植物生态学报 ›› 2022, Vol. 46 ›› Issue (11): 1411-1421.DOI: 10.17521/cjpe.2022.0288
所属专题: 植被生态学
高璐鑫1,2,3, 兰天元1,2,3, 赵志霞1, 邓舒雨1,3, 熊高明1,2, 谢宗强1,2,3, 申国珍1,2,3,*()
收稿日期:
2022-07-12
接受日期:
2022-09-28
出版日期:
2022-11-20
发布日期:
2022-10-25
通讯作者:
*申国珍(snj@ibcas.ac.cn)
基金资助:
GAO Lu-Xin1,2,3, LAN Tian-Yuan1,2,3, ZHAO Zhi-Xia1, DENG Shu-Yu1,3, XIONG Gao-Ming1,2, XIE Zong-Qiang1,2,3, SHEN Guo-Zhen1,2,3,*()
Received:
2022-07-12
Accepted:
2022-09-28
Online:
2022-11-20
Published:
2022-10-25
Contact:
*SHEN Guo-Zhen(snj@ibcas.ac.cn)
Supported by:
摘要:
环境因子是驱动物种空间周转的重要因素, 灌丛作为亚热带地区重要的植被类型, 探究其群落的物种空间周转格局及其驱动因素, 能够为区域生物多样性保护提供科学依据。该研究以中国中亚热带北部灌丛群落为研究对象, 采用广义相异性模型, 以Bray-Curtis相异性指数为指标, 分析了气候、土壤、地形、人为干扰等因素对灌丛群落物种周转的驱动效应。结果表明, 气候因子对物种周转影响显著, 且随着海拔、坡度、土壤总氮含量、国内生产总值的增加, 物种周转速率显著增加, 而年平均气温和距道路距离对物种周转无显著影响。在过酸过碱的土壤中, 物种周转速率较低, 在pH = 5时, 物种周转速率达到最大值。气候、土壤、地形、人为干扰等因素可以解释灌丛植物群落物种周转的33.55%。其中, 土壤因素的解释率为26.54%, 而气候和地形、人为干扰因素分别解释了13.39%和3.17%, 土壤pH的相对贡献率(37.28%)最大。综上所述, 环境因子对中国中亚热带北部灌丛群落的物种空间周转过程有重要作用, 其中土壤因子为驱动物种周转的关键因素。
高璐鑫, 兰天元, 赵志霞, 邓舒雨, 熊高明, 谢宗强, 申国珍. 中国中亚热带北部灌丛群落植物空间周转及其驱动因素. 植物生态学报, 2022, 46(11): 1411-1421. DOI: 10.17521/cjpe.2022.0288
GAO Lu-Xin, LAN Tian-Yuan, ZHAO Zhi-Xia, DENG Shu-Yu, XIONG Gao-Ming, XIE Zong-Qiang, SHEN Guo-Zhen. Spatial turnover of shrubland communities and underlying factors in northern mid-subtropical China. Chinese Journal of Plant Ecology, 2022, 46(11): 1411-1421. DOI: 10.17521/cjpe.2022.0288
环境因子 Environmental variable | 简写 Abbreviation | 平均值±标准误 Mean ± SE | 最小值 Minimum | 最大值 Maximum | 变异系数 CV (%) |
---|---|---|---|---|---|
≥0 ℃积温 Accumulated temperature (≥0 °C) (°C) | AAT0 | 5 725.40 ± 54.49 | 2 045.40 | 6 715.90 | 13.46 |
≥10 ℃积温 Accumulated temperature (≥10 °C) (°C) | AAT10 | 5 100.49 ± 55.66 | 1 216.10 | 5 947.00 | 15.43 |
年平均气温 Mean annual air temperature (°C) | Ta | 15.65 ± 0.16 | 3.80 | 18.40 | 14.38 |
年降水量 Mean annual precipitation (mm) | Pa | 1 467.53 ± 15.78 | 1 047.50 | 1 892.90 | 15.21 |
湿润指数 Moisture index | IM | 67.28 ± 1.89 | 14.85 | 174.01 | 39.70 |
海拔 Altitude (m) | Alt | 258.98 ± 1.95 | 7.00 | 2 818.00 | 128.16 |
坡度 Slope (°) | Slope | 27.32 ± 1.03 | 0.00 | 80.00 | 53.18 |
坡向 Aspect (°) | Aspect | 159.91 ± 7.51 | 0.00 | 351.00 | 66.42 |
土壤有机碳含量 Soil organic carbon content (mg·g-1) | SOC | 13.99 ± 1.41 | 0.00 | 118.55 | 142.46 |
土壤总氮含量 Soil total nitrogen content (mg·g-1) | TN | 1.35 ± 0.10 | 0.09 | 9.07 | 100.74 |
土壤总磷含量 Soil total phosphorus content (mg·g-1) | TP | 0.59 ± 0.03 | 0.09 | 3.34 | 74.57 |
土壤pH Soil pH | pH | 5.84 ± 0.11 | 3.87 | 9.34 | 27.05 |
国内生产总值(104元·km-2) Gross domestic product (104 yuan·km-2) | GDP | 1 130.89 ± 135.31 | 60.00 | 21 627.00 | 169.21 |
人口空间分布(人·km-2) Population spatial distribution (person·km-2) | POP | 261.14 ± 15.34 | 22.30 | 2 048.36 | 83.09 |
到居民点的距离 Distance to resident (m) | dRespt | 630.39 ± 58.72 | 0.00 | 3 727.12 | 131.74 |
到道路的距离 Distance to road (m) | dRoad | 153.86 ± 45.20 | 0.00 | 2 797.37 | 415.54 |
