植物生态学报 ›› 2010, Vol. 34 ›› Issue (2): 223-232.DOI: 10.3773/j.issn.1005-264x.2010.02.014
• 2008年冰灾对森林生态系统的破坏专题论文 • 上一篇 下一篇
张志祥1, 刘鹏1,*(), 邱志军1, 刘春生1, 陈卫新2, 李成惠2, 廖进平2, 李洪军1
收稿日期:
2008-10-29
接受日期:
2009-01-22
出版日期:
2010-10-29
发布日期:
2010-02-01
通讯作者:
刘鹏
作者简介:
* E-mail: sky79@zjnu.cn
ZHANG Zhi-Xiang1, LIU Peng1,*(), QIU Zhi-Jun1, LIU Chun-Sheng1, CHEN Wei-Xin2, LI Cheng-Hui2, LIAO Jin-Ping2, LI Hong-Jun1
Received:
2008-10-29
Accepted:
2009-01-22
Online:
2010-10-29
Published:
2010-02-01
Contact:
LIU Peng
摘要:
2008年1-2月间, 我国南方广大地区遭受了50年一遇的重大冰雪灾害, 对我国南方林区造成了巨大的损害。浙江九龙山国家级自然保护区黄山松(Pinus taiwanensis)人工林也在此次冰雪灾害中遭到重大损失。针对保护区内黄山松人工林种群的地理分布和受灾特点, 沿海拔梯度设置了6 000 m2的具有代表性的样地, 对其受灾情况进行调查, 分析了不同胸径(DBH)、树高、冠幅等林木特征下的黄山松抵御冰雪灾害能力的差异, 并对不同海拔的黄山松受灾情况进行了比较。结果表明: 1) 九龙山黄山松种群受灾严重, 除树干弯曲外, 其他不同受灾类型的植株在种群中均有出现, 且以断冠植株为最多。2) 黄山松对冰雪灾害的抵御能力与林木大小有关, 断大枝和断冠易发生在相对较粗和高的植株当中; 较为细小和低矮的植株则容易被断干和掘根; 冻死植株以幼树居多, 其DBH和树高显著小于其他受灾类型植株。3) 不同冠幅的黄山松植株受灾类型存在很大差异, 冠幅越大, 植株受灾越严重, 掘根和断干在冠幅较大的植株中较为常见。4) 尖削度、树冠相对高度和不均匀程度对黄山松抵御冰雪灾害也具有较大影响, 尖削度小、树冠较高且不均匀的植株受灾较重。5) 海拔较高处黄山松受灾严重, 断干和掘根植株主要分布在825-850 m的高海拔区间内。
张志祥, 刘鹏, 邱志军, 刘春生, 陈卫新, 李成惠, 廖进平, 李洪军. 浙江九龙山自然保护区黄山松种群冰雪灾害干扰及其受灾影响因子分析. 植物生态学报, 2010, 34(2): 223-232. DOI: 10.3773/j.issn.1005-264x.2010.02.014
ZHANG Zhi-Xiang, LIU Peng, QIU Zhi-Jun, LIU Chun-Sheng, CHEN Wei-Xin, LI Cheng-Hui, LIAO Jin-Ping, LI Hong-Jun. Factors influencing ice and snow damage to Pinus taiwanensis in Jiulongshan Nature Reserve, China. Chinese Journal of Plant Ecology, 2010, 34(2): 223-232. DOI: 10.3773/j.issn.1005-264x.2010.02.014
图2 不同受灾类型的黄山松株数统计。 1, 冻死; 2, 断大枝; 3, 断冠; 4, 断干; 5, 掘根; 6, 未受害。
Fig. 2 Total number of Pinus taiwanensis under different damage types. 1, winterkill; 2, limb breakage; 3, crown breakage; 4, stem breakage; 5, uprooting; 6, no damage.
