植物生态学报

• •    

热带山地雨林生态系统碳交换对晴空指数变化的响应

黄曦萌1,刘沛荣1,吴桂林1,周璋1,吴建辉1,张涛2,陈德祥1   

  1. 1. 中国林业科学研究院热带林业研究所
    2. 中国林业科学研究院热带林业研究所试验站
  • 收稿日期:2024-09-23 修回日期:2025-01-27 出版日期:2025-04-03 发布日期:2025-04-03

Response of carbon exchange in a tropical montane rainforest ecosystem to changes in clearness index

Xi-Meng HUANG1,Peirong Liu2,Gui-lin Wu2,Zhang Zhou2,Jian-hui Wu2,zhang tao3,De-Xiang CHEN2   

  1. 1. 中国林科院
    2. Research Institute of Tropical Forestry, Chinese Academy of Forestry
    3. Experimental Station of Research Institute of Tropical Forestry, Chinese Academy of Forestry
  • Received:2024-09-23 Revised:2025-01-27 Online:2025-04-03

摘要: 云和气溶胶的变化影响到达地表的太阳辐射总量以及散射辐射和直接辐射的比例,并且改变生态系统的微气象环境。晴空指数(CI) 反映天空状况对太阳辐射的影响,是衡量天空条件的关键参数。目前仍不清楚在光照资源敏感的热带山地雨林,云和气溶胶的变化如何影响其碳收支过程。本研究利用热带山地雨林生态系统2013–2017年的碳通量和微气象数据,比较雨(6–10月)、旱季生态系统总初级生产力(GPP)、生态系统呼吸(ER)和净生态系统生产力(NEP)在晴朗和多云天空条件下的差异;构建晴朗和多云天空条件下NEP的光响应模型;采用偏相关分析、结构方程模型量化云和气溶胶变化对散射光合有效辐射(PARf)、直接光合有效辐射(PARd)、空气温度(Ta)、饱和水汽压差(VPD)和土壤体积含水量(VWC)的调节,及GPP、ER、NEP对不同天空条件下环境变化的响应。结果表明,多云天空下NEP对光合有效辐射(PAR)的利用效率更高,生态系统初始量子效率(α)提高了45–88%。并且多云天空促进了植被光合作用和抑制了呼吸作用,GPP提高6–8%,ER减少2%,从而促进了生态系统净CO2吸收,NEP提高了17–21%。随CI减小,PARd剧烈下降,PARf变化较小。PARf对NEP的直接促进作用可以补偿PAR总量减少对生态系统碳交换的抑制,促进生态系统的净CO2固定。PARd和PARf是GPP的主要影响因子,分别主导晴朗和多云时GPP的变化。Ta是ER最主要的控制因子,晴朗天空下Ta占据主导,多云天空下ER由Ta、VPD、VWC共同影响。CI和PAR之间的权衡影响生态系统的碳交换过程。GPP和NEP在中等光照(PAR=1 300–2 000μmol·m-2·s-1)、中等CI(=0.3–0.5)时达到最大值,ER在高光照(PAR=2 300μmol·m-2·s-1)、高CI(>0.5)时达到最大值。综上所述,CI调节了PAR的数量与质量,散射辐射的净效益可以补偿PAR总量减少的损失,中等水平的PAR和CI有利于碳交换。本研究强调了云和气溶胶诱导的辐射效应和环境效应在量化热带森林碳收支的关键作用,为深入理解热带森林对气候变化的响应机制提供了科学依据。

关键词: 净生态系统生产力, 晴空指数, 散射辐射, 热带山地雨林, 涡度相关

Abstract: Aims Cloud and aerosol variations influence the total amount of solar radiation as well as the proportion of diffuse and direct radiation, which can potentially alter the microclimate of forest ecosystems. The clearness index (CI), a crucial parameter for assessing sky conditions, reflects changes in solar radiation. However, it remains unclear how clouds and aerosols impact the dynamics of carbon exchange in light-sensitive tropical montane rainforests. Methods Based on carbon flux data and meteorological data during the wet (June to October) and dry seasons of 2013–2017, we compare the difference in gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem productivity (NEP) under clear and cloudy conditions. The light response model was derived using a rectangular hyperbolic curve. Meanwhile, we utilized partial correlation analysis and a structural equation model to assess the influence of diffuse photosynthetically active radiation (PARf), direct photosynthetically active radiation (PARd), air temperature (Ta), vapor pressure deficit (VPD), and volumetric soil water content (VWC) on GPP, ER, and NEP. Important findings Cloudy skies improve the efficiency in utilizing photosynthetically active radiation, with the canopy quantum efficiency (α) increased by 45–88%. Additionally, cloudy skies enhanced canopy photosynthesis and net carbon uptake while reducing ER. GPP and NEP increased by 6–8% and 17–21%, while ER decreased by almost 2%. PARd decreased dramatically following the decline in CI, while PARf changed only slightly. Since PARf directly enhanced NEP, it offset the suppression caused by the decline in total PAR. PARf and PARd are the major influencing factors of GPP, controlling its variation under clear and cloudy skies, respectively. Ta was the most controlling factor of ER, determining its variation under clear skies, while Ta, VPD, and VWC jointly controlled ER under cloudy skies. GPP and NEP peaked at moderate radiation (PAR=1 300–2 000μmol·m-2·s-1) and moderate CI (=0.3–0.5), while ER was maximized at high radiation levels (PAR=2 300μmol·m-2·s-1) and comparatively high CI (=>0.5). Overall, CI regulates both the quantity and quality of solar radiation. The net effects of diffuse radiation can compensate for the loss of total PAR quality, while intermediate levels of PAR and CI can enhance carbon exchange. This study emphasizes the crucial role of radiation and environmental effects induced by clouds and aerosols, offering insights for advancing our understanding of how tropical forests respond to climate change.

Key words: net ecosystem productivity, clearness index, diffuse radiation, tropical montane rainforest, eddy covariance