表1 中国中亚热带北部灌丛样地环境因子的描述性统计
Table 1 Descriptive statistics of environmental factors in the plots of shrubland communities in northern mid-subtropical China
环境因子 Environmental variable | 简写 Abbreviation | 平均值±标准误 Mean ± SE | 最小值 Minimum | 最大值 Maximum | 变异系数 CV (%) |
---|---|---|---|---|---|
≥0 ℃积温 Accumulated temperature (≥0 °C) (°C) | AAT0 | 5 725.40 ± 54.49 | 2 045.40 | 6 715.90 | 13.46 |
≥10 ℃积温 Accumulated temperature (≥10 °C) (°C) | AAT10 | 5 100.49 ± 55.66 | 1 216.10 | 5 947.00 | 15.43 |
年平均气温 Mean annual air temperature (°C) | Ta | 15.65 ± 0.16 | 3.80 | 18.40 | 14.38 |
年降水量 Mean annual precipitation (mm) | Pa | 1 467.53 ± 15.78 | 1 047.50 | 1 892.90 | 15.21 |
湿润指数 Moisture index | IM | 67.28 ± 1.89 | 14.85 | 174.01 | 39.70 |
海拔 Altitude (m) | Alt | 258.98 ± 1.95 | 7.00 | 2 818.00 | 128.16 |
坡度 Slope (°) | Slope | 27.32 ± 1.03 | 0.00 | 80.00 | 53.18 |
坡向 Aspect (°) | Aspect | 159.91 ± 7.51 | 0.00 | 351.00 | 66.42 |
土壤有机碳含量 Soil organic carbon content (mg·g-1) | SOC | 13.99 ± 1.41 | 0.00 | 118.55 | 142.46 |
土壤总氮含量 Soil total nitrogen content (mg·g-1) | TN | 1.35 ± 0.10 | 0.09 | 9.07 | 100.74 |
土壤总磷含量 Soil total phosphorus content (mg·g-1) | TP | 0.59 ± 0.03 | 0.09 | 3.34 | 74.57 |
土壤pH Soil pH | pH | 5.84 ± 0.11 | 3.87 | 9.34 | 27.05 |
国内生产总值(104元·km-2) Gross domestic product (104 yuan·km-2) | GDP | 1 130.89 ± 135.31 | 60.00 | 21 627.00 | 169.21 |
人口空间分布(人·km-2) Population spatial distribution (person·km-2) | POP | 261.14 ± 15.34 | 22.30 | 2 048.36 | 83.09 |
到居民点的距离 Distance to resident (m) | dRespt | 630.39 ± 58.72 | 0.00 | 3 727.12 | 131.74 |
到道路的距离 Distance to road (m) | dRoad | 153.86 ± 45.20 | 0.00 | 2 797.37 | 415.54 |
图2 中国中亚热带北部灌丛地形变量(A-C)、气候分异(D-G)、土壤理化性质(H-K)、人为干扰(L-N)与植物群落β多样性的关系。AAT0, ≥0 ℃积温; AAT10, ≥10 ℃积温; Alt, 海拔; Aspect, 坡向; dRespt, 距居民点的距离; GDP, 国内生产总值; IM, 湿润指数; Pa, 年降水量; POP, 人口空间分布; Slope, 坡度; SOC, 土壤有机碳含量; TN, 土壤总氮含量; TP, 土壤总磷含量。实线为偏响应曲线, 虚线为偏响应曲线的变化斜率, y轴f (变量)指示I-spline转换函数, 单位为群落相异性连接单位-ln(1 - dij), 其中dij指站点i和j之间的相异性。
Fig. 2 Relationship between the gradient of topographic variables (A-C), climate variables (D-G), soil physical and chemical properties (H-K), human disturbance (L-N) and β diversity of shrubland communities in northern mid-subtropical China. AAT0, accumulated temperature (≥0 °C); AAT10, accumulated temperature (≥10 °C); Alt, altitude; dRespt, distance to resident; GDP, gross domestic product; IM, moisture index; Pa, mean annual precipitation; POP, population spatial distribution; SOC, soil organic carbon content; TN, soil total nitrogen content; TP, soil total phosphorus content. Solid line is the partial response curve, and the dashed line is the change slope of the partial response curve. The function f (variable) in y axis indicated the I-spline-transformed function, and its unit was linking unit of community dissimilarity -ln(1 - dij), dij represents the dissimilarity between sites i and j.