图3 不同径级下黄山松各受灾类型植株的数量分布。 径级: 1, 2.5-5 cm; 2, 5-10 cm; 3, 10-15 cm; ……。
Fig. 3 Quantitative distribution of Pinus taiwanensis of each damage types under different diameter at breast height (DBH) class. DBH class: 1, 2.5-5 cm; 2, 5-10 cm; 3, 10-15 cm; …
图4 不同受灾类型植株胸径的显著性分析。 不同字母a、b、c、d表示不同受灾类型间差异显著(p < 0.05)。1-6同图2。
Fig. 4 Significance analysis of diameter at breast height (DBH) of Pinus taiwanensis under different damage types. Different letters a, b, c and d indicate that the differences among different damage types are significant at 0.05 levels. 1-6 are the same as Fig. 2.
图5 不同高度级下黄山松各受灾类型植株的数量分布。 高度级: 1, 3-5 m; 2, 5-7 m; 3, 7-9 m; ……。
Fig. 5 Quantitative distribution of Pinus taiwanensis of each damage types under different tree height class. Tree height class: 1, 3-5 m; 2, 5-7 m; 3, 7-9 m; …
图6 不同受灾类型植株高度的显著性分析。 1-6同图2。字母与图4相同。
Fig. 6 Significance analysis of tree height of Pinus taiwanensis under different damage types. 1-6 are the same as Fig. 2. The letters are the same as Fig. 4.
图7 不同冠幅级下黄山松各受灾类型植株的数量分布。 冠幅级: 1, 1.0-1.5 m; 2, 1.5-2.0 m; 3, 2.0-2.5 m; ……。
Fig. 7 Quantitative distribution of Pinus taiwanensis of each damage types under different crown width class. Crown width class: 1, 1.0-1.5 m; 2, 1.5-2.0 m; 3, 2.0-2.5 m; …
图8 不同受灾类型植株冠幅的显著性分析。 1-6同图2。字母与图4相同。
Fig. 8 Significance analysis of tree crown width of Pinus taiwanensis under different damage types. 1-6 are the same as Fig. 2. The letters are the same as Fig. 4.
受灾类型 Damage type | 林木特征 Tree characteristic | ||
---|---|---|---|
尖削度(胸径/树高) Taperness (DBH/H) | 树冠相对高度(枝下高/树高) Crown relative height (CBH/H) | 树冠不均匀程度 Crown inhomogeneous degree | |
冻死 Winterkill | 0.013ab ± 0.003 | 0.668b ± 0.084 | 0.987b ± 1.006 |
断大枝 Limb breakage | 0.015a ± 0.007 | 0.636b ± 0.050 | 1.929b ± 1.885 |
断冠 Crown breakage | 0.014ab ± 0.004 | 0.719a ± 0.066 | 2.313ab ± 2.030 |
断干 Stem breakage | 0.012b ± 0.003 | 0.662b ± 0.067 | 3.390a ± 2.565 |
掘根 Uprooting | 0.011b ± 0.003 | 0.634b ± 0.082 | 3.575a ± 2.226 |
未受害 No damage | 0.013ab ± 0.003 | 0.714a ± 0.044 | 1.476b ± 1.294 |
表1 不同受灾类型黄山松植株尖削度、树冠相对高度和树冠不均匀程度分析
Table 1 Analysis on taperness, crown relative height and crown inhomogeneous degree of Pinus taiwanensis under different damage types
受灾类型 Damage type | 林木特征 Tree characteristic | ||
---|---|---|---|
尖削度(胸径/树高) Taperness (DBH/H) | 树冠相对高度(枝下高/树高) Crown relative height (CBH/H) | 树冠不均匀程度 Crown inhomogeneous degree | |
冻死 Winterkill | 0.013ab ± 0.003 | 0.668b ± 0.084 | 0.987b ± 1.006 |
断大枝 Limb breakage | 0.015a ± 0.007 | 0.636b ± 0.050 | 1.929b ± 1.885 |
断冠 Crown breakage | 0.014ab ± 0.004 | 0.719a ± 0.066 | 2.313ab ± 2.030 |
断干 Stem breakage | 0.012b ± 0.003 | 0.662b ± 0.067 | 3.390a ± 2.565 |
掘根 Uprooting | 0.011b ± 0.003 | 0.634b ± 0.082 | 3.575a ± 2.226 |
未受害 No damage | 0.013ab ± 0.003 | 0.714a ± 0.044 | 1.476b ± 1.294 |
