植物生态学报 ›› 2011, Vol. 35 ›› Issue (9): 906-913.DOI: 10.3724/SP.J.1258.2011.00906
收稿日期:
2011-01-30
接受日期:
2011-06-28
出版日期:
2011-01-30
发布日期:
2011-09-01
通讯作者:
李新荣
作者简介:
*(E-mail:jshe@pku.edu.cn)
ZHANG Peng, LI Xin-Rong*(), JIA Rong-Liang, HU Yi-Gang, HUANG Lei
Received:
2011-01-30
Accepted:
2011-06-28
Online:
2011-01-30
Published:
2011-09-01
Contact:
LI Xin-Rong
摘要:
氮是除水分之外影响干旱区生态系统生物活性的关键因子。生物土壤结皮是干旱半干旱荒漠地表景观的重要组成部分, 也是荒漠生态系统氮素的主要贡献者。通过野外调查采样, 利用开顶式生长室, 模拟不同降水梯度, 采用乙炔还原法连续测定了沙坡头地区典型生物土壤结皮(藻类结皮、地衣结皮和藓类结皮)在其主要固氮活跃期(6-10月, 湿润期)的固氮活性, 及其对水热因子的响应特征。结果表明, 试验期三类生物土壤结皮的固氮活性介于2.5 × 103-6.2 × 104 nmol C2H4·m-2·h-1之间, 其中藻类结皮的最高(平均达2.8 × 104 nmol C2H4·m-2·h-1), 地衣结皮的次之(2.4 × 104 nmol C2H4 ·m-2·h-1), 藓类结皮的最低(1.4 × 104 nmol C2H4·m-2·h-1), 差异显著(p < 0.001)。在模拟降水3 mm时, 三类结皮均可达到最大固氮速率, 当发生> 3 mm的降水事件时, 它们的固氮速率无显著增加; 不同结皮的固氮活性与温度均呈显著的负相关关系(r藻类结皮 = -0.711, r地衣结皮 = -0.732, r藓类结皮 = -0.755, p < 0.001), 藻类和藓类结皮的固氮活性的最适温度区间为25-30 ℃, 地衣结皮为20-30 ℃。三类结皮之间的这种固氮差异主要归因于结皮组成生物体即隐花植物的差异, 藻类结皮主要成分为大量的蓝细菌和一些绿藻, 地衣结皮也由大量的固氮藻和真菌共生形成, 而藓类结皮的主要组成部分苔藓植物并不具有固氮作用, 其微弱的固氮量是结皮中混生的少量蓝细菌或地衣所致。
张鹏, 李新荣, 贾荣亮, 胡宜刚, 黄磊. 沙坡头地区生物土壤结皮的固氮活性及其对水热因子的响应. 植物生态学报, 2011, 35(9): 906-913. DOI: 10.3724/SP.J.1258.2011.00906
ZHANG Peng, LI Xin-Rong, JIA Rong-Liang, HU Yi-Gang, HUANG Lei. Nitrogenase activity of biological soil crusts and its response to hydrothermic factors in the Shapotou region of northern China. Chinese Journal of Plant Ecology, 2011, 35(9): 906-913. DOI: 10.3724/SP.J.1258.2011.00906
图1 不同类型生物土壤结皮固氮活性特征(平均值±标准偏差)。 不同小写字母表示3种类型生物土壤结皮固氮活性差异显著(p < 0.01)。
Fig. 1 Characteristics of nitrogenase activity of different biological soil crusts (mean ± SD). Different small letters indicate significant difference in nitrogenase activity between three types of biological soil crusts (p < 0.01).
