植物生态学报 ›› 2013, Vol. 37 ›› Issue (7): 631-640.DOI: 10.3724/SP.J.1258.2013.00065
金佳鑫1,江洪1,2,*(),彭威1,张林静1,卢学鹤1,徐建辉1,3,张秀英1,王颖1
收稿日期:
2013-03-05
接受日期:
2013-05-10
出版日期:
2013-03-05
发布日期:
2013-07-05
通讯作者:
江洪
基金资助:
JIN Jia-Xin1,JIANG Hong1,2,*(),PENG Wei1,ZHANG Lin-Jing1,LU Xue-He1,XU Jian-Hui1,3,ZHANG Xiu-Ying1,WANG Ying1
Received:
2013-03-05
Accepted:
2013-05-10
Online:
2013-03-05
Published:
2013-07-05
Contact:
JIANG Hong
摘要:
基于单类别支持向量机方法的物种分布模型, 利用政府间气候变化专门委员会(IPCC)气候情景模式和联合国粮食与农业组织(FAO)的全球土壤数据, 模拟1981-2099年我国毛竹(Phyllostachys edulis)的潜在空间分布及变化趋势, 比较考虑土壤因子前后模拟结果的差异, 旨在探究土壤因子对毛竹潜在空间分布模拟结果的影响。结果表明, 仅以气候因子为模拟变量和同时考虑气候与土壤因子为模拟变量的毛竹潜在空间分布模拟均具有较高精度, 毛竹潜在分布区表现为面积增加并向北扩张。模拟因子重要性分析表明表征温暖程度的气候因子在毛竹潜在分布模拟中起主导作用, 而表征土壤质地和酸碱性的土壤因子以限制性作用为主。同时考虑气候与土壤因子的模拟结果具有较高的模拟效率, 且在未来气候变化情景模式下毛竹潜在分布区面积增幅与向北迁移幅度均小于仅使用气候因子的模拟, 表明土壤要素对毛竹潜在分布具有明显的限制作用, 该结果对现在的毛竹潜在分布模拟研究具有重要的补充作用。
金佳鑫,江洪,彭威,张林静,卢学鹤,徐建辉,张秀英,王颖. 基于物种分布模型评价土壤因子对我国毛竹潜在分布的影响. 植物生态学报, 2013, 37(7): 631-640. DOI: 10.3724/SP.J.1258.2013.00065
JIN Jia-Xin,JIANG Hong,PENG Wei,ZHANG Lin-Jing,LU Xue-He,XU Jian-Hui,ZHANG Xiu-Ying,WANG Ying. Evaluating the impact of soil factors on the potential distribution of Phyllostachys edulis (bamboo) in China based on the species distribution model. Chinese Journal of Plant Ecology, 2013, 37(7): 631-640. DOI: 10.3724/SP.J.1258.2013.00065
无土壤限制 Without soil constrain | 有土壤限制 With soil constrain | |
---|---|---|
模拟栅格数 Grid number of simulation | 27 358 | 25 918 |
真阳性率 True positive rate | 0.994 8 | 0.988 6 |
受试者工作特征曲线下面积 Area under receiver operating characteristic curve | 0.916 8 | 0.925 1 |
表1 1981-2000年毛竹潜在分布的模拟结果评价
Table 1 Simulation assessments of potential distribution of Phyllostachys edulis during 1981-2000
无土壤限制 Without soil constrain | 有土壤限制 With soil constrain | |
---|---|---|
模拟栅格数 Grid number of simulation | 27 358 | 25 918 |
真阳性率 True positive rate | 0.994 8 | 0.988 6 |
受试者工作特征曲线下面积 Area under receiver operating characteristic curve | 0.916 8 | 0.925 1 |
图2 未来气候情景模式A2下1981-2099年我国毛竹潜在分布年际变化。
Fig. 2 Inter-annual variations of potential distribution of Phyllostachys edulis in China from 1981 to 2099 under the future climate change scenario A2.
