植物生态学报 ›› 2014, Vol. 38 ›› Issue (10): 1099-1109.DOI: 10.3724/SP.J.1258.2014.00104
收稿日期:
2014-05-30
接受日期:
2014-07-16
出版日期:
2014-05-30
发布日期:
2021-04-20
通讯作者:
王海珍
作者简介:
* E-mail: whzzky@163.com基金资助:
WANG Hai-Zhen1,*(), HAN Lu1, XU Ya-Li1, NIU Jian-Long1
Received:
2014-05-30
Accepted:
2014-07-16
Online:
2014-05-30
Published:
2021-04-20
Contact:
WANG Hai-Zhen
摘要:
胡杨(Populus euphratica)叶形多变, 随个体生长发育, 植株出现条形、卵形和锯齿阔卵形叶。在新疆塔里木河上游人工胡杨林内选择具有此3种叶形的成年标准株, 将枝条拉至同一高度, 通过活体测定, 比较其光合作用-光与CO2响应及叶绿素荧光响应特征。结果表明: 胡杨异形叶光合速率对光强/CO2浓度与电子传递速率对光强的响应曲线均可用直角双曲线修正模型来拟合, 得出的主要光合参数与实测值较吻合。胡杨卵形叶、锯齿阔卵形叶光合速率-光响应参数与生化参数及快速光响应参数与条形叶差异显著, 而光合速率-CO2响应参数则无显著差异。胡杨异形叶CO2饱和浓度下的最大净光合速率(Pnmax)较饱和光强下的Pnmax高, 表明胡杨强光下光合速率在很大程度上受CO2供应和1,5-二磷酸核酮糖(RuBP)再生能力的限制。卵形叶、锯齿阔卵形叶的初始量子效率(α)、初始羧化效率(CE)、Pnmax、光合能力(Amax)与最大羧化速率(Vcmax)均显著高于条形叶; 锯齿叶光饱和点(LSP)、最大电子传递速率(ETRmax)与光呼吸速率(Rp)高于卵形叶, 条形叶光补偿点(LCP)与LSP、α、CE最低。表明荒漠干旱环境下胡杨锯齿叶最耐强光, 高Rp可能是其耗散过剩光能、保护光合机构免于强光破坏的重要途径; 卵形叶高的α、CE、磷酸丙糖利用效率(TPU)、PSII实际光化学效率(ΦPSII)与低LCP及叶氮分配策略是其保持高光合速率的原因; 条形叶ΦPSII、ETR、Pn低, 因其制造光合产物不足而难以满足树体生长逐渐减少并处于树冠下部。可见, 胡杨条形叶光合效率低、抗逆性差, 主要以维持生长为主; 随着树体长大, 条形叶难以适应荒漠环境来维系其生长, 出现了卵形叶; 卵形叶光合效率高, 易于快速积累光合产物而加快树体生长, 但其LSP低和耐光抑制能力弱, 逐渐被更耐强光、高温与大气干旱的锯齿叶所取代, 从而使胡杨在极端逆境下得以生存, 这是胡杨从幼苗到成年叶形变化及异形叶着生在树冠不同高度的原因。
王海珍, 韩路, 徐雅丽, 牛建龙. 胡杨异形叶光合作用对光强与CO2浓度的响应. 植物生态学报, 2014, 38(10): 1099-1109. DOI: 10.3724/SP.J.1258.2014.00104
WANG Hai-Zhen, HAN Lu, XU Ya-Li, NIU Jian-Long. Photosynthetic responses of the heteromorphic leaves in Populus euphratica to light intensity and CO2concentration. Chinese Journal of Plant Ecology, 2014, 38(10): 1099-1109. DOI: 10.3724/SP.J.1258.2014.00104
图1 25 ℃、CO2浓度370 μmol·mol-1下胡杨异形叶光合作用-光响应曲线。 A, 卵形叶。B, 锯齿叶。C, 条形叶。
Fig. 1 Photosynthetic light response curves in heteromorphic leaves of Populus euphratica at leaf temperature of 25 °C and CO2concentration of 370 μmol·mol-1. A, oval leaf. B, serrated broad-oval leaf. C, lanceolate leaf.
