植物生态学报 ›› 2014, Vol. 38 ›› Issue (8): 821-832.DOI: 10.3724/SP.J.1258.2014.00077
所属专题: 碳储量
收稿日期:
2013-12-11
接受日期:
2014-05-19
出版日期:
2014-12-11
发布日期:
2014-08-18
通讯作者:
黄永梅
作者简介:
*E-mail: ymhuang@bnu.edu.cn基金资助:
CHEN Hui-Ying, ZHANG Jing-Hui, HUANG Yong-Mei*(), GONG Ji-Rui
Received:
2013-12-11
Accepted:
2014-05-19
Online:
2014-12-11
Published:
2014-08-18
Contact:
HUANG Yong-Mei
摘要:
为了探究植物与固碳相关属性在不同功能群、器官和物种间的差异, 以及这些属性对不同土地利用方式的响应, 2012年8月对内蒙古大针茅草原的4个样地(长期无干扰样地、长期自由放牧样地、4年围封样地和4年围封割草样地)进行了群落调查, 并采集样地中的常见植物, 测定了与植物固碳相关的属性, 包括全碳含量、全氮含量、碳氮比、纤维素含量、木质素含量和酸性洗涤纤维含量等。以常见植物为对象, 在功能群水平研究了各土地利用方式下全碳含量、全氮含量和碳氮比的差异; 针对各样地的共有种——糙隐子草(Cleistogenes squarrosa)、大针茅(Stipa grandis)、冷蒿(Artemisia frigida)、羊草(Leymus chinensis)和猪毛菜(Salsola collina), 从物种和器官水平分析了不同土地利用方式下植物的固碳相关属性。结果表明: 大针茅草原植物不同功能群、物种和器官间的固碳相关属性存在极显著差异, 不同土地利用方式下大针茅草原不同功能型、物种和器官的固碳相关属性有显著差异。与其他利用方式相比, 4年围封割草对植物与固碳相关属性的影响最为明显, 功能群、器官和物种水平的植物氮含量均有下降。糙隐子草和猪毛菜的这些属性对长期自由放牧的响应敏感, 且方向相反。
陈慧颖, 张景慧, 黄永梅, 龚吉蕊. 内蒙古大针茅草原常见植物在不同土地利用方式下的固碳相关属性. 植物生态学报, 2014, 38(8): 821-832. DOI: 10.3724/SP.J.1258.2014.00077
CHEN Hui-Ying, ZHANG Jing-Hui, HUANG Yong-Mei, GONG Ji-Rui. Traits related to carbon sequestration of common plant species in a Stipa grandis steppe in Nei Mongol under different land-uses. Chinese Journal of Plant Ecology, 2014, 38(8): 821-832. DOI: 10.3724/SP.J.1258.2014.00077
样地类型 Plot type | 平均高度 Average height (cm) | 平均盖度 Average coverage (%) | 群落地上生物量 Aboveground biomass of community (g·m-2) |
---|---|---|---|
Y1 | 18.57 ± 0.81 | 72.27 ± 2.97 | 144.86 ± 11.06 |
Y2 | 20.25 ± 0.90 | 80.90 ± 2.27 | 171.48 ± 15.86 |
Y3 | 22.53 ± 0.92 | 72.66 ± 3.02 | 183.28 ± 13.76 |
Y4 | 22.58 ± 1.94 | 73.83 ± 3.17 | 176.69 ± 20.32 |
表1 样地基本信息(平均值±标准误差, n = 5)
Table 1 Basic information of plots (mean ± SE, n = 5)
样地类型 Plot type | 平均高度 Average height (cm) | 平均盖度 Average coverage (%) | 群落地上生物量 Aboveground biomass of community (g·m-2) |
---|---|---|---|
Y1 | 18.57 ± 0.81 | 72.27 ± 2.97 | 144.86 ± 11.06 |
Y2 | 20.25 ± 0.90 | 80.90 ± 2.27 | 171.48 ± 15.86 |
Y3 | 22.53 ± 0.92 | 72.66 ± 3.02 | 183.28 ± 13.76 |
Y4 | 22.58 ± 1.94 | 73.83 ± 3.17 | 176.69 ± 20.32 |
植物功能群 Plant functional group | 物种 Species | 科 Family | 光合途径 Photosynthetic pathway | 采样地 Sampling plot |
---|---|---|---|---|
一年生草本 Annual herb | 刺藜 Chenopodium aristatum | 藜科 Chenopodiaceae | C4 | Y1, Y2, Y3, Y4 |
藜 Chenopodium album | 藜科 Chenopodiaceae | C4 | Y2, Y3, Y4 | |
猪毛菜 Salsola collina | 藜科 Chenopodiaceae | C4 | Y1, Y2, Y3, Y4 | |
多年生根茎禾草 Perennial rhizome grass | 冰草 Agropyron cristatum | 禾本科 Poaceae | C3 | Y2, Y3, Y4 |
羊草 Leymus chinensis | 禾本科 Poaceae | C3 | Y1, Y2, Y3, Y4 | |
多年生丛生禾草 Perennial bunchgrass | 糙隐子草 Cleistogenes squarrosa | 禾本科 Poaceae | C4 | Y1, Y2, Y3, Y4 |
大针茅 Stipa grandis | 禾本科 Poaceae | C3 | Y1, Y2, Y3, Y4 | |
多年生杂类草 Perennial forb | 瓣蕊唐松草 Thalictrum petaloideum | 毛茛科 Ranunculaceae | C3 | Y4 |
碱韭 Allium polyrhizum | 百合科 Liliaceae | C3 | Y1, Y3, Y4 | |
麻花头 Serratula centauroides | 菊科 Asteraceae | C3 | Y2, Y3, Y4 | |
细叶韭 Allium tenuissimum | 百合科 Liliaceae | C3 | Y1, Y2, Y3, Y4 | |
