植物生态学报 ›› 2010, Vol. 34 ›› Issue (2): 170-178.DOI: 10.3773/j.issn.1005-264x.2010.02.008
所属专题: 稳定同位素生态学; 生态系统碳水能量通量
袁国富1,*(), 张娜1,2, 孙晓敏1, 温学发1, 张世春1,2
收稿日期:
2008-12-15
接受日期:
2009-07-15
出版日期:
2010-12-15
发布日期:
2010-02-01
通讯作者:
袁国富
作者简介:
* E-mail: yuangf@igsnrr.ac.cn
YUAN Guo-Fu1,*(), ZHANG Na1,2, SUN Xiao-Min1, WEN Xue-Fa1, Zhang Shi-Chun1,2
Received:
2008-12-15
Accepted:
2009-07-15
Online:
2010-12-15
Published:
2010-02-01
Contact:
YUAN Guo-Fu
摘要:
利用稳定同位素技术和Keeling Plot方法可以有效分割地表蒸散量, 进而加深对陆地生态系统水循环的理解。该研究通过原位连续测定麦田的水汽同位素数据, 评价Keeling Plot方法在分割地表蒸散中的应用, 并揭示华北冬小麦(Triticum aestivum)蒸腾在总蒸散中的比例。实验于2008年3-5月在中国科学院栾城农业生态站进行, 利用国际上先进的H218O、HD16O激光痕量气体分析仪(TDLAS)为基础构建的大气水汽18O/16O和D/H同位素比原位连续观测系统, 同时利用涡度相关技术、真空抽提技术、同位素质谱仪技术, 获取了必要的数据。研究分析了一天中不同时间段的连续的大气水汽δ18O与水汽浓度倒数拟合Keeling Plot曲线的差异和可能的原因。结果显示, 中午时段的拟合结果较好, 这也暗示中午时段蒸腾速率高时最可能满足植物蒸腾的同位素稳定态假设。进一步的分析发现植物蒸腾的同位素稳定态并不总是成立, 尤其是水分胁迫下进入成熟期的小麦, 其蒸腾水汽同位素一般处于非稳定态。利用同位素分割结果显示, 生长盛期麦田94%-99%的蒸散来源于植物蒸腾。
袁国富, 张娜, 孙晓敏, 温学发, 张世春. 利用原位连续测定水汽δ18O值和Keeling Plot方法区分麦田蒸散组分. 植物生态学报, 2010, 34(2): 170-178. DOI: 10.3773/j.issn.1005-264x.2010.02.008
YUAN Guo-Fu, ZHANG Na, SUN Xiao-Min, WEN Xue-Fa, Zhang Shi-Chun. Partitioning wheat field evapotranspiration using Keeling Plot method and continuous atmospheric vapor δ18O data. Chinese Journal of Plant Ecology, 2010, 34(2): 170-178. DOI: 10.3773/j.issn.1005-264x.2010.02.008
DOY | h (%) | δS (‰) | δa (‰) | αv/l | Δξ (‰) | δE (‰) |
---|---|---|---|---|---|---|
97 | 53.22 | -3.612 | -10.661 | 0.990 4 | 13.332 | -43.22 |
100 | 56.70 | -3.284 | -12.581 | 0.990 3 | 12.342 | -40.78 |
102 | 74.78 | -3.307 | -14.542 | 0.989 5 | 7.188 | -38.89 |
112 | 72.70 | -8.752 | -17.561 | 0.989 9 | 7.781 | -49.05 |
115 | 43.72 | -6.631 | -10.364 | 0.990 2 | 16.041 | -47.90 |
120 | 72.39 | -3.346 | -8.814 | 0.990 6 | 7.869 | -49.98 |
125 | 67.52 | -3.501 | -9.855 | 0.990 1 | 9.256 | -47.82 |
131 | 63.79 | -3.028 | -13.670 | 0.989 9 | 10.321 | -39.28 |
134 | 70.46 | -4.898 | -13.876 | 0.989 9 | 8.419 | -44.55 |
139 | 57.80 | -3.556 | -10.869 | 0.990 1 | 12.028 | -44.25 |
146 | 90.12 | -2.104 | -8.351 | 0.990 4 | 2.815 | -68.72 |
149 | 48.31 | -0.305 | -10.913 | 0.990 4 | 14.732 | -36.34 |
表1 用Craig-Gordon模型计算土壤蒸发需要的参数以及结果
Table 1 Parameters used to estimate the isotopic composition of the evaporation flux (δE) with Craig-Gordon model
DOY | h (%) | δS (‰) | δa (‰) | αv/l | Δξ (‰) | δE (‰) |
---|---|---|---|---|---|---|
97 | 53.22 | -3.612 | -10.661 | 0.990 4 | 13.332 | -43.22 |
100 | 56.70 | -3.284 | -12.581 | 0.990 3 | 12.342 | -40.78 |
102 | 74.78 | -3.307 | -14.542 | 0.989 5 | 7.188 | -38.89 |
112 | 72.70 | -8.752 | -17.561 | 0.989 9 | 7.781 | -49.05 |
115 | 43.72 | -6.631 | -10.364 | 0.990 2 | 16.041 | -47.90 |
120 | 72.39 | -3.346 | -8.814 | 0.990 6 | 7.869 | -49.98 |
125 | 67.52 | -3.501 | -9.855 | 0.990 1 | 9.256 | -47.82 |
131 | 63.79 | -3.028 | -13.670 | 0.989 9 | 10.321 | -39.28 |
134 | 70.46 | -4.898 | -13.876 | 0.989 9 | 8.419 | -44.55 |
139 | 57.80 | -3.556 | -10.869 | 0.990 1 | 12.028 | -44.25 |
146 | 90.12 | -2.104 | -8.351 | 0.990 4 | 2.815 | -68.72 |
149 | 48.31 | -0.305 | -10.913 | 0.990 4 | 14.732 | -36.34 |
图3 4个不同时间段拟合的Keeling Plot曲线比较(DOY 110, 2008)。DOY, 日序数。
Fig. 3 Daytime Keeling Plots with different time data (DOY 110, 2008). DOY, the day of year; δV, δ18O of atmospheric vaper.
