植物生态学报 ›› 2013, Vol. 37 ›› Issue (4): 335-343.DOI: 10.3724/SP.J.1258.2013.00033
收稿日期:
2012-12-24
接受日期:
2013-02-22
出版日期:
2013-12-24
发布日期:
2013-04-09
通讯作者:
于飞海
作者简介:
*(E-mail:feihaiyu@bjfu.edu.cn)基金资助:
PENG Yi-Ke, LUO Fang-Li, LI Hong-Li, YU Fei-Hai*()
Received:
2012-12-24
Accepted:
2013-02-22
Online:
2013-12-24
Published:
2013-04-09
Contact:
YU Fei-Hai
摘要:
土壤养分的空间异质性在自然界普遍存在, 而克隆植物被认为能很好地适应和利用土壤养分异质性。尽管尺度和对比度是异质性的两个重要属性, 但有关土壤养分异质性的尺度和对比度及其交互作用对克隆植物生长和分株分布格局影响的研究仍比较缺乏。在一个温室实验中, 根状茎型草本克隆植物扁秆荆三棱(Bolboschoenus planiculmis) (异名扁秆藨草(Scirpus planiculumis))被种植在由高养分斑块和低养分斑块组成的异质性环境中。实验为两种尺度处理(大斑块和小斑块)和两种对比度处理(高对比度和低对比度)交叉组成的4种处理组合。在每个处理中, 高养分和低养分斑块的总面积相同; 在所有4种处理中, 土壤养分的总量也完全相同。无论在整个克隆(植株)水平, 还是在斑块水平, 尺度、对比度及其交互作用对扁秆荆三棱的生物量、分株数、根状茎长和块茎数的影响均不显著。然而, 在斑块水平, 扁秆荆三棱在高养分斑块中的生物量、分株数、根状茎长和块茎数均显著高于低养分斑块, 而在高养分斑块中相邻分株间的距离(间隔物长)小于低养分斑块, 并且这种效应均不依赖于斑块尺度的大小和对比度的高低。因此, 在土壤养分异质性环境中, 扁秆荆三棱可以通过缩短间隔物长, 并可能通过提高根状茎的分枝强度, 把较多的分株和潜在分株放置在养分条件好的斑块中。这种响应格局体现出克隆植物的觅食行为, 有利于整个克隆对异质性资源的吸收和利用。然而, 该实验中的尺度和对比度对扁秆荆三棱分株的放置格局均没有显著效应。作者推测, 在一个更大的斑块尺度和(或)对比度范围内, 扁秆荆三棱对土壤养分异质性的响应可能不同。因此, 下一步的研究应涉及更广泛的尺度和对比度。
彭一可, 罗芳丽, 李红丽, 于飞海. 根状茎型植物扁秆荆三棱对土壤养分异质性尺度和对比度的生长响应. 植物生态学报, 2013, 37(4): 335-343. DOI: 10.3724/SP.J.1258.2013.00033
PENG Yi-Ke, LUO Fang-Li, LI Hong-Li, YU Fei-Hai. Growth responses of a rhizomatous herb Bolboschoenus planiculmis to scale and contrast of soil nutrient heterogeneity. Chinese Journal of Plant Ecology, 2013, 37(4): 335-343. DOI: 10.3724/SP.J.1258.2013.00033
图1 实验设计图。 实验包含斑块尺度和斑块对比度两个因子, 共4个处理。其中, 斑块尺度有大斑块(每个盒子划分为4个土壤斑块, 左图)和小斑块(每个盒子划分为8个土壤斑块, 右图)两个水平; 斑块对比度有低对比度(高养分斑块(每个盒子中的深色部分)和低养分斑块(每个盒子中的浅色部分)中养分比为7:3, 上图)和高对比度(高养分斑块和低养分斑块中养分比为9:1, 下图)两个水平。
Fig. 1 Schematic representation of the experimental design. The experiment had two factors, i.e., patch scale (large vs. small patch) and patch contrast (high vs. low contrast), and thus four treatments. For the large patch treatment each box was divided into four large patches (left), and for the small patch treatment each box was divided into eight small patches (right). For the low contrast treatment the nutrient ratio in the high (dark color) and low nutrient patches (light color) was 7:3 (top), whereas the ratio was 9:1 for the high contrast treatment (bottom).