银灰旋花 Convolvulus ammannii | 旋花科 Convolvulaceae | C3 | Y1 | |
知母 Anemarrhena asphodeloides | 百合科 Liliaceae | C3 | Y1 | |
冷蒿 Artemisia frigida | 菊科 Asteraceae | C3 | Y1, Y2, Y3, Y4 |
表2 从各样地采集的植物种及其功能群分类
Table 2 Plant species collected in each plot and their functional groups
植物功能群 Plant functional group | 物种 Species | 科 Family | 光合途径 Photosynthetic pathway | 采样地 Sampling plot |
---|---|---|---|---|
一年生草本 Annual herb | 刺藜 Chenopodium aristatum | 藜科 Chenopodiaceae | C4 | Y1, Y2, Y3, Y4 |
藜 Chenopodium album | 藜科 Chenopodiaceae | C4 | Y2, Y3, Y4 | |
猪毛菜 Salsola collina | 藜科 Chenopodiaceae | C4 | Y1, Y2, Y3, Y4 | |
多年生根茎禾草 Perennial rhizome grass | 冰草 Agropyron cristatum | 禾本科 Poaceae | C3 | Y2, Y3, Y4 |
羊草 Leymus chinensis | 禾本科 Poaceae | C3 | Y1, Y2, Y3, Y4 | |
多年生丛生禾草 Perennial bunchgrass | 糙隐子草 Cleistogenes squarrosa | 禾本科 Poaceae | C4 | Y1, Y2, Y3, Y4 |
大针茅 Stipa grandis | 禾本科 Poaceae | C3 | Y1, Y2, Y3, Y4 | |
多年生杂类草 Perennial forb | 瓣蕊唐松草 Thalictrum petaloideum | 毛茛科 Ranunculaceae | C3 | Y4 |
碱韭 Allium polyrhizum | 百合科 Liliaceae | C3 | Y1, Y3, Y4 | |
麻花头 Serratula centauroides | 菊科 Asteraceae | C3 | Y2, Y3, Y4 | |
细叶韭 Allium tenuissimum | 百合科 Liliaceae | C3 | Y1, Y2, Y3, Y4 | |
银灰旋花 Convolvulus ammannii | 旋花科 Convolvulaceae | C3 | Y1 | |
知母 Anemarrhena asphodeloides | 百合科 Liliaceae | C3 | Y1 | |
冷蒿 Artemisia frigida | 菊科 Asteraceae | C3 | Y1, Y2, Y3, Y4 |
固碳相关属性 Traits related to carbon sequestration | 土地利用方式 Land-use type | 植物功能群 Plant functional group | 交互作用 Interactions | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |||
全碳含量 Total carbon content (%) | 3 | 5.744 | 0.001 | 3 | 21.312 | <0.001 | 9 | 2.216 | 0.025 | ||
全氮含量 Total nitrogen content (%) | 3 | 5.263 | 0.002 | 3 | 26.820 | <0.001 | 9 | 4.447 | <0.001 | ||
碳氮比 C:N | 3 | 2.439 | 0.068 | 3 | 15.467 | <0.001 | 9 | 3.146 | 0.002 |
表3 以土地利用方式和植物功能群为固定因子对固碳相关属性的双因素方差分析
Table 3 Two-way analysis of variance for traits related to carbon sequestration with land-use type and plant functional group as fixed factors
固碳相关属性 Traits related to carbon sequestration | 土地利用方式 Land-use type | 植物功能群 Plant functional group | 交互作用 Interactions | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |||
全碳含量 Total carbon content (%) | 3 | 5.744 | 0.001 | 3 | 21.312 | <0.001 | 9 | 2.216 | 0.025 | ||
全氮含量 Total nitrogen content (%) | 3 | 5.263 | 0.002 | 3 | 26.820 | <0.001 | 9 | 4.447 | <0.001 | ||
碳氮比 C:N | 3 | 2.439 | 0.068 | 3 | 15.467 | <0.001 | 9 | 3.146 | 0.002 |
图1 不同土地利用方式下各功能群植物的固碳相关属性(平均值±标准误差)。误差线上方的不同小写字母表示在0.05水平上差异显著。PFG1, 一年生草本; PFG2, 多年生根茎禾草; PFG3, 多年生丛生禾草; PFG4, 多年生杂类草。Y1, 长期无干扰样地; Y2, 长期自由放牧样地; Y3, 4年围封样地; Y4, 4年围封割草样地。
Fig. 1 Traits related to carbon sequestration of plants at functional group level under different land-uses (mean ± SE). Different lowercase letters above error bars indicate significant differences at 0.05 level. PFG1, annual herb; PFG2, perennial rhizome grass; PFG3, perennial bunchgrass; PFG4, perennial forb. Y1, long-term reserved plot; Y2, long-term free grazing plot; Y3, 4-year enclosed plot; Y4, 4-year enclosed plot with hay harvesting.