图3 预测变量对中国中亚热带北部灌丛群落间β多样性的相对贡献。AAT0, ≥0 ℃积温; AAT10, ≥10 ℃积温; Alt, 海拔; Aspect, 坡向; dRespt, 距居民点的距离; GDP, 国内生产总值; IM, 湿润指数; Pa, 年降水量; POP, 人口空间分布; Slope, 坡度; SOC, 土壤有机碳含量; TN, 土壤总氮含量; TP, 土壤总磷含量。
Fig. 3 Relative contribution of predictive variables to inter-community β diversity of shrubland communities in northern mid-subtropical China. AAT0, accumulated temperature (≥0 °C); AAT10, accumulated temperature (≥10 °C); Alt, altitude; GDP, gross domestic product; IM, moisture index; Pa, mean annual precipitation; POP, population spatial distribution; dRespt, distance to resident; SOC, soil organic carbon content; TN, soil total nitrogen content; TP, soil total phosphorus content.
图4 人为干扰(A)、气候与地形分异(B)及土壤异质性(C)对中亚热带北部灌丛群落之间物种更替的解释度(%)。
Fig. 4 Partitional effects (%) of human disturbance (A), climate and topography difference (B) and soil difference (C) on species turnover of shruband communities in northern mid-subtropical China.
[1] |
Ashcroft MB, Gollan JR, Faith DP, Carter GA, Lassau SA, Ginn SG, Bulbert MW, Cassis G (2010). Using Generalised Dissimilarity Models and many small samples to improve the efficiency of regional and landscape scale invertebrate sampling. Ecological Informatics, 5, 124-132.
DOI URL |
[2] |
Buckley LB, Jetz W (2008). Linking global turnover of species and environments. Proceedings of the National Academy of Sciences of the United States of America, 105, 17836-17841.
DOI PMID |
[3] |
Bykova O, Chuine I, Morin X, Higgins SI (2012). Temperature dependence of the reproduction niche and its relevance for plant species distributions. Journal of Biogeography, 39, 2191-2200.
DOI URL |
[4] |
Bykova O, Sage RF (2012). Winter cold tolerance and the geographic range separation of Bromus tectorum and Bromus rubens, two severe invasive species in North America. Global Change Biology, 18, 3654-3663.
DOI URL |
[5] |
Chapman JI, McEwan RW (2013). Spatiotemporal dynamics of α- and β-diversity across topographic gradients in the herbaceous layer of an old-growth deciduous forest. Oikos, 122, 1679-1686.
DOI URL |
[6] |
Chen SB, Ouyang ZY, Xu WH, Xiao Y (2010). A review of beta diversity studies. Biodiversity Science, 18, 323-335.
DOI |
[ 陈圣宾, 欧阳志云, 徐卫华, 肖燚 (2010). Beta多样性研究进展. 生物多样性, 18, 323-335.]
DOI |
|
[7] |
Chi XL, Tang ZY, Fang JY (2014). Patterns of phylogenetic beta diversity in China’s grasslands in in relation to geographical and environmental distance. Basic and Applied Ecology, 15, 416-425.
DOI URL |
[8] |
Chuine I (2010). Why does phenology drive species distribution? Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3149-3160.
DOI URL |
[9] | Dai MX, Zhu YF, Lin X, Mao SQ (2017). Interpretation of environmental factors affecting zooplanktonic beta diversity and its components in Xiangshan Bay. Acta Ecologica Sinica, 37, 5780-5789. |
[ 戴美霞, 朱艺峰, 林霞, 毛硕乾 (2017). 象山港浮游动物β多样性及其成分变化的环境因子解释. 生态学报, 37, 5780-5789.] | |
[10] |
Daniel J, Gleason JE, Cottenie K, Rooney RC (2019). Stochastic and deterministic processes drive wetland community assembly across a gradient of environmental filtering. Oikos, 128, 1158-1169.
DOI |
[11] |
Davidar P, Rajagopal B, Mohandass D, Puyravaud JP, Condit R, Wright SJ, Leigh EG (2007). The effect of climatic gradients, topographic variation and species traits on the beta diversity of rain forest trees. Global Ecology and Biogeography, 16, 510-518.