尺度 Scale (S) | 对比度 Contrast (C) | C × S | |
---|---|---|---|
生物量 Biomass | 0.32ns | 0.53ns | 0.15ns |
分株数 Number of ramets | 0.55ns | 0.48ns | 2.09ns |
根状茎长 Rhizome length | 0.11ns | 1.86ns | 0.03ns |
块茎数 Number of tubers | 0.56ns | 0.55ns | 0.51ns |
间隔物长 Spacer length | 0.02ns | 1.32ns | 0.99ns |
根冠比 Root to shoot ratio | 14.44* | 3.46ns | 9.93** |
表1 土壤养分异质性的尺度和对比度对扁秆荆三棱整个克隆(植物)的生长和形态特征的影响
Table 1 Effects of scale and contrast of soil nutrient heterogeneity on growth and morphology of Bolboschoenus planiculmis at clone (whole plant) level
尺度 Scale (S) | 对比度 Contrast (C) | C × S | |
---|---|---|---|
生物量 Biomass | 0.32ns | 0.53ns | 0.15ns |
分株数 Number of ramets | 0.55ns | 0.48ns | 2.09ns |
根状茎长 Rhizome length | 0.11ns | 1.86ns | 0.03ns |
块茎数 Number of tubers | 0.56ns | 0.55ns | 0.51ns |
间隔物长 Spacer length | 0.02ns | 1.32ns | 0.99ns |
根冠比 Root to shoot ratio | 14.44* | 3.46ns | 9.93** |
图2 四种不同养分斑块尺度和对比度下扁秆荆三棱整个克隆的生长指标(A-D)和形态指标(E, F) (平均值±标准误差)。
Fig. 2 Growth (A-D) and morphology (E, F) parameters of Bolboschoenus planiculmis at clone level under four heterogeneity treatments differing in patch scale and contrast (mean ± SE).
养分水平 Nutrient level (N) | 尺度 Scale (S) | 对比度 Contrast (C) | N × S | N × C | S × C | N ×S× C | |
---|---|---|---|---|---|---|---|
生物量 Biomass | 20.42*** | 0.42ns | 0.99ns | 0.08ns | 0.10ns | 0.22ns | 0.04ns |
分株数 Number of ramets | 36.95*** | 0.88ns | 0.78ns | 0.09ns | 0.94ns | 3.35ns | 0.79ns |
根状茎长 Rhizome length | 8.73** | 0.21ns | 3.45ns | 0.16ns | 0.34ns | 0.06ns | 0.31ns |
块茎数 Number of tubers | 8.26** | 0.95ns | 0.92ns | 0.12ns | 0.99ns | 0.85ns | 0.19ns |
间隔物长 Spacer length | 11.08** | 0.27ns | 3.73ns | 0.40ns | 2.19ns | 1.46ns | 0.27ns |
根冠比 Root to shoot ratio | 1.10ns | 2.85ns | 1.05ns | 0.04ns | 3.92ns | 1.49ns | 4.54* |
表2 土壤养分异质性环境中斑块内养分水平、斑块尺度和对比度对斑块水平扁秆荆三棱分株生长和形态特征的影响
Table 2 Effects of nutrient level within patches, scale and contrast of soil nutrient heterogeneity on growth and morphology of Bolboschoenus planiculmis at patch level
养分水平 Nutrient level (N) | 尺度 Scale (S) | 对比度 Contrast (C) | N × S | N × C | S × C | N ×S× C | |
---|---|---|---|---|---|---|---|
生物量 Biomass | 20.42*** | 0.42ns | 0.99ns | 0.08ns | 0.10ns | 0.22ns | 0.04ns |
分株数 Number of ramets | 36.95*** | 0.88ns | 0.78ns | 0.09ns | 0.94ns | 3.35ns | 0.79ns |
根状茎长 Rhizome length | 8.73** | 0.21ns | 3.45ns | 0.16ns | 0.34ns | 0.06ns | 0.31ns |
块茎数 Number of tubers | 8.26** | 0.95ns | 0.92ns | 0.12ns | 0.99ns | 0.85ns | 0.19ns |
间隔物长 Spacer length | 11.08** | 0.27ns | 3.73ns | 0.40ns | 2.19ns | 1.46ns | 0.27ns |
根冠比 Root to shoot ratio | 1.10ns | 2.85ns | 1.05ns | 0.04ns | 3.92ns | 1.49ns | 4.54* |
图3 四种不同养分斑块尺度和对比度下两种养分斑块中扁秆荆三棱分株的生长指标(A-D)和形态指标(E, F) (平均值±标准误差)。
Fig. 3 Growth (A-D) and morphology (E, F) parameters of Bolboschoenus planiculmis ramets at patch level under four heterogeneity treatments differing in patch scale and contrast (mean ± SE).