固碳相关属性 Traits related to carbon sequestration | 土地利用方式 Land-use type | 器官 Organ | 交互作用 Interactions | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |||
全碳含量 Total carbon content (%) | 3 | 1.353 | 0.259 | 2 | 46.015 | <0.001 | 6 | 0.562 | 0.760 | ||
全氮含量 Total nitrogen content (%) | 3 | 12.001 | <0.001 | 2 | 266.594 | <0.001 | 6 | 0.890 | 0.504 | ||
碳氮比 C:N | 3 | 9.332 | <0.001 | 2 | 84.078 | <0.001 | 6 | 1.781 | 0.106 | ||
纤维素含量 Cellulose content (%) | 3 | 0.211 | 0.889 | 2 | 28.378 | <0.001 | 6 | 0.165 | 0.986 | ||
木质素含量 Lignin content (%) | 3 | 2.891 | 0.037 | 2 | 34.532 | <0.001 | 6 | 0.572 | 0.753 | ||
酸性洗涤纤维含量 Acid detergent fiber content (%) | 3 | 2.247 | 0.085 | 2 | 229.824 | <0.001 | 6 | 0.954 | 0.458 |
表4 以土地利用方式和器官为固定因子对固碳相关属性的双因素方差分析
Table 4 Two-way analysis of variance for traits related to carbon sequestration with land-use type and organ as fixed factors
固碳相关属性 Traits related to carbon sequestration | 土地利用方式 Land-use type | 器官 Organ | 交互作用 Interactions | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |||
全碳含量 Total carbon content (%) | 3 | 1.353 | 0.259 | 2 | 46.015 | <0.001 | 6 | 0.562 | 0.760 | ||
全氮含量 Total nitrogen content (%) | 3 | 12.001 | <0.001 | 2 | 266.594 | <0.001 | 6 | 0.890 | 0.504 | ||
碳氮比 C:N | 3 | 9.332 | <0.001 | 2 | 84.078 | <0.001 | 6 | 1.781 | 0.106 | ||
纤维素含量 Cellulose content (%) | 3 | 0.211 | 0.889 | 2 | 28.378 | <0.001 | 6 | 0.165 | 0.986 | ||
木质素含量 Lignin content (%) | 3 | 2.891 | 0.037 | 2 | 34.532 | <0.001 | 6 | 0.572 | 0.753 | ||
酸性洗涤纤维含量 Acid detergent fiber content (%) | 3 | 2.247 | 0.085 | 2 | 229.824 | <0.001 | 6 | 0.954 | 0.458 |
图2 不同土地利用方式下植物器官的固碳相关属性(平均值±标准误差)。误差线上方的不同小写字母表示在0.05水平上差异显著。图例注释同图1。
Fig. 2 Traits related to carbon sequestration of plants at organ level under different land-uses (mean ± SE). Different lowercase letters above error bars indicate significant differences at 0.05 level. Notes of the legend see Fig. 1.