[1] | Chen SY (陈士银), Yang XH (杨新华), Du SZ (杜盛珍) (1999). Investigation and analysis on the yard tree’s characteristic of resilience to wind. Protection Forest Science and Technology (防护林科技), 41(4), 32-35. (in Chinese) |
[2] | Cremer KW, Borough CJ (1982). Effects of stocking and thinning on wind damage in plantations. New Zealand of Forestry Science, 12, 244-268. |
[3] | Emanuel KA (1987). The dependence of hurricane intensity on climate. Nature, 326, 483-485. |
[4] | Feng L (封磊), Hong W (洪伟), Wu CZ (吴承祯), Wang XG (王新功), Cheng Y (程煜), Liao CZ (廖成章), Fan HL (范海兰) (2003). Fractal features of crown breath of different trees in different managements of Chinese fir plantation. Chinese Journal of Applied and Environmental Biology (应用与环境生物学报), 9, 455-459. (in Chinese with English abstract) |
[5] | Gardiner BA, Stacey GR, Belcher RE, Wood CJ (1997). Field and wind tunnel assessments of the implications of respacing and thinning for tree stability. Forestry, 70, 233-252. |
[6] | Gardiner B, Byrne K, Hale S, Kamimura K, Mitchell SJ, Peltola H, Ruel J-C (2008). A review of mechanistic modelling of wind damage risk to forests. Forestry, 81, 447-463. |
[7] |
Gray WM (1990). Strong association between West African rainfall and US landfall of intense hurricanes. Science, 249, 1251-1256.
DOI URL PMID |
[8] | Hansson P (2006). Effect of small tree retention and logging slash on snow blight growth on Scots pine regeneration. Forest Ecology and Management, 236, 368-374. |
[9] | Hu DL (胡道连), Li ZH (李志辉), Xie XD (谢旭东) (1998). Study of biomass and productivity of Pinus taiwanensis plantation. Journal of Central South Forestry University (中南林学院学报), 18(1), 60-64. (in Chinese with English abstract) |
[10] | Kato A, Nakatani H (2000). An approach for estimating resistance of Japanese cedar to snow accretion damage. Forest Ecology and Management, 135, 303-313. |
[11] | Kohnle U, Gauckler S (2003). Vulnerability of forests to storm damage in a forest district of south-western Germany situated in the periphery of the 1999 storm (Lothar). In: Ruck B, Kottmeier C, Mattheck C, Quine C, Wilhelm DG eds. Proceedings of the International Conference of Wind Effects on Trees. Lab Building, Environment Aerodynamics, Institute of Hydrology, University of Karlsruhe, Karlsruhe, Germany. 151-157. |
[12] | Li XF (李秀芬), Zhu JJ (朱教君), Wang QL (王庆礼), Liu ZG (刘足根) (2005). Forest damage induced by wind / snow: a review. Acta Ecologica Sinica (生态学报), 25, 158-168. (in Chinese with English abstract) |
[13] | Li XF (李秀芬), Zhu JJ (朱教君), Wang QL (王庆礼), Liu ZG (刘足根), Hou CS (侯传生), Yang HJ (杨焕君) (2004). Snow / wind damage in natural secondary forests in Liaodong mountainous regions, Liaoning Province. Chinese Journal of Applied Ecology (应用生态学报), 15, 941-946. (in Chinese with English abstract) |
[14] | Li XF (李秀芬), Zhu JJ (朱教君), Wang QL (王庆礼), Liu ZG (刘足根), Mao ZH (毛志宏) (2006). Relationships between snow / wind damage and tree species as well as forest types in secondary forests. Journal of Beijing Forestry University (北京林业大学学报), 28(4), 28-33. (in Chinese with English abstract) |