DOY | δE | δx (std) | δET1 | δET2 | δET3 | δET4 |
---|---|---|---|---|---|---|
97 | -43.22 | -6.621±0.8 | -9.219 9 | -6.714 9 | -5.733 5 | -8.104 9 |
100 | -40.78 | -7.124±0.1 | -0.601 1 | -7.507 4 | -7.153 6 | -0.918 2 |
115 | -47.90 | -7.080±0.06 | -3.850 0 | -9.197 2 | -6.295 4 | -8.726 8 |
120 | -49.98 | -7.008±0.3 | -5.701 0 | -6.169 7 | -6.745 9 | -4.334 3 |
131 | -39.28 | -7.126±0.3 | -5.265 0 | -7.340 2 | -8.085 2 | -6.163 5 |
134 | -44.55 | -6.471±0.03 | -6.239 1 | -6.708 9 | -6.811 4 | -3.869 0 |
139 | -44.25 | -6.554±0.6 | -2.465 2 | -2.705 2 | -2.402 0 | -2.249 6 |
146 | -68.72 | -7.110±0.4 | -3.484 5 | -0.968 1 | -1.708 0 | -3.480 1 |
149 | -36.34 | -7.020±0.4 | -4.333 5 | -6.348 9 | -5.901 8 | -6.729 0 |
表2 土壤蒸发水汽、蒸腾水汽(茎水)和蒸散水汽同位素组成的比较
Table 2 Comparison of average isotopic composition (δ18O) of soil evaporation (δE), transpiration (δx) and evapotranspiration (δET)
DOY | δE | δx (std) | δET1 | δET2 | δET3 | δET4 |
---|---|---|---|---|---|---|
97 | -43.22 | -6.621±0.8 | -9.219 9 | -6.714 9 | -5.733 5 | -8.104 9 |
100 | -40.78 | -7.124±0.1 | -0.601 1 | -7.507 4 | -7.153 6 | -0.918 2 |
115 | -47.90 | -7.080±0.06 | -3.850 0 | -9.197 2 | -6.295 4 | -8.726 8 |
120 | -49.98 | -7.008±0.3 | -5.701 0 | -6.169 7 | -6.745 9 | -4.334 3 |
131 | -39.28 | -7.126±0.3 | -5.265 0 | -7.340 2 | -8.085 2 | -6.163 5 |
134 | -44.55 | -6.471±0.03 | -6.239 1 | -6.708 9 | -6.811 4 | -3.869 0 |
139 | -44.25 | -6.554±0.6 | -2.465 2 | -2.705 2 | -2.402 0 | -2.249 6 |
146 | -68.72 | -7.110±0.4 | -3.484 5 | -0.968 1 | -1.708 0 | -3.480 1 |
149 | -36.34 | -7.020±0.4 | -4.333 5 | -6.348 9 | -5.901 8 | -6.729 0 |
DOY | δE | δx | δET(11:30-14:30) | FT(﹪) |
---|---|---|---|---|
97 | -43.22 | -6.621 | -6.714 9 | 99.74 |
100 | -40.78 | -7.124 | -7.507 4 | 98.86 |
115 | -47.90 | -7.080 | -9.197 2 | 94.81 |
131 | -39.28 | -7.126 | -7.340 2 | 99.33 |
134 | -44.55 | -6.471 | -6.708 9 | 99.37 |
表3 利用水汽稳定同位素(δ18O)分割得到的蒸腾占蒸散的比例(FT)
Table 3 Fractional contribution of transpiration to total ET using isotopic partitioning (δ18O)
DOY | δE | δx | δET(11:30-14:30) | FT(﹪) |
---|---|---|---|---|
97 | -43.22 | -6.621 | -6.714 9 | 99.74 |
100 | -40.78 | -7.124 | -7.507 4 | 98.86 |
115 | -47.90 | -7.080 | -9.197 2 | 94.81 |
131 | -39.28 | -7.126 | -7.340 2 | 99.33 |
134 | -44.55 | -6.471 | -6.708 9 | 99.37 |
[1] | Allison GB, Hughs MW (1983). The use of natural tracers as indicators of soil water movement in temperate semi-arid region. Journal of Hydrology, 60, 157-163. |
[2] | Barnes CJ, Allison GB (1988). Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen. Journal of Hydrology, 100, 143-176. |
[3] |
Brunel JP, Simpson HJ, Herczeg AL, Whtehead R, Walker GR (1992). Stable isotope composition of water-vapor as an indicator of transpiration fluxes from rice crops. Water Resources Research, 1992,28, 1407-1416.