图2 水分处理对不同类型生物土壤结皮固氮活性的影响(平均值±标准偏差)。 不同大写字母表示同一类型生物土壤结皮固氮活性在不同水分处理下差异显著(p < 0.01); 不同小写字母表示不同类型生物土壤结皮固氮活性在相同水分处理下差异显著(p < 0.01)。
Fig. 2 Effect of water treatment on nitrogenase activity of different biological soil crusts (mean ± SD). Different capital letters indicate significant difference in nitrogenase activity of the same biological soil crusts among different water treatments; different small letters denote significant difference in nitrogenase activity among different biological soil crusts in the same water treatment (p < 0.01).
图4 不同温度范围3种生物土壤结皮固氮活性的变化(平均值±标准偏差)。 不同大写字母表示同一类型生物土壤结皮固氮活性在不同温度范围差异显著(p < 0.01); 不同小写字母表示不同类型生物土壤结皮固氮活性在同一温度范围差异显著(p < 0.01)。
Fig. 4 Variations at nitrogenase activity of three biological soil crusts in different temperature ranges (mean ± SD). Different capital letters indicate significant difference in nitrogenase activity of same biological soil crusts among different temperature ranges (p < 0.01); different small letters denote significant difference in nitrogenase activity among different biological soil crusts in the same temperature range (p < 0.01).
变异来源 Source of variation | III型平方和 Type III sum of squares | df | 均方 Mean square | F | p |
---|---|---|---|---|---|
校正模型 Corrected model | 8.46 × 1010 | 134 | 6.31 × 108 | 53.00 | 0.000 |
截距 Intercept | 2.31 × 1011 | 1 | 2.31 × 1011 | 19 365.37 | 0.000 |
结皮类型 Crust type | 1.71 × 1010 | 2 | 8.57 × 109 | 719.66 | 0.000 |
水分处理 Water treatment | 1.14 × 108 | 2 | 5.72 × 107 | 4.81 | 0.009 |
温度 Temperature | 5.77 × 1010 | 14 | 4.12 × 109 | 346.26 | 0.000 |
结皮类型×水分处理 Crust type × Water treatment | 3.88 × 108 | 4 | 9.71 × 107 | 8.15 | 0.000 |
结皮类型×温度 Crust type × Temperature | 6.86 × 109 | 28 | 2.45 × 108 | 20.58 | 0.000 |
水分处理×温度 Water treatment × Temperature | 1.04 × 109 | 28 | 3.72 × 107 | 3.13 | 0.000 |
结皮类型×水分处理×温度 Crust type × Water treatment × Temperature | 1.70 × 109 | 56 | 3.03 × 107 | 2.55 | 0.000 |
误差 Error | 4.29 × 109 | 360 | 1.19 × 107 | ||
总和 Total | 3.20 × 109 | 495 | |||
校正总和 Corrected total | 8.89 × 1010 | 494 |
表1 主效应方差分析表
Table 1 Tests of between-subjects effects
变异来源 Source of variation | III型平方和 Type III sum of squares | df | 均方 Mean square | F | p |
---|---|---|---|---|---|
校正模型 Corrected model | 8.46 × 1010 | 134 | 6.31 × 108 | 53.00 | 0.000 |
截距 Intercept | 2.31 × 1011 | 1 | 2.31 × 1011 | 19 365.37 | 0.000 |
结皮类型 Crust type | 1.71 × 1010 | 2 | 8.57 × 109 | 719.66 | 0.000 |
水分处理 Water treatment | 1.14 × 108 | 2 | 5.72 × 107 | 4.81 | 0.009 |
温度 Temperature | 5.77 × 1010 | 14 | 4.12 × 109 | 346.26 | 0.000 |
结皮类型×水分处理 Crust type × Water treatment | 3.88 × 108 | 4 | 9.71 × 107 | 8.15 | 0.000 |
结皮类型×温度 Crust type × Temperature | 6.86 × 109 | 28 | 2.45 × 108 | 20.58 | 0.000 |
水分处理×温度 Water treatment × Temperature | 1.04 × 109 | 28 | 3.72 × 107 | 3.13 | 0.000 |
结皮类型×水分处理×温度 Crust type × Water treatment × Temperature | 1.70 × 109 | 56 | 3.03 × 107 | 2.55 | 0.000 |
误差 Error | 4.29 × 109 | 360 | 1.19 × 107 | ||
总和 Total | 3.20 × 109 | 495 | |||
校正总和 Corrected total | 8.89 × 1010 | 494 |
[1] | Aranibar JN, Anderson IC, Ringrose S, Macko SA (2003). Importance of nitrogen fixation in soil crusts of southern African arid ecosystems: acetylene reduction and stable isotope studies. Journal of Arid Environments, 54, 345-358. |
[2] |
Belnap J (1995). Surface disturbances: their role in accelerating desertification. Environmental Monitoring and Assessment, 37, 39-57.
