变化(平均值±标准误差)。
Fig. 5 Diurnal change of water potential of the daughter ramet under different treatments after water supplement to mother ramet (mean ± SE).
叶形态参数 Leaf morphological parameter | 母株 Mother ramet | 子株 Daughter ramet | |||
---|---|---|---|---|---|
间隔子切断 Spacer severed | 间隔子相连 Spacer connected | 间隔子切断 Spacer severed | 间隔子相连 Spacer connected | ||
叶片含水率 Leaf water content (%) | 3.415 ± 0.102a | 2.900 ± 0.231b | 1.137 ± 0.072c | 3.100 ± 0.131b | |
比叶面积 SLA (cm2·g-1) | 79.259 ± 9.496a | 77.069 ± 3.591a | 73.574 ± 4.033b | 74.001 ± 3.384b | |
比叶鲜重 LMA·fw (cm2·g-1) | 17.939 ± 1.950a | 19.872 ± 1.938a | 18.834 ± 1.103a | 18.471 ± 0.988a |
表1 不同处理下疏叶骆驼刺母株和子株叶形态参数变化(平均值±标准误差)
Table 1 Variation of leaf morphological parameters of the mother and daughter ramets of Alhagi sparsifolia under different treatments (mean ± SE)
叶形态参数 Leaf morphological parameter | 母株 Mother ramet | 子株 Daughter ramet | |||
---|---|---|---|---|---|
间隔子切断 Spacer severed | 间隔子相连 Spacer connected | 间隔子切断 Spacer severed | 间隔子相连 Spacer connected | ||
叶片含水率 Leaf water content (%) | 3.415 ± 0.102a | 2.900 ± 0.231b | 1.137 ± 0.072c | 3.100 ± 0.131b | |
比叶面积 SLA (cm2·g-1) | 79.259 ± 9.496a | 77.069 ± 3.591a | 73.574 ± 4.033b | 74.001 ± 3.384b | |
比叶鲜重 LMA·fw (cm2·g-1) | 17.939 ± 1.950a | 19.872 ± 1.938a | 18.834 ± 1.103a | 18.471 ± 0.988a |
生长参数 Growth parameter | 母株 Mother ramet | 子株 Daughter ramet | |||
---|---|---|---|---|---|
间隔子相连 Spacer connected | 间隔子切断 Spacer severed | 间隔子相连 Spacer connected | 间隔子切断 Spacer severed | ||
株高变化 Change of height (cm) | 14.200 ± 2.262a | 13.266 ± 2.283a | 11.545 ± 2.506a | 5.891 ± 3.033b | |
冠幅变化 Change of crown width (cm2) | 4 469.343 ± 366.715a | 4 003.861 ± 458.227a | 2 084.121 ± 349.652b | 1 249.861 ± 299.347c | |
分枝数变化(个) Change of branch number (No.) | 120.586 ± 15.339a | 112.563 ± 18.206a | 43.668 ± 11.295b | 22.963 ± 17.068c | |
基径变化 Change of basal diameter (cm) | 0.310 ± 0.033a | 0.289 ± 0.029a | 0.220 ± 0.040b | 0.117 ± 0.019c |
表2 不同处理下疏叶骆驼刺母株和子株生长指标变化(平均值±标准误差)
Table 2 Variation of growth parameters of the mother and daughter ramets of Alhagi sparsifolia under different treatments (mean ± SE)
生长参数 Growth parameter | 母株 Mother ramet | 子株 Daughter ramet | |||
---|---|---|---|---|---|
间隔子相连 Spacer connected | 间隔子切断 Spacer severed | 间隔子相连 Spacer connected | 间隔子切断 Spacer severed | ||
株高变化 Change of height (cm) | 14.200 ± 2.262a | 13.266 ± 2.283a | 11.545 ± 2.506a | 5.891 ± 3.033b | |
冠幅变化 Change of crown width (cm2) | 4 469.343 ± 366.715a | 4 003.861 ± 458.227a | 2 084.121 ± 349.652b | 1 249.861 ± 299.347c | |
分枝数变化(个) Change of branch number (No.) | 120.586 ± 15.339a | 112.563 ± 18.206a | 43.668 ± 11.295b | 22.963 ± 17.068c | |
基径变化 Change of basal diameter (cm) | 0.310 ± 0.033a | 0.289 ± 0.029a | 0.220 ± 0.040b | 0.117 ± 0.019c |
[1] | Alpert P (1990). Water sharing among ramets in a desert population of Distichlis spicata (Poaceae). American Journal of Botany, 77, 1648-1651. |
[2] | Alpert P, Mooney HA (1986). Resource sharing among ramets in the clonal herb, Fragaria chiloensis. Oecologia, 70, 227-233. |