DOI URL |
[4] | Dawson TE, Ehleringer JR (1993). Isotopic enrichment of water in the woody tissues of plant: implications for plant water source, water uptake, and other studies which use stable isotopes. Geochimica et Casmachimica Acta, 57, 3487-3492. |
[5] |
Dongmann G, Nornberg HW, Forstel H, Wagener K (1974). On the enrichment of H218O in the leaves of transpiring plants. Radiation and Environmental Biophysics, 11, 41-52.
DOI URL PMID |
[6] | Ehleringer JR, Roden J, Dawson TE (2000). Assessing ecosystem-level water relations through stable isotope ratio analyses. In: Sala OE, Jackson RB, Mooney HA, Howarth RW eds. Methods in Ecosystem Science. Springer, Berlin 181. |
[7] |
Farquhar GD, Cernusak LA (2005). On the isotopic composition of leaf water in the non-steady state. Functional Plant Biology, 32, 293-303.
URL PMID |
[8] |
Ferretti DF, Pendall E, Morgan JA, Nelson JA, LeCain D, Mosier AR (2003). Partitioning evapotranspiration fluxes from a Colorado grassland using stable isotopes: seasonal variations and implications of elevated atmospheric CO2. Plant and Soil, 254, 291-303.
DOI URL |
[9] |
Flanagan LB, Comstock JP, Ehleringer JR (1991). Comparison of modeled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L. Plant Physiology, 96, 588-596.
URL PMID |
[10] |
Gat JR (1996). Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences, 24, 225-262.
DOI URL |
[11] | Keeling CD (1961). The concentration and isotopic abundances of atmospheric carbon dioxide in rural marine air. Geochimica et Casmachimica Acta, 24, 277-298. |
[12] |
Lai CT, Ehleringer JR, Bond BJ, Paw UKT (2006). Contributions of evaporation, isotopic non-steady state transpiration and atmospheric mixing on the δ18O of water vapour in Pacific Northwest coniferous forests. Plant, Cell and Environment, 29, 77-94.
DOI URL PMID |
[13] | Lee XH, Kim K, Smith R (2007). Temporal variations of the isotopic signal of the whole-canopy transpiration in a temperate forest. Global Biogeochemical Cycle, 21, 1-12. |
[14] | Lee XH, Smith R, Williams J (2006). Water vapor 18O/16O isotope ratio in surface air in New England, USA. Tellus, 58B, 293-304. |
[15] | Lee XH, Steve S, Smith R, Tanner B (2005). In situ measurement of the water vapor 18O/16O isotope ratio for atmosphere and ecological applications. Journal of Atmospheric and Oceanic Technology, 22, 555-565. |
[16] | Moreira M, Sternberg L, Martinelli L, Victoria R, Barbosa E, Bonates L, Nepstad D (1997). Contribution of transpiration to forest ambient vapour based on isotopic measurements. Global Change Biology, 3, 439-450. |
[17] | Riley WJ, Still CJ, Torn MS, Berry JA (2002). A mechanistic model of H218O and C18OO fluxes between ecosystems and the atmosphere: model description and sensitivity analyses. Global Biogeochemical Cycles, 16, 1095, doi: 10.1029/2002GB001878. |
[18] | Wang SF (王淑芬), Zhang XY (张喜英), Pei D (裴冬) (2006). Impacts of different water supplied condition on root distribution, yield and water utilization efficiency of winter wheat. Transactions of the Chinese Society of Agricultural Engineering (农业工程学报), 22(2), 27-32. (in Chinese with English abstract) |
[19] | Wang XF, Yakir D (2000). Using stable isotopes of water in evapotranspiration studies. Hydrological Processes, 14, 1407-1421. |
[20] |
Welp LR, Lee XH, Kim K, Griffis TJ, Billmark KA, Baker JM (2008). δ18O of water vapour, evapotranspiration and the sites of leaf water evaporation in a soybean canopy. Plant, Cell and Environment, 31, 1214-1228.