叶形 Leaf shape | 初始量子效率 Initial quantum efficiency (α) | 最大净光合速率 Maximum net photosynthetic rate (Pnmax, μmol·m-2·s-1) | 光饱和点 Light saturation point (LSP, μmol·m-2·s-1) | 光补偿点Light compensation point (LCP, μmol·m-2·s-1) | 暗呼吸速率 Dark respiration rate (Rd, μmol·m-2·s-1) | 决定系数Determination coefficient (R2) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
卵形叶 Oval leaf | 0.087 9 ± 0.008 3A | 17.47 ± 1.329 2A | 1 881.71 ± 70.13ab | 28.91 ± 2.573 2B | 2.31 ± 0.123 0b | 0.998 2 | |||||||
锯齿叶 Serrated broad-oval leaf | 0.083 6 ± 0.006 2A | 16.54 ± 1.132 5A | 2 066.15 ± 112.53a | 42.60 ± 3.838 0A | 3.08 ± 0.093 8a | 0.997 0 | |||||||
条形叶 Lanceolate leaf | 0.059 1 ± 0.004 1B | 12.56 ± 1.077 3B | 1 428.63 ± 66.15b | 25.42 ± 1.335 2B | 1.38 ± 0.120 5c | 0.996 2 |
表1 胡杨异形叶光合作用-光响应曲线参数估算(直角双曲线修正模型) (平均值±标准误差)
Table 1 Estimates of parameters from photosynthetic light response curves in the heteromorphic leaves of Populus euphratica (modified rectangular hyperbolic model) (mean ± SE)
叶形 Leaf shape | 初始量子效率 Initial quantum efficiency (α) | 最大净光合速率 Maximum net photosynthetic rate (Pnmax, μmol·m-2·s-1) | 光饱和点 Light saturation point (LSP, μmol·m-2·s-1) | 光补偿点Light compensation point (LCP, μmol·m-2·s-1) | 暗呼吸速率 Dark respiration rate (Rd, μmol·m-2·s-1) | 决定系数Determination coefficient (R2) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
卵形叶 Oval leaf | 0.087 9 ± 0.008 3A | 17.47 ± 1.329 2A | 1 881.71 ± 70.13ab | 28.91 ± 2.573 2B | 2.31 ± 0.123 0b | 0.998 2 | |||||||
锯齿叶 Serrated broad-oval leaf | 0.083 6 ± 0.006 2A | 16.54 ± 1.132 5A | 2 066.15 ± 112.53a | 42.60 ± 3.838 0A | 3.08 ± 0.093 8a | 0.997 0 | |||||||
条形叶 Lanceolate leaf | 0.059 1 ± 0.004 1B | 12.56 ± 1.077 3B | 1 428.63 ± 66.15b | 25.42 ± 1.335 2B | 1.38 ± 0.120 5c | 0.996 2 |
图2 胡杨异形叶光合作用-胞间CO2响应曲线。 A, 卵形叶。B, 锯齿叶。C, 条形叶。
Fig. 2 Intercellular CO2response cures of photosynthesis in the heteromorphic leaves of Populus euphratica. A, Oval leaf. B, Serrated broad-oval leaf. C, Lanceolate leaf.