[1] | Alpert P, Stuefer JF (1997). Division of labour in clonal plants. In: de Kroon H, van Groenendael J eds. The Ecology and Evolution of Clonal Plants. Backbuys Publishers, Leiden. 137-154. |
[2] | Birch CPD, Hutchings MJ (1994). Exploitation of patchily distributed soil resources by the clonal herb Glechoma hederacea. Journal of Ecology, 82, 653-664. |
[3] | Bloom AJ, Chapin III FS, Mooney HA (1985). Resource limitation in plants—an economic analogy. Annual Review of Ecology and Systematics, 16, 363-392. |
[4] | China Flora Editorial Board of Chinese Academy of Sciences (1961). Flora of China. Vol. 11. Science Press, Beijing. (in Chinese) |
[ 中国科学院中国植物志编辑委员会 (1961). 中国植物志. 第11卷. 科学出版社, 北京.] | |
[5] | Day KJ, Hutchings MJ, John EA (2003a). The effects of spatial pattern of nutrient supply on the early stages of growth in plant populations. Journal of Ecology, 91, 305-315. |
[6] | Day KJ, Hutchings MJ, John EA (2003b). The effects of spatial pattern of nutrient supply on yield, structure and mortality in plant populations. Journal of Ecology, 91, 541-553. |
[7] | Day KJ, John EA, Hutchings MJ (2003c). The effects of spatially heterogeneous nutrient supply on yield, intensity of competition and root placement patterns in Briza media and Festuca ovina. Functional Ecology, 17, 454-463. |
[8] | de Kroon H, Hutchings MJ (1995). Morphological plasticity in clonal plants: the foraging concept reconsidered. Journal of Ecology, 83, 143-152. |
[9] | de Kroon H, Mommer L (2006). Root foraging theory put to the test. Trends in Ecology & Evolution, 21, 113-116. |
[10] |
de Kroon H, Visser EJW, Huber H, Mommer L, Hutchings MJ (2009). A modular concept of plant foraging behaviour: the interplay between local responses and systemic control. Plant, Cell & Environment, 32, 704-712.
DOI URL PMID |
[11] | Dong M, Alaten B (1999). Clonal plasticity in response to rhizome severing and heterogeneous resource supply in the rhizomatous grass Psammochloa villosa in an Inner Mongolian dune, China. Plant Ecology, 141, 53-58. |
[12] | Dong M, Yu FH, Chen YF, Song MH, Liu J, Chen JS, Li JM, Liu FH (2011). Clonal Plant Ecology . Science Press, Beijing. (in Chinese) |
[ 董鸣, 于飞海, 陈玉福, 宋明华, 刘建, 陈劲松, 李钧敏, 刘凤红 (2011). 克隆植物生态学. 科学出版社, 北京.] | |
[13] | Du J, Yu FH, Alpert P, Dong M (2009). Arbuscular mycorrhizal fungi reduce effects of physiological integration in Trifolium repens. Annals of Botany, 104, 335-344. |
[14] | Fransen B, de Kroon H, Berendse F (2001). Soil nutrient heterogeneity alters competition between two perennial grass species. Ecology, 82, 2534-2546. |
[15] |
Friedman D, Alpert P (1991). Reciprocal transport between ramets increases growth of Fragaria chiloensis when light and nitrogen occur in separate patches but only if patches are rich. Oecologia, 86, 76-80.
DOI URL |
[16] |
García-Palacios P, Maestre FT, Gallardo A (2011). Soil nutrient heterogeneity modulates ecosystem responses to changes in the identity and richness of plant functional groups. Journal of Ecology, 99, 551-562.
DOI URL |
[17] |
Guo W, Song YB, Yu FH (2011). Heterogeneous light supply affects growth and biomass allocation of the understory fern Diplopterygium glaucum at high patch contrast. PLoS ONE, 6, e27998.
URL PMID |
[18] |
He WM, Alpert P, Yu FH, Zhang LL, Dong M (2011). Reciprocal and coincident patchiness of multiple resources differentially affect benefits of clonal integration in two perennial plants. Journal of Ecology, 99, 1202-1210.
DOI URL |
[19] |
He WM, Zhang H, Dong M (2004). Plasticity in fitness and fitness-related traits at ramet and genet levels in a tillering grass Panicum miliaceum under patchy soil nutrients. Plant Ecology, 172, 1-10.