DOI URL |
[12] |
dos Santos AS, Saraiva DD, Müller SC, Overbeck GE (2015). Interactive effects of environmental filtering predict beta-diversity patterns in a subtropical forest metacommunity. Perspectives in Plant Ecology, Evolution and Systematics, 17, 96-106.
DOI URL |
[13] | Duan YF, Zhang YX, Yu C (2020). Effects of the underground coal mining on the dynamic changes of vegetation in arid desert area. Acta Ecologica Sinica, 40, 8717-8728. |
[ 段语凤, 张玉秀, 余创 (2020). 煤炭井工开采对干旱荒漠区植被动态变化的影响. 生态学报, 40, 8717-8728.] | |
[14] |
Feng G, Svenning JC, Mi XC, Jia Q, Rao MD, Ren HB, Bebber DP, Ma KP (2014). Anthropogenic disturbance shapes phylogenetic and functional tree community structure in a subtropical forest. Forest Ecology and Management, 313, 188-198.
DOI URL |
[15] |
Ferrier S, Manion G, Elith J, Richardson K (2007). Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions, 13, 252-264.
DOI URL |
[16] | Guo YP, Gheyret G, Liu TY, Zhang YW, Kang MY, Mohhamot A, Liu HY, Ma WH, Wang RQ, Yu SL, Yue M, Zhang F, Tang ZY (2021). Distribution patterns and climate limitations of typical shrublands in northern China. Scientia Sinica (Vitae), 51, 346-361. |
[ 郭焱培,艾尤尔•亥热提, 刘同彦, 张艺伟, 康慕谊, 安尼瓦尔•买买提, 刘鸿雁, 马文红, 王仁卿, 于顺利, 岳明, 张峰, 唐志尧 (2021). 中国北方典型灌丛的分布特征及气候限制. 中国科学: 生命科学, 51, 346-361.] | |
[17] | Guo ZG, Liu HX, Wang GX, Cheng GD (2004). Effect of the Qinghai-Tibetan highway on the β diversity of grassland plant communities in the northern region of the Qinghai- Tibetan Plateau. Acta Ecologica Sinica, 24, 384-388. |
[ 郭正刚, 刘慧霞, 王根绪, 程国栋 (2004). 人类工程对青藏高原北部草地群落β多样性的影响. 生态学报, 24, 384-388.] | |
[18] |
Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, et al. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1, e1500052. DOI: 10.1126/sciadv.1500052.
DOI |
[19] |
Hamid M, Khuroo AA, Charles B, Ahmad R, Singh CP, Aravind NA (2019). Impact of climate change on the distribution range and niche dynamics of Himalayan birch, a typical treeline species in Himalayas. Biodiversity and Conservation, 28, 2345-2370.
DOI URL |
[20] | Jiang XL, Sun ZY, Hao Q, Guo X (2020). Interpretation of environmental factors affecting beta diversity and its components of secondary forest in Lao Mountain. Chinese Journal of Ecology, 39, 3211-3220. |
[ 姜小蕾, 孙振元, 郝青, 郭霄 (2020). 崂山次生林群落β多样性格局及其组分的驱动因素. 生态学杂志, 39, 3211-3220.] | |
[21] |
Jones MM, Gibson N, Yates C, Ferrier S, Mokany K, Williams KJ, Manion G, Svenning JC (2016). Underestimated effects of climate on plant species turnover in the Southwest Australian Floristic Region. Journal of Biogeography, 43, 289-300.
DOI URL |
[22] |
Koleff P, Gaston KJ, Lennon JJ (2003). Measuring beta diversity for presence-absence data. Journal of Animal Ecology, 72, 367-382.
DOI URL |
[23] |
Legendre P, Mi XC, Ren HB, Ma KP, Yu MJ, Sun IF, He FL (2009). Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology, 90, 663-674.
DOI PMID |
[24] |
Levin SA (1992). The problem of pattern and scale in ecology. Ecology, 73, 1943-1967.
DOI URL |
[25] | Li JX, Xu WT, Xiong GM, Wang Y, Zhao CM, Lu ZJ, Li YL, Xie ZQ (2017). Leaf nitrogen and phosphorus concentration and the empirical regulations in dominant woody plants of shrublands across southern China. Chinese Journal of Plant Ecology, 41, 31-42. |
[ 李家湘, 徐文婷, 熊高明, 王杨, 赵常明, 卢志军, 李跃林, 谢宗强 (2017). 中国南方灌丛优势木本植物叶的氮、磷含量及其影响因素. 植物生态学报, 41, 31-42.]