叶形 Leaf shape | 初始羧化效率 Initial carboxylation efficiency (CE,mol·m-2·s-1) | 光合能力 Photosynthetic capacity (Amax, μmol·m-2·s-1) | 饱和胞间CO2浓度 Saturated intercellular CO2concentration (Cisat, μmol·mol-1) | CO2补偿点 CO2compensation point (Γ, μmol·mol-1) | 光呼吸速率 Photorespiration Rate (Rp, μmol·m-2·s-1) | 决定系数Determination coefficient (R2) |
---|---|---|---|---|---|---|
卵形叶 Oval leaf | 0.089 6 ± 0.007 2a | 46.07 ± 3.81A | 1 060.12 ± 106.09a | 62.38 ± 6.21a | 8.90 ± 0.785 4a | 0.992 6 |
锯齿叶 Serrated broad-oval leaf | 0.087 8 ± 0.005 7a | 39.01 ± 3.51B | 1 082.25 ± 117.06a | 77.67 ± 7.47a | 9.12 ± 0.762 7a | 0.996 8 |
条形叶 Lanceolate leaf | 0.076 5 ± 0.003 8a | 24.48 ± 2.21C | 1 051.86 ± 88.47a | 66.79 ± 5.26a | 6.65 ± 0.526 1a | 0.997 8 |
表2 胡杨异形叶光合作用-胞间CO2响应曲线参数估算(直角双曲线修正模型) (平均值±标准误差)
Table 2 Estimates of parameters from the intercellular CO2 response curves of photosynthesis in the heteromorphic leaves of Populus euphratica (modified rectangular hyperbolic model) (mean ± SE)
叶形 Leaf shape | 初始羧化效率 Initial carboxylation efficiency (CE,mol·m-2·s-1) | 光合能力 Photosynthetic capacity (Amax, μmol·m-2·s-1) | 饱和胞间CO2浓度 Saturated intercellular CO2concentration (Cisat, μmol·mol-1) | CO2补偿点 CO2compensation point (Γ, μmol·mol-1) | 光呼吸速率 Photorespiration Rate (Rp, μmol·m-2·s-1) | 决定系数Determination coefficient (R2) |
---|---|---|---|---|---|---|
卵形叶 Oval leaf | 0.089 6 ± 0.007 2a | 46.07 ± 3.81A | 1 060.12 ± 106.09a | 62.38 ± 6.21a | 8.90 ± 0.785 4a | 0.992 6 |
锯齿叶 Serrated broad-oval leaf | 0.087 8 ± 0.005 7a | 39.01 ± 3.51B | 1 082.25 ± 117.06a | 77.67 ± 7.47a | 9.12 ± 0.762 7a | 0.996 8 |
条形叶 Lanceolate leaf | 0.076 5 ± 0.003 8a | 24.48 ± 2.21C | 1 051.86 ± 88.47a | 66.79 ± 5.26a | 6.65 ± 0.526 1a | 0.997 8 |
叶形 Leaf shape | 最大羧化速率 Maximum carboxylation rate ( Vcmax, μmol·m-2·s-1) | 最大电子传递速率 Maximum electron transport rate (Jmax, μmol·m-2·s-1) | 磷酸丙糖利用率 Triose-phosphate utilization rate (TPU, μmol·m-2·s-1) | Jmax/Vcmax |
---|---|---|---|---|
卵形叶 Oval leaf | 93.72 ± 2.778 9a | 102.67 ± 5.248 6a | 15.08 ± 0.190 9a | 1.096 ± 0.034 3a |
锯齿叶 Serrated broad-oval leaf | 88.64 ± 2.234 5a | 94.37 ± 4.122 4a | 13.07 ± 0.185 7a | 1.064 ± 0.020 4a |
条形叶 Lanceolate leaf | 72.21 ± 1.457 8a | 73.36 ± 3.356 9b | 7.34 ± 0.131 4b | 1.016 ± 0.018 2a |
表3 胡杨异形叶光合作用-CO2响应的生化参数估算(平均值±标准误差)
Table 3 Estimates of parameters from CO2 response curves of photosynthesis in the heteromorphic leaves of Populus euphratica (mean ± SE)
叶形 Leaf shape | 最大羧化速率 Maximum carboxylation rate ( Vcmax, μmol·m-2·s-1) | 最大电子传递速率 Maximum electron transport rate (Jmax, μmol·m-2·s-1) | 磷酸丙糖利用率 Triose-phosphate utilization rate (TPU, μmol·m-2·s-1) | Jmax/Vcmax |
---|---|---|---|---|
卵形叶 Oval leaf | 93.72 ± 2.778 9a | 102.67 ± 5.248 6a | 15.08 ± 0.190 9a | 1.096 ± 0.034 3a |
锯齿叶 Serrated broad-oval leaf | 88.64 ± 2.234 5a | 94.37 ± 4.122 4a | 13.07 ± 0.185 7a | 1.064 ± 0.020 4a |
条形叶 Lanceolate leaf | 72.21 ± 1.457 8a | 73.36 ± 3.356 9b | 7.34 ± 0.131 4b | 1.016 ± 0.018 2a |
图3 胡杨异形叶叶绿素荧光响应曲线(ΦPSII-PAR)。 PAR, 光合有效辐射; ΦPSII, 光系统II实际光化学效率。
Fig. 3 The chlorophyll fluorescence response curves in the heteromorphic leaves of Populus euphratica (ΦPSII-PAR). PAR, photosynthetically active radiation; ΦPSII, actual photochemical efficiency of photosystem II.