DOI URL |
[20] | Hutchings MJ, de Kroon H (1994). Foraging in plants: the role of morphological plasticity in resource acquisition. Advances in Ecological Research, 25, 159-238. |
[21] | Hutchings MJ, John EA, Wijesinghe DK (2003). Toward understanding the consequences of soil heterogeneity for plant populations and communities. Ecology, 84, 2322-2334. |
[22] |
Jackson RB, Caldwell MM (1993). The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics. Ecology, 74, 612-614.
DOI URL |
[23] | Kotliar NB, Wiens JA (1990). Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos, 59, 253-260. |
[24] | Li PX, Wang N, He WM, Krüsi BO, Gao SQ, Zhang SM, Yu FH, Dong M (2008). Fertile islands under Artemisia ordosica in inland dunes of northern China: effects of habitats and plant developmental stages. Journal of Arid Environments, 72, 953-963. |
[25] | Liang SC, Zhang SM, Yu FH, Dong M (2007). Small-scale spatial cross-correlation between ramet population variables of Potentilla reptans var. sericophylla and soil availabile phosphorus. Journal of Plant Ecology (Chinese Version), 31, 613-618. (in Chinese with English abstract) |
[ 梁士楚, 张淑敏, 于飞海, 董鸣 (2007). 绢毛匍匐委陵菜与土壤有效磷的小尺度空间相关分析. 植物生态学报, 31, 613-618.] | |
[26] | Liu RH, Dong BC, Li HL, Zhang Q, Yu FH (2012). Patchy distributions of Spirogyra arcta do not affect growth of the submerged macrophyte Ceratophyllum demersum. Plant Species Biology, 27, 210-217. |
[27] | Maestre FT, Bradford MA, Reynolds JF (2005). Soil nutrient heterogeneity interacts with elevated CO2 and nutrient availability to determine species and assemblage respo- nses in a model grassland community. New Phytologist, 168, 637-650. |
[28] |
Maestre FT, Reynolds JF (2006). Nutrient availability and atmospheric CO2 partial pressure modulate the effects of nutrient heterogeneity on the size structure of populations in grassland species. Annals of Botany, 98, 227-235.
DOI URL PMID |
[29] | Mommer L, Visser EJW, van Ruijven J, de Caluwe H, Pierik R, de Kroon H (2011). Contrasting root behaviour in two grass species: a test of functionality in dynamic heterogeneous conditions. Plant and Soil, 344, 347-360. |
[30] | Roiloa SR, Alpert P, Tharayil N, Hancock G, Bhowmik PC (2007). Greater capacity for division of labour in clones of Fragaria chiloensis from patchier habitats. Journal of Ecology, 95, 397-405. |
[31] | Slade AJ, Hutchings MJ (1987). The effects of nutrient availability on foraging in the clonal herb Glechoma hederacea. Journal of Ecology, 75, 95-112. |
[32] | Stuefer JF (1996). Potential and limitations of current concepts regarding the response of clonal plants to environmental heterogeneity. Vegetation, 127, 55-70. |
[33] | Stuefer JF, de Kroon H, During HJ (1996). Exploitation of environmental hetergeneity by spatial division of labour in a clonal plant. Functional Ecology, 10, 328-334. |
[34] | Stuefer JF, During HJ, de Kroon H (1994). High benefits of clonal integration in two stoloniferous species, in response to heterogeneous light environments. Journal of Ecology, 82, 511-518. |
[35] |
Wang P, Lei JP, Li MH, Yu FH (2012). Spatial heterogeneity in light supply affects intraspecific competition of a stoloniferous clonal plant. PLoS ONE, 7, e39105.
DOI URL PMID |
[36] |
Wang Z, Li Y, During HJ, Li L (2011). Do clonal plants show greater division of labour morphologically and physiologically at higher patch contrasts? PLoS ONE, 6, e25401.