[3] | Ashmun JW, Thomas RJ, Pitelka LF (1982). Translocation of photoassimilates between sister ramets in 2 rhizomatous forest herbs. Annals of Botany, 49, 403-415. |
[4] | de Kroon H, Fransen B, van Rheenen JWA, Dijk A, Kreulen R (1996). High levels of inter-ramet water translocation in two rhizomatous Carex species, as quantified by deuterium labelling. Oecologia, 106, 73-84. |
[5] | Dong M (1996). Clonal growth in plants in relation to resource heterogeneity: foraging behavior. Acta Botanica Sinica, 38, 828-835. (in Chinese with English abstract) |
[ 董鸣 (1996). 资源异质环境中的克隆植物生长: 觅食行为. 植物学报, 38, 828-835.] | |
[6] | Fu AH, Chen YN, Li WH, Zhang HF (2005). Research advances on plant water potential under drought and salt stress. Journal of Desert Research, 25, 744-745. (in Chinese with English abstract) |
[ 付爱红, 陈亚宁, 李卫红, 张宏锋 (2005). 干旱、盐胁迫下的植物水势研究进展. 中国沙漠, 25, 744-745.] | |
[7] | Gross KL, Pregitzer KS, Burton AJ (1995). Spatial variation in nitrogen availability in three successional plant communities. Journal of Ecology, 83, 357-367. |
[8] | Hartnett DC, Bazzaz FA (1983). Physiological integration among intraclonal ramets in Solidago canadensis. Ecology, 64, 779-788. |
[9] | Hay MJM, Kelly CK (2008). Have clonal plant biologists got it wrong? The case for changing the emphasis to disintegration. Evolutionary Ecology, 22, 461-465. |
[10] | Hutchings MJ, Bradbury IK (1986). Ecological perspectives on clonal perennial herbs. BioScience, 36, 178-182. |
[11] | Jonsdottir IS, Callaghan TV (1989). Localized defoliation stress and the movement of 14C between tillers of Carex bigelowii. Oikos, 54, 211-219. |
[12] | Li DZ, Takahashi S, Zhu TC (2006). Effects of soil nitrogen availability and clonal integration on the branching behaviors of Zoysia japonica. Acta Prataculturae Sinica, 15, 135-146. |
[ 李德志, 高桥繁男, 祝廷成 (2006). 土壤氮素有效性与克隆整合性对结缕草分枝行为的影响效应. 草业学报, 15, 135-146.] | |
[13] | Li KR, Feng CH (2011). Effects of brassinolide on drought resistance of Xanthoceras sorbifolia seedlings under water stress. Acta Physiologiae Plantarum, 33, 1293-1300. |
[14] | Li JJ, Peng PH, He WM (2011). Physical connection decreases benefits of clonal integration in Alternanthera philoxeroides under three warming scenarios. Plant Biology, 14, 265-270. |
[15] | Li JY (1989). An application of PV technique to study drought resistance of Pinus tabulaeformis and Platycladus orientalis seedlings. Journal of Beijing Forestry University, 11(1), 1-11. (in Chinese with English abstract) |
[ 李吉跃 (1989). PV技术在油松侧柏苗木抗旱特性研究中的应用. 北京林业大学学报, 11(1), 1-11.] | |
[16] | Li SD, Liu D, Zheng JL, Hu BZ, Zhou YL (1999). Pattern of physiological integration in the clonal white clover (Trifolium repens L.). Bulletin of Botanical Research, 19, 335-340. (in Chinese with English abstract) |
[ 李思东, 刘娣, 郑金玲, 胡宝忠, 周以良 (1999). 白三叶无性系植物种群整合作用格局的研究. 植物研究, 19, 335-340.] | |
[17] | Li XY, Zhang XM, Zeng FJ, Foetzki A, Thomas FM, Li XM, Runge M, He XY (2002). Water relations on Alhagi sparsifolia in the southern fringe of Taklamakan Desert. Acta Botanica Sinica, 44, 1219-1224. (in Chinese with English abstract) |