图4 胡杨异形叶快速光响应曲线(ETR-PAR)(直角双曲线修正模型)。 A, 卵形叶。B, 锯齿叶。C, 条形叶。ETR, 电子传递速率; PAR, 光合有效辐射。
Fig. 4 Rapid light curves in the heteromorphic leaves of Populus euphratica (ETR-PAR) (modified rectangular hyperbolic model). A, Oval leaf. B, Serrated broad-oval leaf. C, Lanceolate leaf. ETR, electron transport rate; PAR, photosynthetically active radiation.
叶形 Leaf shape | 初始斜率 Initial slope (θ) | 最大电子传递速率 Maximum electron transport rate (ETRmax, μmol·m-2·s-1) | 饱和光强 Saturation light intensity (PARsat, μmol·m-2·s-1) | 决定系数 Determination coefficient (R2) |
---|---|---|---|---|
卵形叶 Oval leaf | 0.211 1 ± 0.016 5A | 131.20 ± 8.36A | 1 123.30 ± 18.43A | 0.978 4 |
锯形叶 Serrated broad-oval leaf | 0.184 6 ± 0.012 6A | 135.11 ± 10.89A | 1 129.99 ± 12.77A | 0.989 3 |
条形叶 Lanceolate leaf | 0.156 1 ± 0.011 5B | 120.53 ± 5.98B | 1 039.32 ± 13.02B | 0.992 7 |
表4 胡杨异形叶快速光响应曲线参数估算(ETR-PAR)(直角双曲线修正模型) (平均值±标准误差)
Table 4 Estimates of parameters from rapid light curves in the heteromorphic leaves of Populus euphratica (ETR-PAR) (modified rectangular hyperbolic model) (mean ± SE)
叶形 Leaf shape | 初始斜率 Initial slope (θ) | 最大电子传递速率 Maximum electron transport rate (ETRmax, μmol·m-2·s-1) | 饱和光强 Saturation light intensity (PARsat, μmol·m-2·s-1) | 决定系数 Determination coefficient (R2) |
---|---|---|---|---|
卵形叶 Oval leaf | 0.211 1 ± 0.016 5A | 131.20 ± 8.36A | 1 123.30 ± 18.43A | 0.978 4 |
锯形叶 Serrated broad-oval leaf | 0.184 6 ± 0.012 6A | 135.11 ± 10.89A | 1 129.99 ± 12.77A | 0.989 3 |
条形叶 Lanceolate leaf | 0.156 1 ± 0.011 5B | 120.53 ± 5.98B | 1 039.32 ± 13.02B | 0.992 7 |
[1] |
Albert KR, Mikkelsen TN, Michelsen A, Ro-Poulsen H, van der Linden L (2011). Interactive effects of drought elevated CO2and warming on photosynthetic capacity and photo system performance in temperate heath plants. Journal of Plant Physiology, 168,1550-1561.
DOI URL PMID |
[2] | Bai X, Zhang SJ, Zheng CX, Hao JQ, Li WH, Yang Y (2011). Comparative study on photosynthesis and water physiology of polymorphic leaves of Populus euphratica. Journal of Beijing Forestry University, 33(6),47-52. (in Chinese with English abstract) |
[ 白雪, 张淑静, 郑彩霞, 郝建卿, 李文海, 杨扬 (2011). 胡杨多态叶光合和水分生理的比较. 北京林业大学学报, 33(6),47-52.] | |
[3] |
Brodribb T, Hill RS (1997). Light response characteristics of a morphologically diverse group of southern hemisphere conifers as measured by chlorophyll fluorescence. Oecologia, 110,10-17.
DOI URL PMID |
[4] |
Coste S, Roggy JC, Imbert P, Born C, Bonal D, Dreyer E (2005). Leaf photosynthetic traits of 14 tropical rain forest species in relation to leaf nitrogen concentration and shade tolerance. Tree Physiology, 25,1127-1137.
URL PMID |
[5] | Demmig-Adams B, Adama III WW (1992). Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology, 43,599-626. |
[6] | Deng X, Li XM, Zhang XM, Ye WH, Foezki A, Runge M (2003). The studies about the photosynthetic response of the four desert plants. Acta Ecologica Sinica, 23,598-605. |
[7] |
Farquhar GD, von Caemmerer S, Berry JA (1982). A biochemical model of photosynthetic CO2assimilation in leaves of C3species. Planta, 149,78-90.