固碳相关属性 Traits related to carbon sequestration | 土地利用方式 Land-use type | 物种 Species | 交互作用 Interactions | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |||
全碳含量 Total carbon content (%) | 3 | 3.676 | 0.020 | 4 | 31.304 | <0.001 | 12 | 1.789 | 0.084 | ||
全氮含量 Total nitrogen content (%) | 3 | 18.998 | <0.001 | 4 | 37.801 | <0.001 | 12 | 2.892 | 0.006 | ||
碳氮比 C:N | 3 | 11.831 | <0.001 | 4 | 20.505 | <0.001 | 12 | 3.758 | 0.001 | ||
纤维素含量 Cellulose content (%) | 3 | 0.857 | 0.471 | 4 | 11.777 | <0.001 | 12 | 1.282 | 0.267 | ||
木质素含量 Lignin content (%) | 3 | 9.379 | <0.001 | 4 | 51.621 | <0.001 | 12 | 3.235 | 0.003 | ||
酸性洗涤纤维含量 Acid detergent fiber content (%) | 3 | 2.105 | 0.115 | 4 | 111.431 | <0.001 | 12 | 1.750 | 0.092 |
表5 以土地利用方式和物种为固定因子对固碳相关属性的双因素方差分析
Table 5 Two-way analysis of variance for traits related to carbon sequestration with land-use type and species as fixed factors
固碳相关属性 Traits related to carbon sequestration | 土地利用方式 Land-use type | 物种 Species | 交互作用 Interactions | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |||
全碳含量 Total carbon content (%) | 3 | 3.676 | 0.020 | 4 | 31.304 | <0.001 | 12 | 1.789 | 0.084 | ||
全氮含量 Total nitrogen content (%) | 3 | 18.998 | <0.001 | 4 | 37.801 | <0.001 | 12 | 2.892 | 0.006 | ||
碳氮比 C:N | 3 | 11.831 | <0.001 | 4 | 20.505 | <0.001 | 12 | 3.758 | 0.001 | ||
纤维素含量 Cellulose content (%) | 3 | 0.857 | 0.471 | 4 | 11.777 | <0.001 | 12 | 1.282 | 0.267 | ||
木质素含量 Lignin content (%) | 3 | 9.379 | <0.001 | 4 | 51.621 | <0.001 | 12 | 3.235 | 0.003 | ||
酸性洗涤纤维含量 Acid detergent fiber content (%) | 3 | 2.105 | 0.115 | 4 | 111.431 | <0.001 | 12 | 1.750 | 0.092 |
图3 不同土地利用方式下的植物物种的固碳相关属性(平均值±标准误差)。误差线上方的不同小写字母表示在0.05水平上差异显著。S1, 糙隐子草; S2, 大针茅; S3, 冷蒿; S4, 羊草; S5, 猪毛菜。图例注释同图1。
Fig. 3 Traits related to carbon sequestration of plants at species level under different land-uses (mean ± SE). Different lowercase letters above error bars indicate significant differences at 0.05 level. S1, Cleistogenes squarrosa; S2, Stipa grandis; S3, Artemisia frigida; S4, Leymus chinensis; S5, Salsola collina. Notes of the legend see Fig. 1.
样地类型 Plot type | 主成分 Principle component | 方差贡献率 Variance contribution rate (%) | 全碳含量 Total carbon content (%) | 全氮含量 Total nitrogen content (%) | 碳氮比 C:N | 纤维素含量 Cellulose content (%) | 木质素含量Lignin content (%) | 酸性洗涤纤维含量 Acid detergent fiber content (%) |
---|---|---|---|---|---|---|---|---|
Y1 | 1 | 46.23 | -0.219 | -0.971** | 0.878** | 0.158 | 0.492 | 0.864** |
2 | 31.44 | 0.929** | 0.139 | 0.266 | 0.951** | 0.080 | -0.149 | |
3 | 18.00 | 0.241 | -0.127 | 0.280 | -0.134 | 0.862** | 0.408 | |
Y2 | 1 | 50.84 | 0.955** | 0.792** | -0.218 | 0.917** | 0.242 | -0.750** |
2 | 23.45 | -0.177 | -0.592* | 0.967** | -0.175 | 0.058 | 0.240 | |
3 | 22.32 | 0.183 | 0.053 | 0.119 | 0.223 | 0.952** | 0.577* | |
Y3 | 1 | 41.09 | -0.377 | -0.928** | 0.962** | -0.061 | 0.163 | 0.713** |
2 | 27.98 | 0.774** | 0.351 | -0.118 | 0.952** | -0.122 | 0.144 | |
3 | 27.66 | 0.461 | -0.039 | 0.155 | -0.272 | 0.972** | 0.635* | |
Y4 | 1 | 38.53 | -0.340 | -0.868** | 0.928** | -0.024 | 0.250 | 0.720** |
2 | 33.08 | 0.867** | 0.479 | 0.005 | 0.983** | 0.146 | -0.127 | |
3 | 23.72 | 0.333 | -0.045 | 0.263 | -0.070 | 0.948** | 0.582* |
表6 载荷矩阵及方差贡献率
Table 6 Loading matrix and variance contribution rate
样地类型 Plot type | 主成分 Principle component | 方差贡献率 Variance contribution rate (%) | 全碳含量 Total carbon content (%) | 全氮含量 Total nitrogen content (%) | 碳氮比 C:N | 纤维素含量 Cellulose content (%) | 木质素含量Lignin content (%) | 酸性洗涤纤维含量 Acid detergent fiber content (%) |
---|---|---|---|---|---|---|---|---|
Y1 | 1 | 46.23 | -0.219 | -0.971** | 0.878** | 0.158 | 0.492 | 0.864** |
2 | 31.44 | 0.929** | 0.139 | 0.266 | 0.951** | 0.080 | -0.149 | |
3 | 18.00 | 0.241 | -0.127 | 0.280 | -0.134 | 0.862** | 0.408 | |
Y2 | 1 | 50.84 | 0.955** | 0.792** | -0.218 | 0.917** | 0.242 | -0.750** |
2 | 23.45 | -0.177 | -0.592* | 0.967** | -0.175 | 0.058 | 0.240 | |
3 | 22.32 | 0.183 | 0.053 | 0.119 | 0.223 | 0.952** | 0.577* | |
Y3 | 1 | 41.09 | -0.377 | -0.928** | 0.962** | -0.061 | 0.163 | 0.713** |
2 | 27.98 | 0.774** | 0.351 | -0.118 | 0.952** | -0.122 | 0.144 | |
3 | 27.66 | 0.461 | -0.039 | 0.155 | -0.272 | 0.972** | 0.635* | |
Y4 | 1 | 38.53 | -0.340 | -0.868** | 0.928** | -0.024 | 0.250 | 0.720** |
2 | 33.08 | 0.867** | 0.479 | 0.005 | 0.983** | 0.146 | -0.127 | |
3 | 23.72 | 0.333 | -0.045 | 0.263 | -0.070 | 0.948** | 0.582* |
[1] |
Aerts R (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79, 439-449.