DOI |
|
[26] | Li TT (2018). Relationship Between Bryophyte Diversity and Site Factors Under Different Environmental Gradients. Master degree dissertation, South China Agricultural University, Guangzhou. |
[ 李添甜 (2018). 不同环境梯度下苔藓植物多样性与立地因子的关系. 硕士学位论文, 华南农业大学, 广州.] | |
[27] | Liu M, Chen FQ, Wang YB, Lü K, Liu YY (2018). Species biodiversity of seven typical shrub communities in the middle of Guangxi Zhuang Autonomous Region. Journal of Tropical and Subtropical Botany, 26, 157-163. |
[ 刘梦, 陈芳清, 王玉兵, 吕坤, 刘杨赟 (2018). 广西中部7种典型灌丛群落的物种多样性特征. 热带亚热带植物学报, 26, 157-163.] | |
[28] |
Liu YN, Tang ZY, Fang JY (2015). Contribution of environmental filtering and dispersal limitation to species turnover of temperate deciduous broad-leaved forests in China. Applied Vegetation Science, 18, 34-42.
DOI URL |
[29] | Luo QY, Wang YL, Du L, Liu N, Li L, Ma YS (2021). Plant community diversity and soil factor interpretation of adaptive region of Deschampsia caespitosa in the source region of the Yellow River. Acta Prataculturae Sinica, 30(4), 80-89. |
[ 罗巧玉, 王彦龙, 杜雷, 刘念, 李丽, 马玉寿 (2021). 黄河源区发草适生地植物群落特征及其土壤因子解释. 草业学报, 30(4), 80-89.] | |
[30] |
Maestre FT, Cortina J (2004). Insights into ecosystem composition and function in a sequence of degraded semiarid steppes. Restoration Ecology, 12, 494-502.
DOI URL |
[31] |
McFadden IR, Bartlett MK, Wiegand T, Turner BL, Sack L, Valencia R, Kraft NJB (2019). Disentangling the functional trait correlates of spatial aggregation in tropical forest trees. Ecology, 100, e02591. DOI: 10.1002/ecy.2591.
DOI |
[32] |
Mokany K, Ware C, Woolley SNC, Ferrier S, Fitzpatrick MC (2022). A working guide to harnessing generalized dissimilarity modelling for biodiversity analysis and conservation assessment. Global Ecology and Biogeography, 31, 802-821.
DOI URL |
[33] | Molles MC (2002). Ecology: Concepts and Applications. 2nd ed. McGraw-Hill Interamericana de España SL, New York. 217. |
[34] |
Muñoz Mazón M, Tello JS, Macía MJ, Myers JA, Jørgensen PM, Cala V, Fuentes AF, Torrez V, Arellano G (2021). Mechanisms of community assembly explaining beta- diversity patterns across biogeographic regions. Journal of Vegetation Science, 32, e13032. DOI: 10.1111/jvs.13032.
DOI |
[35] |
Oishi Y (2021). Factors that shape the elevational patterns of plant diversity in the Yatsugatake Mountains, Japan. Ecology and Evolution, 11, 4887-4897.
DOI PMID |
[36] |
Overton JM, Barker GM, Price R (2009). Estimating and conserving patterns of invertebrate diversity: a test case of New Zealand land snails. Diversity and Distributions, 15, 731-741.
DOI URL |
[37] |
Paoli GD, Curran LM, Zak DR (2006). Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: evidence for niche partitioning by tropical rain forest trees. Journal of Ecology, 94, 157-170.
DOI URL |
[38] |
Piao SL, Fang JY, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009). The carbon balance of terrestrial ecosystems in China. Nature, 458, 1009-1013.
DOI URL |
[39] |
Porfirio LL, Harris RMB, Lefroy EC, Hugh S, Gould SF, Lee G, Bindoff NL, MacKey B (2014). Improving the use of species distribution models in conservation planning and management under climate change. PLOS ONE, 9, e113749. DOI: 10.1371/journal.pone.0113749.
DOI |
[40] |
Poulin R (2003). The decay of similarity with geographical distance in parasite communities of vertebrate hosts. Journal of Biogeography, 30, 1609-1615.
DOI URL |
[41] |
Qian H, Jin Y, Ricklefs RE (2017). Phylogenetic diversity anomaly in angiosperms between eastern Asia and eastern North America. Proceedings of the National Academy of Sciences of the United States of America, 114, 11452-11457.
DOI PMID |
[42] |
Roberts MR, Wuest LJ (1999). Plant communities of New Brunswick in relation to environmental variation. Journal of Vegetation Science, 10, 321-334.
DOI URL |
[43] |
Sanchez-Gonzalez A, Lopez-Mata L (2005). Plant species richness and diversity along an altitudinal gradient in the Sierra Nevada, Mexico. Diversity and Distributions, 11, 567-575.
