植物生态学报 ›› 2018, Vol. 42 ›› Issue (10): 1009-1021.DOI: 10.17521/cjpe.2018.0063
李理渊1,李俊2,同小娟1,*(),孟平3,张劲松3,张静茹1
收稿日期:
2018-03-27
出版日期:
2018-10-20
发布日期:
2019-01-30
通讯作者:
同小娟
基金资助:
LI Li-Yuan1,LI Jun2,TONG Xiao-Juan1,*(),MENG Ping3,ZHANG Jin-Song3,ZHANG Jing-Ru1
Received:
2018-03-27
Online:
2018-10-20
Published:
2019-01-30
Contact:
Xiao-Juan TONG
Supported by:
摘要:
为了比较直角双曲线模型、非直角双曲线模型与叶子飘模型的优缺点, 研究阴生叶和阳生叶电子传递速率的差异, 探讨环境/生物因素对电子传递速率等参数的影响, 该文采用LI-6400XT荧光测定系统对黄河小浪底栓皮栎(Quercus variabilis)、刺槐(Robinia pseudoacacia)叶片电子传递速率-光响应(J-I)曲线进行了测定, 利用直角双曲线模型、非直角双曲线模型和叶子飘模型对J-I曲线进行了拟合。结果表明, 3种模型对叶片J-I曲线拟合的决定系数(R 2)在0.96以上, 叶子飘模型的R 2最高(> 0.99)。直角双曲线模型和非直角双曲线模型无法模拟植物叶片光系统II动力学下调现象, 且不能得出饱和光强(Isat); 直角双曲线模型对最大电子传递速率(Jmax)的模拟明显大于实测值; 叶子飘模型能很好地模拟光系统II动力学下调现象, 得出的Jmax和Isat均最接近实测值。对阴生叶和阳生叶J-I曲线研究发现, 栓皮栎、刺槐阴生叶的Jmax分别低于阳生叶25.0%和18.0%, 阳生叶的Isat分别高于阴生叶26.0%和10.1%。栓皮栎和刺槐Jmax与气温显著正相关; 刺槐Isat与气温、土壤水分含量和净光合速率具有显著的正相关关系; 栓皮栎和刺槐J-I曲线初始斜率α均与净光合速率呈显著负相关关系。
李理渊, 李俊, 同小娟, 孟平, 张劲松, 张静茹. 黄河小浪底栓皮栎、刺槐叶片电子传递速率-光响应的模拟. 植物生态学报, 2018, 42(10): 1009-1021. DOI: 10.17521/cjpe.2018.0063
LI Li-Yuan, LI Jun, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, ZHANG Jing-Ru. Simulation on the light-response curves of electron transport rate of Quercus variabilis and Robinia pseudoacacia leaves in the Xiaolangdi area, China. Chinese Journal of Plant Ecology, 2018, 42(10): 1009-1021. DOI: 10.17521/cjpe.2018.0063
图1 不同模型拟合的栓皮栎、刺槐叶片电子传递速率-光响应曲线(平均值±标准误差, n = 3)。A-D, 栓皮栎6、7、8和9月。E-H, 刺槐6、7、8和9月。
Fig. 1 Electron transport rate light-response curves fitted by different models (rectangular hyperbola, nonrectangular hyperbola and Ye model) for Q. variabilis and R. pseudoacacia (mean ± SE, n = 3). A-D, Q. variabilis in June, July, August and September. E-H, R. pseudoacacia in June, July, August and September.