[ 李向义, 张希明, 曾凡江, Foetzki A, Thomas FM, 李小明, Runge M, 何兴元 (2002). 塔干南缘骆驼刺植被水分关系的研究. 植物学报, 44, 1219-1224.] | |
[18] | Lovett DL (1981). Population dynamics and local specialization in a clonal plant Ranunculus repens. l. The dynamics of ramets in contrasting habitats. Journal of Ecology, 69, 743-755. |
[19] | Luo WC, Zeng FJ, Liu B, Zhang LG, Song C, Peng SL, Arndt SK (2012). Response of root systems to soil heterogeneity and interspecific competition in Alhagi sparsifolia. Chinese Journal of Plant Ecology, 36, 1015-1023. (in Chinese with English abstract) |
[ 罗维成, 曾凡江, 刘波, 张利刚, 宋聪, 彭守兰, Arndt SK (2012). 疏叶骆驼刺根系对土壤异质性和种间竞争的响应. 植物生态学报, 36, 1015-1023.] | |
[20] | Mao SY, Jiang CD, Zhang WH, Lei S, Zhang JZ, Chow WS, Yang JC (2009). Water translocation between ramets of strawberry during soil drying and its effects on photosynthetic performance. Physiologia Plantarum, 137, 225-234. |
[21] | Moola FM, Vasseur L (2009). The importance of clonal growth to the recovery of Gaultheria procumbens L. (Ericaceae) after forest disturbance. Plant Ecology, 201, 319-337. |
[22] | Otfinowski R, Kenkel NC (2008). Clonal integration facilitates the proliferation of smooth brome clones invading northern fescue prairies. Plant Ecology, 199, 235-242. |
[23] | Pitelka LF, Ashmun JW (1985). Physiology and integration of ramets in clonal plants. In: Jaekson JBC, Buss LW, Cook RE eds. Population Biology and Evolution of Clonal Organisms. Yale University Press, New Haven, USA, USA. 399-436. |
[24] | Price EAC, Hutchings MJ (1992). The causes and developmental effects of integration and independence between different parts of Glechoma hederacea clones. Oikos, 63, 376-386. |
[25] | Roiloa SR, Alpert P, Tharayil N, Hancock G, Bhowmik P (2007). Greater capacity for division of labour in clones of Fragaria chiloensis from patchier habitats. Journal of Ecology, 95, 397-405. |
[26] | Roiloa SR, Retuerto R (2007). Responses of the clonal Fragaria vesca to microtopographic heterogeneity under different water and light conditions. Environmental and Experimental Botany, 61, 1-9. |
[27] | Salzman AG, Parker MA (1985). Neighbors ameliorate local salinity stress for a rhizomatous plant in a heterogenous environment. Oecologia, 65, 273-277. |
[28] | Schenk HJ, Espino S, Goedhart CM, Nordenstahl M, Cabrera HIM, Jones CS (2008). Hydraulic integration and shrub growth form linked across continental aridity gradients. Proceedings of the National Academy of Sciences of the United States of America, 105, 11248-11253. |
[29] | Scott W, Shumway (1995). Physiological integration among clonal ramets during invasion of disturbance patches in a New England salt marsh. Annuals of Botany, 76, 225-233. |
[30] | Shumway S (1987). Clonal integration and population structure in perennials: effects of severing rhizome connections. Ecology, 68, 2016-2022. |
[31] |
Sobrado MA, Turner NC (1983). A comparison of the water relations characteristics of Helianthus annuus and Helianthus petiolaris when subjected to water deficits. Oecologia, 58, 309-313.