图3 未来气候情景模式A2下1981-2099年我国毛竹潜在分布随纬度的变化。
Fig. 3 Latitudinal variations in potential distribution of Phyllostachys edulis in China from 1981 to 2099 under the future climate change scenario A2.
图4 未来气候情景模式A2下1981-2099年我国毛竹潜在分布变化。
Fig. 4 Variation of potential distribution of Phyllostachys edulis in China from 1981 to 2099 under the future climate change scenario A2.
[1] |
Ashcroft MB, French KO, Chisholm LA (2011). An evaluation of environmental factors affecting species distributions. Ecological Modelling, 222, 524-531.
DOI URL |
[2] |
Carpenter G, Gillison AN, Winter J (1993). DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodiversity and Conservation, 2, 667-689.
DOI URL |
[3] | Coops NC, Waring RH, Law BE (2005). Assessing the past and future distribution and productivity of ponderosa pine in the Pacific Northwest using a process model, 3-PG. Ecological Modelling, 183, 107-124. |
[4] | Cristianini N, Scholkopf B (2002). Support vector machines and kernel methods: the new generation of learning machines. Ai Magazine, 23, 31-41. |
[5] |
Donald PF, Aratrakorn S, Htun TW, Eames JC, Hla H, Thunhikorn S, Sribua-Rod K, Tinun P, Aung SM, Zaw SM, Buchanan GM (2009). Population, distribution, habitat use and breeding of Gurney’s Pitta Pitta gurneyi in Myanmar and Thailand. Bird Conservation International, 19, 353-366.
DOI URL |
[6] | Editorial Committee of Chinese Academy of Chinese Vegetation Maps (2001). 1:1000000 Vegetation Atlas of China. Science Press, Beijing. |
[ 中国科学院中国植被图编辑委员会 (2001). 1:100万中国植被图集. 科学出版社, 北京.] | |
[7] | Elith J, Burgman MA (2002). Predictions and their validation: rare plants in the Central Highlands, Victoria, Australia. In: Scott JM, Heglund P, Wall W, Samson F, Haufler J eds. Predicting Species Occurrences: Issues of Accuracy and Scale. Island Press, Covelo, USA. 303-314. |
[8] | Fielding AH, Bell JF (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38-49. |
[9] |
Guisan A, Thuiller W (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993-1009.
DOI URL |
[10] |
Guo QH, Kelly M, Graham CH (2005). Support vector machines for predicting distribution of sudden oak death in Califernia. Ecological Modelling, 182, 75-90.
DOI URL |
[11] |
Guo QH, Liu Y (2010). ModEco: an integrated software package for ecological niche modeling. Ecography, 33, 637-642.
DOI URL |
[12] |
Hanley JA, McNeil BJ (1982). The meaning and use of the area under a Receiver Operating Characteristic (ROC) curve. Radiology, 143, 29-36.
DOI URL PMID |
[13] | Hao JM, Xie SD, Duan L (2001). The Critical Load of Acid Deposition and Its Application. Tsinghua University Press, Beijing. 82-145. (in Chinese) |
[ 郝吉明, 谢绍东, 段雷 (2001). 酸沉降临界负荷及其应用. 清华大学出版社, 北京. 82-145.] | |
[14] |
He HS, Mladenoff DJ, Crow TR (1999). Linking an ecosystem model and a landscape model to study forest species response to climate warming. Ecological Modelling, 114, 213-233.
DOI URL |
[15] |
Lehmann A, Overton JM, Leathwick JR (2003). GRASP: generalized regression analysis and spatial prediction. Ecological Modelling, 160, 165-183.