树种 Species | 月份 Month | 模型 Model | α | Isat (μmol·m-2·s-1) | Jmax (μmol·m-2·s-1) | R2 |
---|---|---|---|---|---|---|
栓皮栎 Quercus variabilis | 6月 June | 实测 Measured | - | 1 000 | 65.51 | - |
直角双曲线模型 Rectangular hyperbola model | 0.46 ± 0.06 | - | 69.94 ± 5.85 | 0.963 | ||
非直角双曲线模型 Nonrectangular hyperbola model | 0.27 ± 0.03 | - | 64.41 ± 4.61 | 0.985 | ||
叶子飘模型 Ye model | 0.35 ± 0.03 | 1 042.28 ± 96.81 | 65.23 ± 6.45 | 0.999 | ||
7月 July | 实测 Measured | - | 1200 | 84.11 | - | |
直角双曲线模型 Rectangular hyperbola model | 0.54 ± 0.05 | - | 89.48 ± 2.60 | 0.971 | ||
非直角双曲线模型 Nonrectangular hyperbola model | 0.29 ± 0.04 | - | 79.41 ± 1.48 | 0.994 | ||
叶子飘模型 Ye model | 0.41 ± 0.04 | 1 072.50 ± 46.54 | 82.04 ± 2.18 | 0.996 | ||
8月 August | 实测 Measured | - | 1 200 | 101.98 | - | |
直角双曲线模型 Rectangular hyperbola model | 0.50 ± 0.02 | - | 117.96 ± 7.03 | 0.973 | ||
非直角双曲线模型 Nonrectangular hyperbola model | 0.34 ± 0.08 | - | 105.33 ± 2.62 | 0.995 | ||
叶子飘模型 Ye model | 0.38 ± 0.02 | 1 184.70 ± 38.30 | 103.60 ± 5.17 | 0.996 | ||
9月 September | 实测 Measured | - | 1 000 | 47.55 | - | |
直角双曲线模型 Rectangular hyperbola model | 0.57 ± 0.06 | - | 49.94 ± 2.81 | 0.968 | ||
非直角双曲线模型 Nonrectangular hyperbola model | 0.28 ± 0.02 | - | 47.02 ± 2.60 | 0.992 | ||
叶子飘模型 Ye model | 0.44 ± 0.03 | 990.56 ± 231.06 | 48.20 ± 1.19 | 0.994 | ||
刺槐 Robinia pseudoacacia | 6月 June | 实测 Measured | - | 1 000 | 63.57 | - |
直角双曲线模型 Rectangular hyperbola model | 0.47 ± 0.03 | - | 68.74 ± 5.31 | 0.970 | ||
非直角双曲线模型 Nonrectangular hyperbola model | 0.25 ± 0.01 | - | 62.43 ± 4.79 | 0.987 | ||
叶子飘模型 Ye model | 0.36 ± 0.02 | 1 043.59 ± 60.56 | 63.67 ± 4.14 | 0.997 | ||
7月 July | 实测 Measured | - | 1500 | 178.89 | - | |
直角双曲线模型 Rectangular hyperbola model | 0.50 ± 0.01 | - | 234.74 ± 2.78 | 0.978 | ||
非直角双曲线模型 Nonrectangular hyperbola model | 0.30 ± 0.01 | - | 183.35 ± 1.76 | 0.998 | ||
叶子飘模型 Ye model | 0.37 ± 0.01 | 1 437.14 ± 24.26 | 182.83 ± 1.21 | 0.998 | ||
8月 August | 实测 Measured | - | 1 300 | 127.78 | - | |
直角双曲线模型 Rectangular hyperbola model | 0.46 ± 0.02 | - | 156.02 ± 8.13 | 0.976 | ||
非直角双曲线模型 Nonrectangular hyperbola model | 0.28 ± 0.02 | - | 129.45 ± 6.91 | 0.997 | ||
叶子飘模型 Ye model | 0.36 ± 0.02 | 1 349.56 ± 28.31 | 128.97 ± 6.53 | 0.997 | ||
9月 September | 实测 Measured | - | 1 200 | 121.21 | - | |
直角双曲线模型 Rectangular hyperbola model | 0.50 ± 0.02 | - | 142.64 ± 5.45 | 0.975 | ||
非直角双曲线模型 Nonrectangular hyperbola model | 0.30 ± 0.01 | - | 118.55 ± 5.08 | 0.995 | ||