URL PMID |
[21] | Wen XF, Sun XM, Zhang SC, Yu GR, Sargent SD, Lee XH (2008). Continuous measurement of water vapor D/H and 18O/16O isotope ratios in the atmosphere. Journal of Hydrology, 349, 489-500. |
[22] | Williams DG, Cable W, Hultine K, Hoedjes JCB, Yepez EA, Simonneaux V, Er-Raki S, Boulet G, de Bruin HAR, Chehbouni A, Hartogensis OK, Timouk F (2004). Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agricultural and Forest Meteorology, 125, 241-258. |
[23] |
Yakir D, Sternberg SL (2000). The use of stable isotopes to study ecosystem gas exchange. Oecologia, 123, 297-311.
DOI URL PMID |
[24] |
Yakir D, Wang XF (1996). Fluxes of CO2 and water between terrestrial vegetation and the atmosphere estimated from isotope measurement. Nature, 380, 515-517.
DOI URL |
[25] | Yepez EA, Williams DG, Scott RL, Lin GH (2003). Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor. Agricultural and Forest Meteorology, 119, 53-68. |
[1] | 路晨曦, 徐漫, 石学瑾, 赵成, 陶泽, 李敏, 司炳成. 基于贝叶斯模型MixSIAR的不同水同位素输入方法对苹果园吸水特征分析结果的影响[J]. 植物生态学报, 2023, 47(2): 238-248. |
[2] | 朱林, 王甜甜, 赵学琳, 祁亚淑, 许兴. 紫花苜蓿和斜茎黄耆水力提升作用及其对伴生植物的效应[J]. 植物生态学报, 2020, 44(7): 752-762. |
[3] | 方运霆, 刘冬伟, 朱飞飞, 图影, 李善龙, 黄韶楠, 全智, 王盎. 氮稳定同位素技术在陆地生态系统氮循环研究中的应用[J]. 植物生态学报, 2020, 44(4): 373-383. |
[4] | 魏杰, 陈昌华, 王晶苑, 温学发. 箱式通量观测技术和方法的理论假设及其应用进展[J]. 植物生态学报, 2020, 44(4): 318-329. |
[5] | 庞家平, 温学发. 稳定同位素红外光谱技术测定CO2同位素校正方法的研究进展[J]. 植物生态学报, 2018, 42(2): 143-152. |
[6] | 李亚飞, 于静洁, 陆凯, 王平, 张一驰, 杜朝阳. 额济纳三角洲胡杨和多枝柽柳水分来源解析[J]. 植物生态学报, 2017, 41(5): 519-528. |
[7] | 吕婷, 赵西宁, 高晓东, 潘燕辉. 黄土丘陵区典型天然灌丛和人工灌丛优势植物土壤水分利用策略[J]. 植物生态学报, 2017, 41(2): 175-185. |
[8] | 邹婷婷, 张子良, 李娜, 袁远爽, 郑东辉, 刘庆, 尹华军. 川西亚高山针叶林主要树种对土壤中不同形态氮素的吸收差异[J]. 植物生态学报, 2017, 41(10): 1051-1059. |
[9] | 何春霞, 陈平, 孟平, 张劲松, 杨洪国. 华北低丘山区果药复合系统种间水分利用策略[J]. 植物生态学报, 2016, 40(2): 151-164. |
[10] | 陈清, 王义东, 郭长城, 王中良. 天津沼泽湿地芦苇叶片的碳稳定同位素比值分布特征及其环境影响因素[J]. 植物生态学报, 2015, 39(11): 1044-1052. |
[11] | 王丹, 张荣, 熊俊, 郭海强, 赵斌. 互花米草入侵对滨海湿地土壤碳库的贡献——基于稳定同位素的研究[J]. 植物生态学报, 2015, 39(10): 941-949. |
[12] | 周海,郑新军,唐立松,李彦. 准噶尔盆地东南缘多枝柽柳、白刺和红砂水分来源的异同[J]. 植物生态学报, 2013, 37(7): 665-673. |
[13] | 王林, 冯锦霞, 万贤崇. 土层厚度对刺槐旱季水分状况和生长的影响[J]. 植物生态学报, 2013, 37(3): 248-255. |
[14] | 周雅聃, 陈世苹, 宋维民, 卢琦, 林光辉. 不同降水条件下两种荒漠植物的水分利用策略[J]. 植物生态学报, 2011, 35(8): 789-800. |
[15] | 聂云鹏, 陈洪松, 王克林. 石灰岩地区连片出露石丛生境植物水分来源的季节性差异[J]. 植物生态学报, 2011, 35(10): 1029-1037. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19