DOI URL PMID |
[8] |
Forcel L, Critchley C, van Rensen JS (2003). New fluorescence parameters for monitoring photosynthesis in plants. Photosynthesis Research, 78,17-33.
DOI URL PMID |
[9] | Guo LW, Shen YG (1996). Protective mechanisms against photo damage in photosynthetic apparatus of higher plants. Plant Physiology Communications, 32,1-8. (in Chinese with English abstract) |
[ 郭连旺, 沈允钢 (1996). 高等植物光合机构避免强光破坏的保护机制. 植物生理学通讯, 32,1-8.] | |
[10] | Huang HY, Dou XY, Sun BY, Deng B, Wu GJ, Peng CL (2009). Comparison of photosynthetic characteristics in two ecotypes of Jatropha curcas in summer. Acta Ecologica Sinica, 29,2861-2867. (in Chinese with English abstract) |
[ 黄红英, 窦新永, 孙蓓育, 邓斌, 吴国江, 彭长连 (2009). 两种不同生态型麻疯树夏季光合特性的比较. 生态学报, 29,2861-2867.] | |
[11] | Krause GH (1998). Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiologia Plantarum, 74,566-574. |
[12] | Lombardini L, Restrepo-Diaz H, Volder A (2009). Photosynthetic light response and epidermal characteristics of sun and shade pecan leaves. Journal of the American Society for Horticultural Science, 134,372-378. |
[13] | Lu S, Zhang YQ, Wu B, Qin SG, Shen YB (2014). Measurement and simulation of photosynthesis-light response process in Artemisia ordosica under water stress. Journal of Beijing Forestry University, 36(1),55-61. (in Chinese with English abstract) |
[ 鲁肃, 张宇清, 吴斌, 秦树高, 沈应柏 (2014). 水分胁迫下油蒿光合光响应过程及其模拟. 北京林业大学学报, 36(1),55-61.] | |
[14] |
Ma HC, Fung L, Wang SS, Altman A, Hüttermann A (1997). Photosynthetic response of Populus euphratica to salt stress. Forest Ecology and Management, 93,55-61.
DOI URL |
[15] |
Maxwell K, Johnson GN (2000). Chlorophyll fluorescence―a practical guide. Journal of Experimental Botany, 51,659-668.
DOI URL PMID |
[16] | Schreiber U, Gademann R, Ralph PJ (1997). Assessment of photosynthetic performance of prochloron in Lissoclinum patella in Hospite by chlorophyll fluorescence measurements. Plant and Cell Physiology, 38,945-951. |
[17] | Sofo A, Dichio B, Montanaro G, Xiliyannis C (2009). Photosynthetic performance and light response of two olive cultivars under different water and light regimes. Photosynthetica, 47,602-608. |
[18] | Su PX, Zhang LX, Du MW, Bi YR, Zhao AF, Liu XM (2003). Photosynthetic character and water use efficiency of different leaf shapes of Populus euphratica and their response to CO2enrichment. Acta Phytoecologica Sinica, 27,34-40. (in Chinese with English abstract) |
[ 苏培玺, 张立新, 杜明武, 毕玉蓉, 赵爱芬, 刘新民 (2003). 胡杨不同叶形光合特性、水分利用效率及其对加富CO2的响应. 植物生态学报, 27,34-40.] | |
[19] | Sun CX, Qi H, Hao JJ, Miao L, Wang J, Wang Y, Liu M, Chen LJ (2009). Single leaves photosynthetic characteristics of two insect-resistant transgenic cotton (Gossypium hirsutum L.) varieties in response to light. Photosynthctica, 47,399-408. |
[20] | Tartachnyk II, Blanke MM (2004). Effect of delayed fruit har- vest on photosynthesis, transpiration and nutrient remobilization of apple leaves. New Phytologist, 164,441-450. |
[21] |
Tyree MC, Seiler JR, Maier CA, Johnsen KH (2009). Pinus taeda clones and soil nutrient availability: effects of soil organic matter incorporation and fertilization on biomass partitioning and leaf physiology. Tree Physiology, 29,1117-1131.