DOI URL |
[16] | Li GQ, Liu JH, Zhang SP (1983). A study of the technical effects on introducing Phyllostachys pubescens northward. Journal of Bamboo Research, 2, 125-133. (in Chinese with English abstract) |
[ 李国庆, 刘君慧, 张顺平 (1983). 毛竹北移技术效果的研究. 竹子研究汇刊, 2, 125-133.] | |
[17] | Li TF, Li JQ (2009). Analysis of the concentration of total phenolics in Fargesia denudate Yi. Acta Ecologica Sinica, 29, 4513-4516. (in Chinese with English abstract) |
[ 李腾飞, 李俊清 (2009). 四川王朗自然保护区缺苞箭竹(Fargesia denudate)总酚含量及变化规律. 生态学报, 29, 4513-4516.] | |
[18] |
Liu JL, Sun BL, Yang Z (2011). Estimation of the physical and mechanical properties of Neosinocalamus affinins using near infrared spectroscopy. Spectroscopy and Spectral Analysis, 31, 647-651. (in Chinese with English abstract)
DOI URL |
[ 刘君良, 孙柏玲, 杨忠 (2011). 近红外光谱法分析慈竹物理力学性质的研究. 光谱学与光谱分析, 31, 647-651.]
DOI URL |
|
[19] |
Loehle C, LeBlanc D (1996). Model-based assessments of climate change effects on forests: a critical review. Ecological Modelling, 90, 1-31.
DOI URL |
[20] | Miller J, Franklin J, Aspinall R (2007). Incorporating spatial dependence in predictive vegetation models. Ecological Modelling, 202, 225-242. |
[21] | Nath AJ, Das G, Das AK (2009). Aboveground standing biomass and carbon storage in village bamboos in Northeast India. Biomass and Bioenergy, 33, 1188-1196. |
[22] |
O’hanley JR (2009). NeuralEnsembles: a neural network based ensemble forecasting program for habitat and bioclimatic suitability analysis. Ecography, 32, 89-93.
DOI URL |
[23] | Oppel S, Schaefer HM, Schmidt V, Schröder B (2004). Habitat selection by the pale-headed brush-finch (Atlapetes pallidiceps) in southern Ecuador: implications for conservation. Biological Conservation, 118, 33-40. |
[24] | Pearson RG, Dawson TP, Berry PM, Harrison PA (2002). SPECIES: a spatial evaluation of climate impact on the envelope of species. Ecological Modelling, 154, 289-300. |
[25] |
Schölkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC (1999). Estimating the support of a high-dimensional distribution. Neural Computation, 13, 1443-1471.
DOI URL PMID |
[26] |
Segarra J, Acevedo M, Raventós J, Garcia-Núñez C, Silva JF (2009). Coupling soil water and shoot dynamics in three grass species: a spatial stochastic model on water competition in neotropical savanna. Ecological Modelling, 220, 2734-2743.
DOI URL |
[27] |
Song XZ, Zhou GM, Jiang H, Yu SQ, Fu JH, Li WZ, Wang WF, Ma ZH, Peng CH (2011). Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges. Environmental Reviews, 19, 418-428.
DOI URL |
[28] |
Stoner ER, Baumgardner MF (1981). Characteristic variations in reflectance of surface soils. Soil Science Society of America Journal, 45, 1161-1165.
DOI URL |
[29] |
Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005). Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America, 102, 8245-8250.
URL PMID |
[30] |
Tsuyama I, Nakao K, Matsui T, Higa M, Horikawa M, Kominami Y, Tanaka N (2011). Climatic controls of a keystone understory species, Sasamorpha borealis, and an impact assessment of climate change in Japan. Annals of Forest Science, 68, 689-699.
DOI URL |
[31] | Tu LH, Hu TX, Zhang J, Dai HZ, Li RH, Xiang YB, Luo SH (2011). Effect of simulated nitrogen deposition on nutrient release in decomposition of several litter fractions of two bamboo species. Acta Ecologica Sinica, 31, 1547-1557. (in Chinese with English abstract) |
[ 涂利华, 胡庭兴, 张健, 戴洪忠, 李仁洪, 向元彬, 雒守华 (2011). 模拟氮沉降对两种竹林不同凋落物组分分解过程养分释放的影响. 生态学报, 31, 1547-1557.] | |
[32] |
Veldman JW, Mostacedoa B, Peña-Claros M, Putz FE (2009). Selective logging and fire as drivers of alien grass invasion in a Bolivian tropical dry forest. Forest Ecology and Management, 258, 1643-1649.