DOI URL |
[2] | Alpe MJ, Kingery JL, Mosley JC (1999). Effects of summer sheep grazing on browse nutritive quality in autumn and winter. The Journal of Wildlife Management, 63, 346-354. |
[3] | AOAC (2000). AOAC official method 973.18 fiber (acid detergent) and lignin (H2SO4) in animal feed. In: Horwitz, W ed. Official Methods of Analysis of AOAC International, 17th edn. Association of Official Analytical Chemists, Gaithersburg, USA. |
[4] | Austin AT, Ballaré CL (2010). Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 107, 4618-4622. |
[5] | Bagchi S, Ritchie ME (2010). Introduced grazers can restrict potential soil carbon sequestration through impacts on plant community composition. Ecology Letters, 13, 959-968. |
[6] |
Broadley MR, Bowen HC, Cotterill HL, Hammond JP, Meacham MC, Mead A, White PJ (2004). Phylogenetic variation in the shoot mineral concentration of angiosperms. Journal of Experimental Botany, 55, 321-336.
URL PMID |
[7] |
Chapin III FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Dıáz S (2000). Consequences of changing biodiversity. Nature, 405, 234-242.
DOI URL |
[8] | Chen XP, Shang ZH (2011). Progress of carbon cycle research in China grassland ecosystem. Chinese Journal of Grassland, 33(4), 99-110. (in Chinese with English abstract) |
[ 陈晓鹏, 尚占环 (2011). 中国草地生态系统碳循环研究进展. 中国草地学报, 33(4), 99-110.] | |
[9] |
Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Dı́az S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11, 1065-1071.
URL PMID |
[10] | Dı́az S, Cabido M (2001). Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16, 646-655. |
[11] |
Garnier E, Lavorel S, Ansquer P, Castro H, Cruz P, Dolezal J, Eriksson O, Fortunel C, Freitas H, Golodets C, Grigulis K, Jouany C, Kazakou E, Kigel J, Kleyer M, Lehsten V, Lepš J, Meier T, Pakeman R, Papadimitriou M, Papanastasis VP, Quested H, Quétier F, Robson M, Roumet C, Rusch G, Skarpe C, Sternberg M, Theau JP, Thébault A, Vile D, Zarovali MP (2007). Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European Sites. Annals of Botany, 99, 967-985.
URL PMID |
[12] | Goudriaan J (1995). Global carbon cycle and carbon sequestration. In: Beran MA ed. Carbon Sequestration in the Biosphere: Processes and Prospects (NATO ASI Series) Vol.33. Springer, Berlin, 3-18. |
[13] | Han JG, Song JF, Zhang YW, Guo T, Liu ZQ (2000). Effects on production characters and quality of Russian wildrye grass under different grazing intensities. Acta Agrestia Sinica, 8, 312-318. (in Chinese with English abstract) |
[ 韩建国, 宋锦峰, 张蕴薇, 郭泰, 刘肇清 (2000). 放牧强度对新麦草生产特性和品质的影响. 草地学报, 8, 312-318.] | |
[14] |
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI URL PMID |
[15] | Han WX, Wu Y, Tang LY, Chen YH, Li LP, He JS, Fang JY (2009). Leaf carbon, nitrogen and phosphorus stoichiometry across plant species in Beijing and its periphery. Acta Scientiarum Naturalium Universitatis Pekinensis, 45, 855-860. (in Chinese with English abstract) |
[ 韩文轩, 吴漪, 汤璐瑛, 陈雅涵, 李利平, 贺金生, 方精云 (2009). 北京及周边地区植物叶的碳氮磷元素计量特征. 北京大学学报(自然科学版), 45, 855-860.] | |
[16] |
He NP, Zhang YH, Dai JZ, Han XG, Baoyin T, Yu GR (2012). Land-use impact on soil carbon and nitrogen sequestration in typical steppe ecosystems, Inner Mongolia. Journal of Geographical Sciences, 22, 859-873.