DOI URL |
[44] | She DQ, Zhang XT, Xiao L, Zhong ZL, Wang HM, Wang WJ (2022). Plant beta diversity and its influence factors in the Liangshui National Nature Reserve in the central region of the Xiaoxing’an Mountains. Biodiversity Science, 30, 15-26. |
[ 佘丹琦, 张喜亭, 肖路, 仲召亮, 王慧梅, 王文杰 (2022). 小兴安岭凉水国家级自然保护区植物beta多样性及其影响因素. 生物多样性, 30, 15-26.] | |
[45] |
Shen CC, Xiong JB, Zhang HY, Feng YZ, Lin XG, Li XY, Liang WJ, Chu HY (2013). Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology & Biochemistry, 57, 204-211.
DOI URL |
[46] | Shen ZH (2002). A multi-scale study on the vegetation-environment relationship of a mountain forest transect. Acta Ecologica Sinica, 22, 461-470. |
[ 沈泽昊 (2002). 山地森林样带植被-环境关系的多尺度研究. 生态学报, 22, 461-470.] | |
[47] |
Soininen J, Lennon JJ, Hillebrand H (2007). A multivariate analysis of beta diversity across organisms and environments. Ecology, 88, 2830-2838.
PMID |
[48] |
Stein A, Gerstner K, Kreft H (2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17, 866-880.
DOI PMID |
[49] |
Su YJ, Guo QH, Hu TY, Guan HC, Jin SC, An SZ, Chen XL, Guo K, Hao ZQ, Hu YM, Huang YM, Jiang MX, Li JX, Li ZJ, Li XK, et al. (2020). An updated vegetation map of China (1:1000000). Science Bulletin, 65, 1125-1136.
DOI PMID |
[50] | The Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences (2007). Vegetation of China and Its Geographical Pattern—Illustration of the Vegetation Map of the People’s Republic of China (1:1000000). Geological Publishing House, Beijing. |
[ 中国科学院中国植被图编辑委员会 (2007). 中国植被及其地理格局—中华人民共和国植被图(1:1000000) 说明书. 地质出版社, 北京.] | |
[51] | The Editorial Committee of Vegetation of China (1980). Vegetation of China. Science Press, Beijing. 430-504, 835-836, 847-848. |
[ 中国植被编辑委员会 (1980). 中国植被. 科学出版社, 北京. 430-504, 835-836, 847-848.] | |
[52] |
Ulrich W, Soliveres S, Maestre FT, Gotelli NJ, Quero JL, Delgado-Baquerizo M, Bowker MA, Eldridge DJ, Ochoa V, Gozalo B, Valencia E, Berdugo M, Escolar C, García- Gómez M, Escudero A, et al. (2014). Climate and soil attributes determine plant species turnover in global drylands. Journal of Biogeography, 41, 2307-2319.
DOI PMID |
[53] |
Wang F, Tu CY, Cao XW, Liu JQ, Yang YH, Zhang T, Qi H (2018). The different altitude gradient change rules of the main shrub community in arid valleys of the Bailongjiang River with different slope. Bulletin of Botanical Research, 38, 26-36.
DOI |
[ 王飞, 屠彩芸, 曹秀文, 刘锦乾, 杨永红, 张涛, 齐昊 (2018). 白龙江干旱河谷不同坡向主要灌丛群落随海拔梯度变化的物种多样性研究. 植物研究, 38, 26-36.]
DOI |
|
[54] |
Wang JM, Wang Y, Li MX, He NP, Li JW (2021). Divergent roles of environmental and spatial factors in shaping plant β-diversity of different growth forms in drylands. Global Ecology and Conservation, 26, e01487. DOI: 10.1016/ j.gecco.2021.e01487.
DOI |
[55] |
Wang L, Liu C, Alves DG, Frank DA, Wang DL (2015). Plant diversity is associated with the amount and spatial structure of soil heterogeneity in meadow steppe of China. Landscape Ecology, 30, 1713-1721.
DOI URL |
[56] | Wang YG, Zhang T, Duan YH, Liang W, Cao XX (2016). Patterns of plant diversity and population distribution in the Jinzhong Basin. Acta Ecologica Sinica, 36, 6556-6564. |
[ 王应刚, 张婷, 段毅豪, 梁炜, 曹霄霄 (2016). 晋中盆地人类聚居地植物多样性分异规律. 生态学报, 36, 6556-6564.] | |
[57] | Wu YN, Xu Y, Fu TC, Yi ZL, Xue S (2022). Effects of nitrogen application on organic carbon mineralization in rhizosphere soil of Miscanthus spp. in the barren red soil. Acta Agrestia Sinica, 30, 801-809. |
[ 伍旖旎, 许依, 傅童成, 易自力, 薛帅 (2022). 施氮对贫瘠红壤定植芒草根际土有机碳矿化过程的影响. 草地学报, 30, 801-809.]
DOI |
|
[58] |
Xing DL, He FL (2019). Environmental filtering explains a U-shape latitudinal pattern in regional beta-deviation for eastern North American trees. Ecology Letters, 22, 284-291.