DOI URL |
[32] | Stuefer JF, de Kroon H, During HJ (1996). Exploitation of environmental heterogeneity by spatial division of labour in a clonal plant. Functional Ecology, 10, 328-334. |
[33] | Sun XL, Niu JZ, Xu YF, Zhou H (2010). Long term water integration in interconnected ramets of stoloniferous grass, buffalograss. African Journal of Biotechnology, 9, 5503-5510. |
[34] | Tietema T, Vander AF (1981). Ecophysiology of the sand sedge, Carex arenaria L. III. Xylem translocation and the occurrence of patches of vigorous growth with the continuum of a rhizomatous plant system. Acta Botanica Neerlandica, 30, 183-189. |
[35] | Touchette BW, Moody JWG, Byrne CM, Marcus SE (2013). Water integration in the clonal emergent hydrophyte, Justicia americana: benefits of acropetal water transfer from mother to daughter ramets. Hydrobiologia, 702, 83-94. |
[36] | Wang N, Yu FH, Li PX, He WM, Liu J, Yu GL, Song YB, Dong M (2009). Clonal integration supports the expansion from terrestrial to aquatic environments of the amphibious stoloniferous herb Alternanthera philoxeroides. Plant Biology, 11, 483-489. |
[37] | Xia Y, Zhang LY, Maimaiti AN, Maimaiti (1995). Some ecological characteristics of Alhagi sparsifolia. Arid Zone Research, 12(4), 53-60. (in Chinese) |
[ 夏阳, 张立运, 安尼瓦尔·买买提, 买买提 (1995). 疏叶骆驼刺的某些生态生物学特性. 干旱区研究, 12(4), 53-60.] | |
[38] | Yu FH, Wang N, He WM, Chu Y, Dong M (2008). Adaptation of rhizome connections in drylands: increasing tolerance of clones to wind erosion. Annals of Botany, 102, 571-577. |
[39] | Yu FH, Wang N, He WM, Dong M (2010). Effects of clonal integration on species composition and biomass of sand dune communities. Journal of Arid Environments, 74, 632-637. |
[40] | Zeng FJ, Li XY, Zhang XM, Foetzki A, Arndt SK (2002). Water physiological characteristics of four perennial plant species around Cele Oasis in Xinjiang. Chinese Journal of Applied Ecology, 13, 611-614. (in Chinese with English abstract) |
[ 曾凡江, 李向义, 张希明, Foetzki A, Arndt SK (2002). 新疆策勒绿洲外围四种多年生植物的水分生理特征. 应用生态学报, 13, 611-614.] | |
[41] | Zhang CY, Yang C, Dong M (2001). The clonal integration of photosynthates in the rhizomatous half-shrub Hedysarum leave. Acta Ecologica Sinica, 21, 1986-1993. (in Chinese with English abstract) |
[ 张称意, 杨持, 董鸣 (2001). 根茎半灌木羊柴对光合同化物的克隆整合. 生态学报, 21, 1986-1993.] | |