DOI URL |
[17] | Houghton RA (1995). Land-use change and the carbon cycle. Global Change Biology, 1, 275-287. |
[18] |
Kattge J, Dı́az S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, van Bodegom PM, Reichstein M, Enquist BJ, Soudzilovskaia NA, Ackerly DD, Anand M, Atkin O, Bahn M, Baker TR, Baldocchi D, Bekker R, Blanco CC, Blonder B, Bond WJ, Bradstock R, Bunker DE, Casanoves F, Cavender-Bares J, Chambers JQ, Chapin FS, Chave J, Coomes D, Cornwell WK, Craine JM, Dobrin BH, Duarte L, Durka W, Elser J, Esser G, Estiarte M, Fagan WF, Fang J, Fernández-Méndez F, Fidelis A, Finegan B, Flores O, Ford H, Frank D, Freschet GT, Fyllas NM, Gallagher RV, Green WA, Gutierrez AG, Hickler T, Higgins SI, Hodgson JG, Jalili A, Jansen S, Joly CA, Kerkhoff AJ, Kirkup D, Kitajima K, Kleyer M, Klotz S, Knops JMH, Kramer K, Kühn I, Kurokawa H, Laughlin D, Lee TD, Leishman M, Lens F, Lenz T, Lewis S L, Lloyd J, Llusià J, Louault F, Ma S, Mahecha MD, Manning P, Massad T, Medlyn BE, Messier J, Moles AT, Müller SC, Nadrowski K, Naeem S, Niinemets Ü, Nöllert S, Nüske A, Ogaya R, Oleksyn J, Onipchenko VG, Onoda Y, Ordoñez J, Overbeck G, Ozinga WA, Patiño S, Paula S, Pausas JG, Peñuelas J, Phillips OL, Pillar V, Poorter H, Poorter L, Poschlod P, Prinzing A, Proulx R, Rammig A, Reinsch S, Reu B, Sack L, Salgado-Negre B, Sardans J, Shiodera S, Shipley B, Siefert A, Sosinski E, Soussana JF, Swaine E, Swenson N, Thompson K, Thornton P, Waldram M, Weiher E, White M, White S, Wright SJ, Yguel B, Zaehle S, Zanne AE, Wirth C (2011). TRY—a global database of plant traits. Global Change Biology, 17, 2905-2935.
DOI URL |
[19] |
Laidlaw AS, Watson CJ, Mayne CS (2000). Implications of nitrogen fertilizer applications and extended grazing for the N economy of grassland. Grass and Forage Science, 55, 37-46.
DOI URL |
[20] |
Lavorel S, Grigulis K (2012). How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services. Journal of Ecology, 100, 128-140.
DOI URL |
[21] | Li JH, Li ZQ, Wang G (2003). Effect of different grazing intensities on the nutrient contents of Artemisia frigida and Potentilla acaulis. Acta Prataculturae Sinica, 12(6), 30-35. (in Chinese with English abstract) |
[ 李金花, 李镇清, 王刚 (2003). 不同放牧强度对冷蒿和星毛委陵菜养分含量的影响. 草业学报, 12(6), 30-35.] | |
[22] | Li JL, Song D, Miao FF (2013). Analysis on Hemiptera diversity and faunistic character in Maodeng Pasture in Inner Mongolia. Journal of Inner Mongolia University (Natural Science Edition), 44, 382-388. (in Chinese with English abstract) |
[ 李俊兰, 宋丹, 苗芳芳 (2013). 内蒙古毛登牧场蝽类昆虫多样性及区系特征分析. 内蒙古大学学报(自然科学版), 44, 382-388.] | |
[23] | Li YH (1988). The divergence and convergence of Aneurolepidium chinense steppe and Stipa grandis steppe under the grazing influence in Xilin River valley, Inner Mongolia. Acta Phytoecologica et Geobotanica Sinica, 12, 189-196. (in Chinese with English abstract) |
[ 李永宏 (1988). 内蒙古锡林河流域羊草草原和大针茅草原在放牧影响下的分异和趋同. 植物生态学与地植物学学报, 12, 189-196.] | |
[24] | Lindborg R, Eriksson O (2005). Functional response to land use change in grasslands: comparing species and trait data. Ecoscience, 12, 183-191. |
[25] | Loader NJ, Robertson I, McCarroll D (2003). Comparison of stable carbon isotope ratios in the whole wood, cellulose and lignin of oak tree-rings. Palaeogeography, Palaeoclimatology, Palaeoecology, 196, 395-407. |
[26] | Melillo JM, Aber JD, Muratore JF (1982). Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63, 621-626. |
[27] | Meng TT, Ni J, Wang GH (2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version), 31, 150-165. (in Chinese with English abstract) |
[ 孟婷婷, 倪健, 王国宏 (2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.] | |