[15] | Makinen H, Isomaki A, Hongisto T (2006). Effect of half-systematic and systematic thinning on the increment of Scots pine and Norway spruce in Finland. Forestry, 79, 103-121. |
[16] | Megahan WF, Steele R (1987). An approach for predicting snow damage to ponderosa pine plantations. Forest Science, 33, 485-503. |
[17] | Miyawaki A (1999). Creative ecology: restoration of native forests by native trees. Plant Biotechnology, 16, 15-25. |
[18] | Moore JR (2000). Differences in maximum resistive bending moments of Pinus radiatatree grown on a range of soil types. Forest Ecology and Management, 135, 63-71. |
[19] | Nobrega S, Grogan P (2007). Deep snow enhances winter respiration from both plant-associated and bulk soil carbon pools in birch hummock. Ecosystems, 10, 419-431. |
[20] | Nykänen ML, Peltola H, Quine C, Kellomäki, Broadgate M (1997). Factors affecting snow damage of tree with particular reference to European conditions. Silva Fennica, 31, 193-213. |
[21] | Peltola H, Kellomäki S (1993). A mechanistic model for calculating windthrow and stem breakage of Scots pines at stand edge. Silva Fennica, 27, 99-111. |
[22] | Peltola H, Kellomäki S, Hassinen A (2000). Mechanical stability of Scots pine, Norway spruce and birch: an analysis of tree-pulling experiments in Finland. Forest Ecology and Management, 135, 143-153. |
[23] |
Peltola HM (2006). Mechanical stability of trees under static loads. American Journal of Botany, 93, 1501-1511.
DOI URL PMID |
[24] | Petty JA, Worrell R (1981). Stability of coniferous tree stems in relation to damage by snow. Forestry, 54, 115-128. |
[25] | Quine CP (1995). Assessing the risk of wind damage to forests: practice and pitfalls. In: Couttsn MP, Grace J eds. Wind and Trees. Cambridge University Press, Cambridge, UK. 379-403. |
[26] | Rodgers M, Casey A, Mcmenamin C, Hendrick E (1995). An experimental investigation of the effects of dynamic loading on coniferous trees planted on wet mineral soils. In: Couttsn MP, Grace J eds. Wind and Trees. Cambridge University Press, Cambridge, UK. 379-403. |
[27] | Slodicäk M (1995). Thinning regime in stands of Norway spruce subjected to snow and wind damage. In: Couttsn MP, Grace J eds. Wind and Trees. Cambridge University Press, Cambridge, UK. 436-557. |
[28] | State Forestry Bureau (国家林业局) (2008). The technical points on forestry science and technology of disaster relief and reduction for sleet and frozen disaster in south area. Hunan Linye (湖南林业), (3), 16-19, 22-24. (in Chinese) |
[29] | Valinger E, Lundqvist L (1992). The influence of thinning and nitrogen fertilization on the frequency of snow and wind induced stand damage in forests. Scottish Forestry, 46, 311-320. |
[30] |
Valinger E, Lundqvist L, Bondesson L (1993). Assessing the risk of snow and wind damage from tree physical characteristics. Forestry, 66, 249-260.