[42] | Zhang LY, Maimaiti, Maimaiti AN, Xia Y (1995). The influence of summer irrigation to morphology ecological structure and natural regeneration to Alhagi sparsifolia. Arid Zone Research, 12(4), 34-40. (in Chinese) |
[ 张立运, 买买提, 安尼瓦尔·买买提, 夏阳 (1995). 夏季灌溉对骆驼刺形态学特征、群落生态结构和天然更新的影响. 干旱区研究, 12(4), 34-40.] | |
[43] | Zhang YC, Zhang QY, Luo P, Wu N (2009). Photosynthetic response of Fragaria orientalis in different water contrast clonal integration. Ecology Research, 24, 617-624. |
[44] | Zhang YC, Zhang QY, Yirdaw E, Luo P, Wu N (2008). Clonal integration of Fragaria orientalis driven by contrasting water availability between adjacent patches. Botanical Studies, 49, 373-383. |
[45] | Zhu ZL, Li DZ, Wang XP, Sheng LJ, Shi Q (2006). Water physiology integration and its ecological effect of clonal plants. Acta Botanica Boreali-Occidentalia Sinica, 26, 2602-2614. (in Chinese with English abstract) |
[ 朱志玲, 李德志, 王绪平, 盛丽娟, 石强 (2006). 克隆植物的水分整合及其生态效应. 西北植物学报, 26, 2602-2614.] |
[1] | 杨丽婷, 谢燕燕, 左珂怡, 徐森, 谷瑞, 陈双林, 郭子武. 分株比例对异质光环境下美丽箬竹克隆系统光合生理的影响[J]. 植物生态学报, 2022, 46(1): 88-101. |
[2] | 董琳琳, 普晓妍, 张璐璐, 宋亮, 鲁志云, 李苏. 亚热带森林附生地衣压力-体积曲线分析及其适用性[J]. 植物生态学报, 2021, 45(3): 274-285. |
[3] | 叶学华, 薛建国, 谢秀芳, 黄振英. 外部干扰对根茎型克隆植物甘草自然种群植株生长及主要药用成分含量的影响[J]. 植物生态学报, 2020, 44(9): 951-961. |
[4] | 谭凤森, 宋慧清, 李忠国, 张启伟, 朱师丹. 桂西南喀斯特季雨林木本植物的水力安全[J]. 植物生态学报, 2019, 43(3): 227-237. |
[5] | 顾祝禹, 唐钢梁, 艾克拜尔·伊拉洪, 吐尔逊·吐尔洪. 韧皮部环割诱导下的花花柴衰老机制[J]. 植物生态学报, 2015, 39(11): 1082-1092. |
[6] | 王意锟, 金爱武, 朱强根, 邱永华, 季新良, 张四海. 施肥对毛竹种群不同年龄分株间胸径大小关系的影响[J]. 植物生态学报, 2014, 38(3): 289-297. |
[7] | 彭一可, 罗芳丽, 李红丽, 于飞海. 根状茎型植物扁秆荆三棱对土壤养分异质性尺度和对比度的生长响应[J]. 植物生态学报, 2013, 37(4): 335-343. |
[8] | 王林, 冯锦霞, 万贤崇. 土层厚度对刺槐旱季水分状况和生长的影响[J]. 植物生态学报, 2013, 37(3): 248-255. |
[9] | 李涛, 陈保冬. 丛枝菌根真菌通过上调根系及自身水孔蛋白基因表达提高玉米抗旱性[J]. 植物生态学报, 2012, 36(9): 973-981. |
[10] | 陈少清, 朱大艺, 欧忠辉. 非均匀水势下作物根系吸水模型分析[J]. 植物生态学报, 2012, 36(7): 655-661. |
[11] | 葛俊, 邢福. 克隆植物对种间竞争的适应策略[J]. 植物生态学报, 2012, 36(6): 587-596. |
[12] | 罗维成, 曾凡江, 刘波, 张利刚, 宋聪, 彭守兰, StefanK.ARNDT. 疏叶骆驼刺根系对土壤异质性和种间竞争的响应[J]. 植物生态学报, 2012, 36(10): 1015-1023. |
[13] | 薛伟, 李向义, 林丽莎, 王迎菊, 李磊. 短时间热胁迫对疏叶骆驼刺光系统II、Rubisco活性和活性氧化剂的影响[J]. 植物生态学报, 2011, 35(4): 441-451. |
[14] | 薛伟, 李向义, 朱军涛, 林丽莎, 王迎菊. 遮阴对疏叶骆驼刺叶形态和光合参数的影响[J]. 植物生态学报, 2011, 35(1): 82-90. |
[15] | 李秀媛, 刘西平, Hang DUONG, Roger KJELGREN. 美国海滨桤木和薄叶桤木水分生理特性的比较[J]. 植物生态学报, 2011, 35(1): 73-81. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19