DOI URL PMID |
[3] | Belnap J (1996). Soil surface disturbances in cold deserts: effects on nitrogenase activity in cyanobacterial-lichen soil crusts. Biology and Fertility of Soils, 23, 362-367. |
[4] | Belnap J (2001). Factors influencing nitrogen fixation and nitrogen release in biological crusts. In: Belnap J, Lange OL eds. Biological Soil Crusts: Structure, Function, and Management. Springer, New York. 241-261. |
[5] | Belnap J (2002). Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biology and Fertility of Soils, 35, 128-135. |
[6] | Belnap J, Lange OL (2003). Biological Soil Crusts: Structure, Function, and Management. Springer-Verlag, Berlin. |
[7] | Billings SA, Schaeffer SM, Evans RD (2004). Soil microbial activity and N availability with elevated CO2 in Mojave Desert soils. Global Biogeochemical Cycles, 18, GB1011. |
[8] |
Eskew DL, Ting IP (1978). Nitrogen fixation by legumes and blue-green algal-lichen crusts in a Colorado desert environment. American Journal of Botany, 65, 850-856.
DOI URL |
[9] | Hardy RWF, Burns RC, Holsten RD (1973). Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biology & Biochemistry, 5, 47-81. |
[10] | Hartley AE, Schlesinger WH (2002). Potential environmental controls on nitrogenase activity in biological crusts of the northern Chihuahuan Desert. Journal of Arid Environments, 52, 293-304. |
[11] |
Honegger R (1998). The lichen symbiosis—What is so spectacular about it? The Lichenologist, 30, 193-212.
DOI URL |
[12] |
Hu CX ( 胡春香), Liu YD ( 刘永定), Song LR ( 宋立荣), Huang ZB ( 黄泽波) (2000). Species composition and distribution of algae in semi-desert algal crusts. Chinese Journal of Applied Ecology (应用生态学报), 11, 61-65. (in Chinese with English abstract)
URL PMID |
[13] |
Lange OL, Belnap J, Reichenberger H (1998). Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Functional Ecology, 12, 195-202.
DOI URL |
[14] | Li JG ( 李佳格), Xu J ( 徐继) (1997). Mechanism of biological nitrogen fixation. Chinese Bulletin of Botany (植物学通报), 14(3), 1-13. (in Chinese) |
[15] | Li XR ( 李新荣), Jia YK ( 贾玉奎), Long LQ ( 龙立群), Wang XP ( 王新平) Zhang JG ( 张景光) (2001). Advances in microbiotic soil crust research and its ecological significance in arid and semiarid regions. Journal of Desert Research (中国沙漠), 21, 4-11. (in Chinese with English abstract) |
[16] | Li XR, Tian F, Jia RL, Zhang ZS, Liu LC (2010). Do biological soil crusts determine vegetation changes in sandy deserts? Implications for managing artificial vegetation. Hydrological Processes, 24, 3621-3630. |
[17] | Li XR ( 李新荣), Zhang YM ( 张元明), Zhao YG ( 赵允格) (2009a). A study of biological soil crusts: recent development, trend and prospect. Advances in Earth Science (地球科学进展), 24, 11-24. (in Chinese with English abstract) |
[18] | Li XR ( 李新荣), Zhang ZS ( 张志山), Wang XP ( 王新平), Liu LC ( 刘立超), Huang L ( 黄磊) (2009b). The ecohydrology of the soil vegetation system restoration in arid zones: a review. Journal of Desert Research (中国沙漠), 29, 845-852. (in Chinese with English abstract) |
[19] |
Li XR, Zhou HY, Wang XP, Zhu YG, O’Conner PJ (2003). The effects of sand stabilization and revegetation on cryptogam species diversity and soil fertility in the Tengger Desert, Northern China. Plant and Soil, 251, 237-245.