DOI URL PMID |
[22] | Wang HL, Yang SD, Zhang CL (1997). The photosynthetic characteristics of differently shaped leaves in Populus euphratica Olivier. Photosynthetica, 34,545-553. |
[23] | Wang HZ, Han L, Xu YL, Wang L, Jia WS (2011). Response of chlorophyll fluorescence characteristics of Populus euphratica heteromorphic leaves to high temperature. Acta Ecologica Sinica, 31,2444-2453. (in Chinese with English abstract) |
[ 王海珍, 韩路, 徐雅丽, 王琳, 贾文锁 (2011). 胡杨异形叶叶绿素荧光特性对高温的响应. 生态学报, 31,2444-2453.] | |
[24] | Wang RR, Xia JB, Yang JH, Zhao YY, Liu JT, Sun JK (2013). Comparison of light response models of photosynthesis in leaves of Periploca sepium under drought stress in sand habitat formed from seashells. Chinese Journal of Plant Ecology, 37,111-121. (in Chinese with English abstract) |
[ 王荣荣, 夏江宝, 杨吉华, 赵艳云, 刘京涛, 孙景宽 (2013). 贝壳砂生境干旱胁迫下杠柳叶片光合光响应模型比较. 植物生态学报, 37,111-121.] | |
[25] | Wullschleger SD (1993). Biochemical limitations to carbon assimilation in C3 plants—a retrospective analysis of the A/Ci curves from 109 species. Journal of Experimental Botany, 44,907-920. |
[26] | Xia JB, Zhang SY, Zhang GC, Xie WJ, Lu ZH (2011). Critical responses of photosynthetic efficiency in Campsis radicans (L.) Seem to soil water and light intensities. African Journal of Biotechnology, 10,17748-17754. |
[27] | Ye ZP (2010). A review on modeling of responses of photosynthesis to light and CO2. Chinese Journal of Plant Ecology, 34,727-740. (in Chinese with English abstract) |
[ 叶子飘 (2010). 光合作用对光和CO2响应模型的研究进展. 植物生态学报, 34,727-740.] | |
[28] | Ye ZP, Yu Q, Kang HJ (2012). Evaluation of photosynthetic electron flow using simultaneous measurements of gas exchange and chlorophyll fluorescence under photorespi-ratory conditions. Photosynthetica, 50,472-476. |
[29] | Zhang GC, Xia JB, Shao HB, Zhang SY (2012). Grading woodland soil water productivity and soil bioavailability in the semi-arid Loess Plateau of China. Clean-Soil, Air, Water, 40,148-153. |
[30] | Zhang YM, Zhou GS (2012). Advances in leaf maximum carboxylation rate and its response to environmental factors. Acta Ecologica Sinica, 32,5907-5917. (in Chinese with English abstract) |
[ 张彦敏, 周广胜 (2012). 植物叶片最大羧化速率及其对环境因子响应的研究进展. 生态学报, 32,5907-5917.] |
[1] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[2] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[3] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[4] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[5] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[6] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
[7] | 武洪敏, 双升普, 张金燕, 寸竹, 孟珍贵, 李龙根, 沙本才, 陈军文. 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制[J]. 植物生态学报, 2021, 45(4): 404-419. |
[8] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[9] | 吴建波, 王小丹. 高寒草原优势种紫花针茅叶片解剖结构对青藏高原高寒干旱环境适应性分析[J]. 植物生态学报, 2021, 45(3): 265-273. |
[10] | 李豪, 马如玉, 强波, 贺聪, 韩路, 王海珍. 胡杨当年生小枝茎构型对展叶效率的影响[J]. 植物生态学报, 2021, 45(11): 1251-1262. |
[11] | 李景, 王欣, 王振华, 王斌, 王成章, 邓美凤, 刘玲莉. 臭氧和气溶胶复合污染对杨树叶片光合作用的影响[J]. 植物生态学报, 2020, 44(8): 854-863. |
[12] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
[13] | 刘校铭, 杨晓芳, 王璇, 张守仁. 暖温带落叶阔叶林辽东栎和五角枫生长和光合生理生态特征对模拟氮沉降的响应[J]. 植物生态学报, 2019, 43(3): 197-207. |
[14] | 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. |
[15] | 张娜, 朱阳春, 李志强, 卢信, 范如芹, 刘丽珠, 童非, 陈静, 穆春生, 张振华. 淹水和干旱生境下铅对芦苇生长、生物量分配和光合作用的影响[J]. 植物生态学报, 2018, 42(2): 229-239. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19