DOI URL |
[59] | Yang Y (2015). Spatial Heterogeneity of Shrub on Small Scale in Natural Secondary Shrub in Linan. Master degree dissertation, Zhejiang A&F University, Hangzhou. |
[ 杨一 (2015). 临安次生灌丛植被小尺度的空间异质性研究. 硕士学位论文, 浙江农林大学, 杭州.] | |
[60] |
Yang Y, Han J, Liu Y, Ciren ZY, Shi SL, Cili SN, Xu Y, Ying LX, Zhang WJ, Shen ZH (2016). A comparison of the altitudinal patterns in plant species diversity within the dry valleys of the Three Parallel Rivers region, northwestern Yunnan. Biodiversity Science, 24, 440-452.
DOI |
[ 杨阳, 韩杰, 刘晔, 忠永茨仁, 石松林, 斯那此里, 许玥, 应凌霄, 张婉君, 沈泽昊 (2016). 三江并流地区干旱河谷植物物种多样性海拔梯度格局比较. 生物多样性, 24, 440-452.]
DOI |
|
[61] |
Yi SJ, Wu P, Peng XQ, Tang ZY, Bai FH, Sun XK, Gao YN, Qin HY, Yu XN, Wang RQ, Du N, Guo WH (2021). Biodiversity, environmental context and structural attributes as drivers of aboveground biomass in shrublands at the middle and lower reaches of the Yellow River basin. Science of the Total Environment, 774, 145198. DOI: 10.1016/j.scitotenv.2021.145198.
DOI |
[62] | You YJ, Wang YX, Zhang HF, Qiu WT, Wu MJ (2018). Effects of different human disturbances on soil water conversation and fertility of natural secondary shrub. Acta Ecologica Sinica, 38, 1097-1105. |
[ 尤誉杰, 王懿祥, 张华锋, 邱烷婷, 吴敏娟 (2018). 不同人为干扰措施对天然次生灌丛土壤肥力及蓄水能力的影响. 生态学报, 38, 1097-1105.] | |
[63] |
Zang ZH, Deng SY, Ren GF, Zhao ZX, Li JQ, Xie ZQ, Shen GZ (2020). Climate-induced spatial mismatch may intensify giant panda habitat loss and fragmentation. Biological Conservation, 241, 108392. DOI: 10.1016/j. biocon.2019. 108392.
DOI |
[64] |
Zhang H, Zhou GM, Bai SB, Wang YX, You YJ, Zhu TT, Zhang HF (2017). Effects of target tree tending on community structure and diversity in subtropical natural secondary shrubs. Chinese Journal of Applied Ecology, 28, 1414-1420.
DOI |
[ 张慧, 周国模, 白尚斌, 王懿祥, 尤誉杰, 朱婷婷, 张华锋 (2017). 目标树抚育对亚热带天然次生灌丛群落结构和多样性的影响. 应用生态学报, 28, 1414-1420.]
DOI |
|
[65] |
Zhang MN, Liu B, Li GY, Kuang YY, Yue XQ, Jiang SC, Liu JS, Wang L (2022). The relative and combined effects of herbivore assemblage and soil nitrogen on plant diversity. Science China, Life Sciences, 65, 830-837.
DOI URL |
[66] |
Zhang Q, Hou XY, Li FY, Niu JM, Zhou YL, Ding Y, Zhao LQ, Li X, Ma WJ, Kang S (2014). Alpha, beta and gamma diversity differ in response to precipitation in the Inner Mongolia grassland. PLOS ONE, 9, e93518. DOI: 10.1371/journal.pone.0093518.
DOI |
[67] | Zhang Q, Li JX, Fan XL, Xu WT, Xie ZQ (2021). Effects of nitrogen addition on litter production and leaf decomposition in Rhododendron simsii shrubland in the mid-subtropical of China. Acta Ecologica Sinica, 41, 2372-2383. |
[ 张蔷, 李家湘, 樊晓亮, 徐文婷, 谢宗强 (2021). 氮添加对中亚热带杜鹃灌丛凋落物生产和叶分解的影响. 生态学报, 41, 2372-2383.] | |
[68] |
Zhang YB, Wu HD, Yang J, Song XY, Yang D, He F, Zhang JL (2020). Environmental filtering and spatial processes shape the beta diversity of liana communities in a valley savanna in southwest China. Applied Vegetation Science, 23, 482-494.