DOI URL |
[20] | Liu HJ ( 刘华杰), Fang SB ( 房世波), Wu QF ( 吴清凤) (2009). Effect of drought duration on nitrogen fixation of Collema tenax and Peltigera didactyla in a semiarid grassland of Inner Mongolia, China. Mycosystema (菌物学报), 28, 783-789. (in Chinese with English abstract) |
[21] | Nash TH III (1996). Lichen Biology. Cambridge University Press, Cambridge. |
[22] |
Skarpe C, Henriksson E (1987). Research note: nitrogen fixation by cyanobacterial crusts and by associative-symbiotic bacteria in western Kalahari, Botswana. Arid Soil Research and Rehabilitation, 1, 55-59.
DOI URL |
[23] | Whitford WG (2002). Ecology of Desert Systems. Academic Press, San Diego, USA. |
[24] | Wu N, Zhang YM, Downing A (2009). Comparative study of nitrogenase activity in different types of biological soil crusts in the Gurbantunggut Desert, Northwestern China. Journal of Arid Environments, 73, 828-833. |
[25] | Wu QF ( 吴清凤), Liu HJ ( 刘华杰) (2008). Effect of range fire on nitrogen fixation of Collema tenax in a semiarid grassland of Inner Mongolia, China. Journal of Plant Ecology (Chinese Version) (植物生态学报), 32, 908-913. (in Chinese with English abstract) |
[26] |
Zaady E, Groffman P, Shachak M (1998). Nitrogen fixation in macro- and microphytic patches in the Negev Desert. Soil Biology & Biochemistry, 30, 449-454.
DOI URL |
[27] | Zhang YM ( 张元明) (2005). The microstructure and formation of biological soil crust in their early developmental stage. Chinese Science Bulletin (科学通报), 50(1), 42-47. (in Chinese) |
[28] |
Zhao Y, Xu M, Belnap J (2010). Potential nitrogen fixation activity of different aged biological soil crusts from rehabilitated grasslands of the hilly Loess Plateau, China. Journal of Arid Environments, 74, 1186-1191.
DOI URL |
[1] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[2] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[3] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[4] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[5] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[6] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[7] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[8] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[9] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[10] | 张庆, 尹本丰, 李继文, 陆永兴, 荣晓莹, 周晓兵, 张丙昌, 张元明. 荒漠藓类植物死亡对表层土壤酶活性的影响[J]. 植物生态学报, 2022, 46(3): 350-361. |
[11] | 王俐爽, 同小娟, 孟平, 张劲松, 刘沛荣, 李俊, 张静茹, 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
[12] | 王丽娜, 于永强, 芦东旭, 唐亚坤. 土壤pH调控固氮植物和非固氮植物间的氮转移[J]. 植物生态学报, 2022, 46(1): 1-17. |
[13] | 黄杰, 李晓玲, 王雪松, 杨进, 黄成名. 三峡库区不同消落带下中华蚊母树群落特征及其与土壤环境因子的关系[J]. 植物生态学报, 2021, 45(8): 844-859. |
[14] | 罗明没, 陈悦, 杨刚, 胡斌, 李玮, 陈槐. 若尔盖退化泥炭地土壤原核微生物群落结构对水位恢复的短期响应[J]. 植物生态学报, 2021, 45(5): 552-561. |
[15] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19