[28] | Nagy Z, Pintér K, Czóbel SZ, Balogh J, Horváthd L, Fóti SZ, Barcza Z, Weidinger T, Csintalana ZS, Dinh NQ, Grosz B, Tuba Z (2007). The carbon budget of semi-arid grassland in a wet and a dry year in Hungary. Agriculture, Ecosystems & Environment, 121, 21-29. |
[29] | Pan QM, Han XG, Bai YF, Yang JC (2002). Advances in physiology and ecology studies on stored non-structure carbohydrates in plants. Chinese Bulletin of Botany, 19, 30-38. (in Chinese with English abstract) |
[ 潘庆民, 韩兴国, 白永飞, 杨景成 (2002). 植物非结构性贮藏碳水化合物的生理生态学研究进展. 植物学通报, 19, 30-38.] | |
[30] | Qi YC, Dong YS, Geng YB, Yang XH, Geng HL (2003). The progress in the carbon cycle researches in grassland ecosystem in China. Progress in Geography, 22, 342-352. (in Chinese with English abstract) |
[ 齐玉春, 董云社, 耿元波, 杨小红, 耿会立 (2003). 我国草地生态系统碳循环研究进展. 地理科学进展, 22, 342-352.] | |
[31] | Ren SJ, Cao MK, Tao B, Li KR (2006). The effects of nitrogen limitation on terrestrial ecosystem carbon cycle: a review. Progress in Geography, 25(4), 58-67. (in Chinese with English abstract) |
[ 任书杰, 曹明奎, 陶波, 李克让 (2006). 陆地生态系统氮状态对碳循环的限制作用研究进展. 地理科学进展, 25(4), 58-67.] | |
[32] | Risch AC, Jurgensen MF, Frank DA (2007). Effects of grazing and soil micro-climate on decomposition rates in a spatio- temporally heterogeneous grassland. Plant and Soil, 298, 191-201. |
[33] | Sanger LJ, Cox P, Splatt P, Whelan M, Anderson JM (1998). Variability in the quality and potential decomposability of Pinus sylvestris litter from sites with different soil characteristics: acid detergent fibre (ADF) and carbohydrate signatures. Soil Biology & Biochemistry, 30, 455-461. |
[34] | Sun SX, Wei ZJ, Lü SJ, Lu ZH, Chen LB, Li XZ, Wu YL, Li JR (2013). Characteristics of plant community and its functional groups in desert grassland under effects of seasonal regulation of grazing intensity. Chinese Journal of Ecology, 32, 2703-2710. (in Chinese with English abstract) |
[ 孙世贤, 卫智军, 吕世杰, 卢志宏, 陈立波, 李夏子, 吴艳玲, 李建茹 (2013). 放牧强度季节调控下荒漠草原植物群落与功能群特征. 生态学杂志, 32, 2703-2710.] | |
[35] | Talbot JM, Treseder KK (2012). Interactions among lignin, cellulose, and nitrogen drive litter chemistry-decay relationships. Ecology, 93, 345-354. |
[36] | Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997). The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302. |
[37] | Tingey DT, Mckane RB, Olszyk DM, Johnson MG, Rygiewicz PT, Henrylee E (2003). Elevated CO2 and temperature alter nitrogen allocation in Douglas-fir. Global Change Biology, 9, 1038-1050. |
[38] | Tuba Z, Kaligarič M (2008). Grassland ecology in changing climate and land use. Community Ecology, 9, 3-12. |
[39] | van Soest PJ (1963). Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. Journal of the Association of Official Agricultural Chemists, 46, 829-835. |
[40] | Wan LQ, Li XL, Chen WW, He F, Wan JC, Zhao Y, Wu WD (2012). Effects of different stocking rates on vegetation traits of cultivated pastures in southern China. Southwest China Journal of Agricultural Sciences, 25, 290-294. (in Chinese with English abstract) |
[ 万里强, 李向林, 陈玮玮, 何峰, 万江春, 赵云, 吴维达 (2012). 不同放牧强度对南方人工草地植被特征的影响. 西南农业学报, 25, 290-294.] | |
[41] | Wang DM, Yang HM (2011). Carbon and nitrogen stoichiometry at different growth stages in legumes and grasses. Pratacultural Science, 28, 921-925. (in Chinese with English abstract) |
[ 王冬梅, 杨惠敏 (2011). 4种牧草不同生长期C、N生态化学计量特征. 草业科学, 28, 921-925.] | |
[42] | Wang YF, Wang SP (1999). Influence of different stocking rates on belowground biomass in Inner Mongolia Steppe. Acta Agrestia Sinica, 7, 198-203. (in Chinese with English abstract) |
[ 王艳芬, 汪诗平 (1999). 不同放牧率对内蒙古典型草原地下生物量的影响. 草地学报, 7, 198-203.] | |
[43] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulías J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poo P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