DOI URL |
[33] |
Viña A, Bearer S, Zhang HM, Ouyang ZY, Liu JG (2008). Evaluating MODIS data for mapping wildlife habitat distribution. Remote Sensing of Environment, 112, 2160-2169.
DOI URL |
[34] |
Viña A, Tuanmu MN, Xu WH, Yu L, Ouyang ZY, DeFries R, Liu JG (2010). Range-wide analysis of wildlife habitat: implications for conservation. Biological Conservation, 143, 1960-1969.
DOI URL |
[35] | Xie YF, Yang WH, Yang Y, Cai XL, Zhou J (2007). Effects of exogenous nitric oxide on photosynthetic characteristic of Indocalamus barbatus under a simulated acid rain stress condition. Acta Ecologica Sinica, 27, 5193-5201. (in Chinese with English abstract) |
[ 谢寅峰, 杨万红, 杨阳, 蔡贤雷, 周坚 (2007). 外源一氧化氮对模拟酸雨胁迫下箬竹(Indocalamus barbatus)光合特性的影响. 生态学报, 27, 5193-5201.] | |
[36] | Xu JQ, Qin HQ (2003). Study on condition factor of north transplanting and introduction of Phyllostachys edulisin. World Bamboo and Rattan, 1(2), 27-31. (in Chinese with English abstract) |
[ 徐家琦, 秦海清 (2003). 毛竹北移和引种栽培制约因素研究. 世界竹藤通讯, 1(2), 27-31.] | |
[37] |
Yen TM, Ji YJ, Lee JS (2010). Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. Forest Ecology and Management, 260, 339-344.
DOI URL |
[38] |
Zhang L, Liu SR, Sun PS, Wang TL (2011). Predicting the potential distribution of Phyllostachys edulis with DOMAIN and NeuralEnsembles Models. Scientia Silvae Sinicae, 47(7), 20-26. (in Chinese with English abstract)
DOI URL |
[ 张雷, 刘世荣, 孙鹏森, 王同立 (2011). 基于DOMAIN和NeuralEnsembles模型预测中国毛竹潜在分布. 林业科学, 47(7), 20-26.]
DOI URL |
|
[39] | Zhu QA, Jiang H, Liu JX, Fang XQ, Yu SQ (2010). Simulation and trend analysis of soil temperature in China from 1955 to 2006 using IBIS model. Scientia Geographica Sinica, 30, 355-362. (in Chinese with English abstract) |
[ 朱求安, 江洪, 刘金勋, 方秀琴, 余树全 (2010). 基于IBIS模型的1955~2006年中国土壤温度模拟及时空演变分析. 地理科学, 30, 355-362.] | |
[40] | Zhuang MH, Li YC, Li Y, Guo ZW, Yang QP, Gu DX, Chen SL (2011). Physiological responses of three dwarf ornamental bamboos to the elevated atmospheric ozone concentration. Acta Botanica Boreali-Occidentalia Sinica, 31, 2014-2020. (in Chinese with English abstract) |
[ 庄明浩, 李迎春, 李应, 郭子武, 杨清平, 顾大形, 陈双林 (2011). 3种地被类观赏竹对大气臭氧浓度倍增的生理响应. 西北植物学报, 31, 2014-2020.] |
[1] | 蔡慧颖 李兰慧 林阳 梁亚涛 杨光 孙龙. 白桦叶片和细根非结构性碳水化合物对火后时间的响应[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[4] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[5] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[6] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[7] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[8] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[9] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[10] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[11] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[12] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[13] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[14] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[15] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19