DOI URL |
[31] | Valinger E, Lundqvist L, Brandel G (1994). Wind and snow damage in a thinning and fertilization experiment in Pinus sylvestris. Scandinavian Journal of Forest Research, 9, 129-134. |
[32] | Wright JA, Quine CP (1993). The use of a Geographical Information System to investigate storm damage to trees at Wykeham Forest, North Yorkshire. Scottish Forestry, 47(4), 166-174. |
[33] | Wu B (吴斌) (2008). Reflections on Restoration and Reconstruction of the forestry and ecology for sleet and frozen disaster in south area. Scientia Silvae Sinicae (林业科学), 44(3), 2-4. (in Chinese with English abstract) |
[34] | Xu JM (徐建民), Li GY (李光友), Lu ZH (陆钊华), Xiang DY (项东云), Zeng BS (曾炳山), Zhang NN (张宁南), Guo HY (郭洪英) (2008). Investigation on eucalypt forest plantations subjected to the freezing catastrophe in southern China. Scientia Silvae Sinicae (林业科学), 44(7), 103-110. (in Chinese with English abstract) |
[35] | Zhang FG (张方钢) (2008). A Study on the Natural Resources of Jiulongshan Nature Reserve in Zhejiang Province (浙江省九龙山自然保护区自然资源研究). China Forestry Publishing House, Beijing. 1-15. (in Chinese) |
[1] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[2] | 缪丽娟, 张宇阳, 揣小伟, 包刚, 何昱, 朱敬雯. 亚洲旱区草地NDVI对气候变化的响应及滞后效应[J]. 植物生态学报, 2023, 47(10): 1375-1385. |
[3] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[4] | 冯兆忠, 袁相洋, 李品, 尚博, 平琴, 胡廷剑, 刘硕. 地表臭氧浓度升高对陆地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 526-542. |
[5] | 罗斯生, 罗碧珍, 魏书精, 胡海清, 李小川, 吴泽鹏, 王振师, 周宇飞, 钟映霞. 中度强度森林火灾对马尾松次生林土壤有机碳密度的影响[J]. 植物生态学报, 2020, 44(10): 1073-1086. |
[6] | 王明明,刘新平,何玉惠,张铜会,魏静,车力木格,孙姗姗. 科尔沁沙地封育恢复过程中植物群落特征变化及影响因素[J]. 植物生态学报, 2019, 43(8): 672-684. |
[7] | 刘程竹, 贾娟, 戴国华, 马田, 冯晓娟. 中性糖在土壤中的来源与分布特征[J]. 植物生态学报, 2019, 43(4): 284-295. |
[8] | 冯婵莹, 郑成洋, 田地. 氮添加对森林植物磷含量的影响及其机制[J]. 植物生态学报, 2019, 43(3): 185-196. |
[9] | 皮春燕, 刘鑫, 王喆, 包维楷. 苔藓-蓝藻共生体关系与固氮能力研究进展[J]. 植物生态学报, 2018, 42(4): 407-418. |
[10] | 李茜, 王芳, 曹扬, 彭守璋, 陈云明. 陕西省森林土壤固碳特征及其影响因素[J]. 植物生态学报, 2017, 41(9): 953-963. |
[11] | 郭建荣, 万贤崇. 杨树根压昼夜周期性及其影响因子[J]. 植物生态学报, 2017, 41(3): 369-377. |
[12] | 汪洋, 苗琳琳, 于丹, 刘春花, 王忠. 青藏高原3种生活型水生植物的热值及环境的影响[J]. 植物生态学报, 2017, 41(2): 209-218. |
[13] | 罗亲普, 龚吉蕊, 徐沙, 宝音陶格涛, 王忆慧, 翟占伟, 潘琰, 刘敏, 杨丽丽. 氮磷添加对内蒙古温带典型草原净氮矿化的影响[J]. 植物生态学报, 2016, 40(5): 480-492. |
[14] | 杜虎, 曾馥平, 宋同清, 温远光, 李春干, 彭晚霞, 张浩, 曾昭霞. 广西主要森林土壤有机碳空间分布及其影响因素[J]. 植物生态学报, 2016, 40(4): 282-291. |
[15] | 罗文启, 符少怀, 杨小波, 陈玉凯, 周威, 杨琦, 陶楚, 周文嵩. 海南岛入侵植物的分布特点及其对本地植物的影响[J]. 植物生态学报, 2015, 39(5): 486-500. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19