DOI URL |
[69] | Zhang YR, Ouyang X, Li YL, Liu SZ, Zhang DQ, Zhou GY (2013). Shrub community characteristics and quantitative calculation of theirs biomass in southern China. Journal of Central South University of Forestry & Technology, 33(9), 71-79. |
[ 张亚茹, 欧阳旭, 李跃林, 刘世忠, 张德强, 周国逸 (2013). 我国南亚热带灌丛群落特征及生物量的定量计算. 中南林业科技大学学报, 33(9), 71-79.] | |
[70] |
Zhao MF, Wang GY, Xing KX, Wang YH, Xue F, Kang MY, Luo K (2017). Patterns and determinants of species similarity decay of forest communities in the western Qinling Mountains. Biodiversity Science, 25, 3-10.
DOI |
[ 赵鸣飞, 王国义, 邢开雄, 王宇航, 薛峰, 康慕谊, 罗开 (2017). 秦岭西部森林群落相似性递减格局及其影响因素. 生物多样性, 25, 3-10.]
DOI |
[1] | 杨安娜, 李曾燕, 牟凌, 杨柏钰, 赛碧乐, 张立, 张增可, 王万胜, 杜运才, 由文辉, 阎恩荣. 上海大金山岛不同植被类型土壤细菌群落的变异[J]. 植物生态学报, 2024, 48(3): 377-389. |
[2] | 韩聪, 母艳梅, 查天山, 秦树高, 刘鹏, 田赟, 贾昕. 2012-2016年宁夏盐池毛乌素沙地黑沙蒿灌丛生态系统通量观测数据集[J]. 植物生态学报, 2023, 47(9): 1322-1332. |
[3] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[4] | 李红琴, 张亚茹, 张法伟, 马文婧, 罗方林, 王春雨, 杨永胜, 张雷明, 李英年. 增强回归树模型在青藏高原高寒灌丛通量数据插补中的应用[J]. 植物生态学报, 2022, 46(12): 1437-1447. |
[5] | 刘秋蓉, 李丽, 罗垚, 陈冬东, 黄鑫, 胡君, 刘庆. 四川巴塘海子山高寒灌丛群落的基本特征[J]. 植物生态学报, 2022, 46(11): 1334-1341. |
[6] | 要振宇, 史亚博, 马文红, 赵利清, 菊花, 浩仁塔本, 苏闯, 张芯毓, 梁存柱. 内蒙古地区虎榛子群系的群落特征[J]. 植物生态学报, 2022, 46(11): 1342-1349. |
[7] | 张零念, 朱贵青, 杨宽, 刘星月, 巩合德, 郑丽. 滇中云南杨梅灌丛主要木本植物生态位与种间联结[J]. 植物生态学报, 2022, 46(11): 1400-1410. |
[8] | 马龙龙, 杜灵通, 丹杨, 王乐, 乔成龙, 吴宏玥. 基于茎流-蒸渗仪法的荒漠草原带人工灌丛群落蒸散特征[J]. 植物生态学报, 2020, 44(8): 807-818. |
[9] | 曹嘉瑜, 刘建峰, 袁泉, 徐德宇, 樊海东, 陈海燕, 谭斌, 刘立斌, 叶铎, 倪健. 森林与灌丛的灌木性状揭示不同的生活策略[J]. 植物生态学报, 2020, 44(7): 715-729. |
[10] | 陈国鹏, 杨克彤, 王立, 王飞, 曹秀文, 陈林生. 甘肃南部7种高寒杜鹃生物量分配的异速生长关系[J]. 植物生态学报, 2020, 44(10): 1040-1049. |
[11] | 丁威,王玉冰,向官海,迟永刚,鲁顺保,郑淑霞. 小叶锦鸡儿灌丛化对典型草原群落结构与生态系统功能的影响[J]. 植物生态学报, 2020, 44(1): 33-43. |
[12] | 柴永福, 许金石, 刘鸿雁, 刘全儒, 郑成洋, 康慕谊, 梁存柱, 王仁卿, 高贤明, 张峰, 福臣, 刘晓, 岳明. 华北地区主要灌丛群落物种组成及系统发育结构特征[J]. 植物生态学报, 2019, 43(9): 793-805. |
[13] | 唐丽丽, 杨彤, 刘鸿雁, 康慕谊, 王仁卿, 张峰, 高贤明, 岳明, 张梅, 郑璞帆, 石福臣. 华北地区荆条灌丛分布及物种多样性空间分异 规律[J]. 植物生态学报, 2019, 43(9): 825-833. |
[14] | 苏闯, 马文红, 张芯毓, 苏云, 闵永恩, 张晋元, 赵利清, 梁存柱. 贺兰山西坡主要山地灌丛群落的基本特征[J]. 植物生态学报, 2018, 42(10): 1050-1054. |
[15] | 马志良, 赵文强, 赵春章, 刘美, 朱攀, 刘庆. 青藏高原东缘窄叶鲜卑花灌丛生长季土壤无机氮对增温和植物去除的响应[J]. 植物生态学报, 2018, 42(1): 86-94. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19