URL PMID |
[44] | Wu TX, Huang JH (2010). Effects of grazing on the δ 15N values of foliage and soil in a typical steppe ecosystem in Inner Mongolia, China. Chinese Journal of Plant Ecology, 34, 160-169. (in Chinese with English abstract) |
[ 吴田乡, 黄建辉 (2010). 放牧对内蒙古典型草原生态系统植物及土壤δ 15N的影响 . 植物生态学报, 34, 160-169.] | |
[45] | Xu LK, Baldocchi DD (2004). Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agricultural and Forest Meteorology, 123, 79-96. |
[46] | Xu MY, Li PG, Xie F, Huang D, Wang F, Yan ZM, Wang K (2011). Response of soil organic carbon density to land- use types and management practices change in agro- pastoral zone. Transactions of the Chinese Society of Agricultural Engineering, 27, 320-325. (in Chinese with English abstract) |
[ 徐敏云, 李培广, 谢帆, 黄顶, 王芳, 晏宗明, 王堃 (2011). 土地利用和管理方式对农牧交错带土壤碳密度的影响. 农业工程学报, 27, 320-325.] | |
[47] | Yang YS, Xie JS, Sheng H, Chen GS, Li X, Yang ZJ (2009). The impact of land use/cover change on storage and quality of soil organic carbon in midsubtropical mountainous area of southern China. Journal of Geographical Sciences, 19, 49-57. |
[48] | Yin XR, Liang CZ, Wang LX, Wang W, Liu ZL, Liu XP (2010). Ecological stoichiometry of plant nutrients at different restoration succession stages in typical steppe of Inner Mongolia, China. Chinese Journal of Plant Ecology, 34, 39-47. (in Chinese with English abstract) |
[ 银晓瑞, 梁存柱, 王立新, 王炜, 刘钟龄, 刘小平 (2010). 内蒙古典型草原不同恢复演替阶段植物养分化学计量学. 植物生态学报, 34, 39-47.] | |
[49] | Zheng WJ, Bao WK, Gu B, He X, Leng L (2007). Carbon concentration and its characteristics in terrestrial higher plants. Chinese Journal of Ecology, 26, 307-313. (in Chinese with English abstract) |
[ 郑帷婕, 包维楷, 辜彬, 何晓, 冷俐 (2007). 陆生高等植物碳含量及其特点. 生态学杂志, 26, 307-313.] | |
[50] | Zhong YK, Sun W, Sun WG (1999). Influence of mowing on storing amount and distribution of nutrient elements in typical steppe III. Influence of mowing on nutrient elements of content. Journal of Arid Land Resources and Environment, 13(4), 69-73. (in Chinese with English abstract) |
[ 仲延凯, 孙维, 孙卫国 (1999). 割草对典型草原植物营养元素贮量及分配的影响III. 刈割对植物营养元素含量变化的影响. 干旱区资源与环境, 13(4), 69-73.] | |
[51] | Zhou P, Geng Y, Ma WH, He JS (2010). Linkages of functional traits among plant organs in the dominant species of the Inner Mongolia grassland, China. Chinese Journal of Plant Ecology, 34, 7-16. (in Chinese with English abstract) |
[ 周鹏, 耿燕, 马文红, 贺金生 (2010). 温带草地主要优势植物不同器官间功能性状的关联. 植物生态学报, 34, 7-16.] |
[1] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[3] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[4] | 茹雅倩, 薛建国, 葛萍, 李钰霖, 李东旭, 韩鹏, 杨天润, 储伟, 陈章, 张晓琳, 李昂, 黄建辉. 高频轮牧对典型草原生产生态效果的影响[J]. 植物生态学报, 2024, 48(2): 171-179. |
[5] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[6] | 王德利, 梁存柱. 退化草原的恢复状态: 气候顶极或干扰顶极?[J]. 植物生态学报, 2023, 47(10): 1464-1470. |
[7] | 董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
[8] | 白悦, 刘晨, 黄月, 董亚楠, 王露. 科尔沁沙质草地植物群落高度空间异质性对不同放牧方式的响应[J]. 植物生态学报, 2022, 46(4): 394-404. |
[9] | 郝建锋, 周润惠, 姚小兰, 喻静, 陈聪琳, 向琳, 王姚瑶, 苏天成, 齐锦秋. 二代野猪放牧对夹金山针阔混交林物种多样性与土壤理化性质的影响[J]. 植物生态学报, 2022, 46(2): 197-207. |
[10] | 黄侩侩, 胡刚, 庞庆玲, 张贝, 何业涌, 胡聪, 徐超昊, 张忠华. 放牧对中国亚热带喀斯特山地灌草丛物种组成与群落结构的影响[J]. 植物生态学报, 2022, 46(11): 1350-1363. |
[11] | 李颖, 龚吉蕊, 刘敏, 侯向阳, 丁勇, 杨波, 张子荷, 王彪, 朱趁趁. 不同放牧强度下内蒙古温带典型草原优势种植物防御策略[J]. 植物生态学报, 2020, 44(6): 642-653. |
[12] | 张扬建, 朱军涛, 沈若楠, 王荔. 放牧对草地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 553-564. |
[13] | 温超,单玉梅,晔薷罕,张璞进,木兰,常虹,任婷婷,陈世苹,白永飞,黄建辉,孙海莲. 氮和水分添加对内蒙古荒漠草原放牧生态系统土壤呼吸的影响[J]. 植物生态学报, 2020, 44(1): 80-92. |
[14] | 陈锦, 宋明华, 李以康. 13C脉冲标记揭示放牧对高寒草甸同化碳分配的影响[J]. 植物生态学报, 2019, 43(7): 576-584. |
[15] | 汤永康, 武艳涛, 武魁, 郭之伟, 梁存柱, 王敏杰, 常佩静. 放牧对草地生态系统服务和功能权衡关系的影响[J]. 植物生态学报, 2019, 43(5): 408-417. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19