DOI URL PMID |
[37] | Wijesinghe DK, Hutchings MJ (1997). The effects of spatial scale of environmental heterogeneity on the growth of a clonal plant: an experimental study with Glechoma hederacea. Journal of Ecology, 85, 17-28. |
[38] | Wijesinghe DK, Hutchings MJ (1999). The effects of environmental heterogeneity on the performance of Glechoma hederacea: the interactions between patch contrast and patch scale. Journal of Ecology, 87, 860-872. |
[39] | Wijesinghe DK, John EA, Hutchings MJ (2005). Does pattern of soil resource heterogeneity determine plant community structure? An experimental investigation. Journal of Ecology, 93, 99-112. |
[40] | Yang YF, Zhu TC (2011). Plant Ecology. 2nd edn. High Education Press, Beijing. (in Chinese) |
[ 杨允菲, 祝廷成(2011) 植物生态学. 第二版. 高等教育出版社, 北京.] | |
[41] | Yu FH, Dong M (2003). Effect of light intensity and nutrient availability on clonal growth and clonal morphology of the stoloniferous herb Halerpestes ruthenica. Journal of Integrative Plant Biology, 45, 408-416. |
[42] | Zhang LL, Dong M, Li RQ, Wang YH, Cui QG, He WM (2007). Soil-nutrient patch contrast modifies intensity and direction of clonal integration in Glechoma longituba. Journal of Plant Ecology (Chinese Version), 31, 619-624. (in Chinese with English abstract) |
[ 张丽丽, 董鸣, 李仁强, 王艳红, 崔清国, 何维明 (2007). 土壤养分斑块对比度改变活血丹克隆整合强度和方向. 植物生态学报, 31, 619-624.] | |
[43] | Zhang LL, He WM (2009). Consequences of ramets helping ramets: no damage and increased nutrient use efficiency in nurse ramets of Glechoma longituba. Flora, 204, 182-188. |
[44] |
Zhou J, Dong BC, Alpert P, Li HL, Zhang MX, Lei GC, Yu FH (2012). Effects of soil nutrient heterogeneity on intraspecific competition in the invasive, clonal plant Alternanthera philoxeroides. Annals of Botany, 109, 813-818.
URL PMID |
[1] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[2] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[3] | 钟楠蝶, 王力, 肖杰, 王琼. 增温条件下花粉来源对红雉凤仙花生殖成功的影响[J]. 植物生态学报, 2022, 46(4): 416-427. |
[4] | 高璐鑫, 兰天元, 赵志霞, 邓舒雨, 熊高明, 谢宗强, 申国珍. 中国中亚热带北部灌丛群落植物空间周转及其驱动因素[J]. 植物生态学报, 2022, 46(11): 1411-1421. |
[5] | 杨丽婷, 谢燕燕, 左珂怡, 徐森, 谷瑞, 陈双林, 郭子武. 分株比例对异质光环境下美丽箬竹克隆系统光合生理的影响[J]. 植物生态学报, 2022, 46(1): 88-101. |
[6] | 杜军, 王文, 何志斌, 陈龙飞, 蔺鹏飞, 朱喜, 田全彦. 祁连山青海云杉物候表型的空间分异及其内在机制[J]. 植物生态学报, 2021, 45(8): 834-843. |
[7] | 张自琰, 金光泽, 刘志理. 不同区域针叶年龄对红松叶性状及相关关系的影响[J]. 植物生态学报, 2021, 45(3): 253-264. |
[8] | 叶学华, 薛建国, 谢秀芳, 黄振英. 外部干扰对根茎型克隆植物甘草自然种群植株生长及主要药用成分含量的影响[J]. 植物生态学报, 2020, 44(9): 951-961. |
[9] | 杨雪, 申俊芳, 赵念席, 高玉葆. 不同基因型羊草数量性状的可塑性及遗传分化[J]. 植物生态学报, 2017, 41(3): 359-368. |
[10] | 闫帮国, 刘刚才, 樊博, 何光熊, 史亮涛, 李纪潮, 纪中华. 干热河谷植物化学计量特征与生物量之间的关系[J]. 植物生态学报, 2015, 39(8): 807-815. |
[11] | 李西良,侯向阳,吴新宏,萨茹拉,纪磊,陈海军,刘志英,丁勇. 草甸草原羊草茎叶功能性状对长期过度放牧的可塑性响应[J]. 植物生态学报, 2014, 38(5): 440-451. |
[12] | 王意锟, 金爱武, 朱强根, 邱永华, 季新良, 张四海. 施肥对毛竹种群不同年龄分株间胸径大小关系的影响[J]. 植物生态学报, 2014, 38(3): 289-297. |
[13] | 罗维成, 曾凡江, 刘波, 宋聪, 彭守兰, Stefan K. ARNDT. 疏叶骆驼刺母株与子株间的水分整合[J]. 植物生态学报, 2013, 37(2): 164-172. |
[14] | 葛俊, 邢福. 克隆植物对种间竞争的适应策略[J]. 植物生态学报, 2012, 36(6): 587-596. |
[15] | 覃凤飞,李强,崔棹茗,李洪萍,杨智然. 越冬期遮阴条件下3个不同秋眠型紫花苜蓿品种叶片解剖结构与其光生态适应性[J]. 植物生态学报, 2012, 36(4): 333-345. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19