叶子飘模型 Ye model | 0.38 ± 0.01 | 1 275.05 ± 24.58 | 121.47 ± 4.87 | 0.998 |
表1 栓皮栎、刺槐叶片电子传递速率的特征参数(平均值±标准误差, n = 3)
Table 1 Characteristic parameters of electron transport rate of Quercus variabilis and Robinia pseudoacacia leaves (mean ± SE, n = 3)
树种 Species | 月份 Month | 模型 Model | α | Isat (μmol·m-2·s-1) | Jmax (μmol·m-2·s-1) | R2 |
---|---|---|---|---|---|---|
栓皮栎 Quercus variabilis | 6月 June | 实测 Measured | - | 1 000 | 65.51 | - |
直角双曲线模型 Rectangular hyperbola model | 0.46 ± 0.06 | - | 69.94 ± 5.85 | 0.963 | ||
非直角双曲线模型 Nonrectangular hyperbola model | 0.27 ± 0.03 | - | 64.41 ± 4.61 | 0.985 | ||
叶子飘模型 Ye model | 0.35 ± 0.03 | 1 042.28 ± 96.81 | 65.23 ± 6.45 | 0.999 | ||
7月 July | 实测 Measured | - | 1200 | 84.11 | - | |
直角双曲线模型 Rectangular hyperbola model | 0.54 ± 0.05 | - | 89.48 ± 2.60 | 0.971 | ||
非直角双曲线模型 Nonrectangular hyperbola model | 0.29 ± 0.04 | - | 79.41 ± 1.48 | 0.994 | ||
叶子飘模型 Ye model | 0.41 ± 0.04 | 1 072.50 ± 46.54 | 82.04 ± 2.18 | 0.996 | ||
8月 August | 实测 Measured | - | 1 200 | 101.98 | - | |
直角双曲线模型 Rectangular hyperbola model | 0.50 ± 0.02 | - | 117.96 ± 7.03 | 0.973 | ||
非直角双曲线模型 Nonrectangular hyperbola model | 0.34 ± 0.08 | - | 105.33 ± 2.62 | 0.995 | ||
叶子飘模型 Ye model | 0.38 ± 0.02 | 1 184.70 ± 38.30 | 103.60 ± 5.17 | 0.996 | ||
9月 September | 实测 Measured | - | 1 000 | 47.55 | - | |
直角双曲线模型 Rectangular hyperbola model | 0.57 ± 0.06 | - | 49.94 ± 2.81 | 0.968 | ||
非直角双曲线模型 Nonrectangular hyperbola model | 0.28 ± 0.02 | - | 47.02 ± 2.60 | 0.992 | ||
叶子飘模型 Ye model | 0.44 ± 0.03 | 990.56 ± 231.06 | 48.20 ± 1.19 | 0.994 | ||
刺槐 Robinia pseudoacacia | 6月 June | 实测 Measured | - | 1 000 | 63.57 | - |
直角双曲线模型 Rectangular hyperbola model | 0.47 ± 0.03 | - | 68.74 ± 5.31 | 0.970 | ||
非直角双曲线模型 Nonrectangular hyperbola model | 0.25 ± 0.01 | - | 62.43 ± 4.79 | 0.987 | ||
叶子飘模型 Ye model | 0.36 ± 0.02 | 1 043.59 ± 60.56 | 63.67 ± 4.14 | 0.997 | ||
7月 July | 实测 Measured | - | 1500 | 178.89 | - | |
直角双曲线模型 Rectangular hyperbola model | 0.50 ± 0.01 | - | 234.74 ± 2.78 | 0.978 | ||
非直角双曲线模型 Nonrectangular hyperbola model | 0.30 ± 0.01 | - | 183.35 ± 1.76 | 0.998 | ||
叶子飘模型 Ye model | 0.37 ± 0.01 | 1 437.14 ± 24.26 | 182.83 ± 1.21 | 0.998 | ||
8月 August | 实测 Measured | - | 1 300 | 127.78 | - | |
直角双曲线模型 Rectangular hyperbola model | 0.46 ± 0.02 | - | 156.02 ± 8.13 | 0.976 | ||
非直角双曲线模型 Nonrectangular hyperbola model | 0.28 ± 0.02 | - | 129.45 ± 6.91 | 0.997 | ||
叶子飘模型 Ye model | 0.36 ± 0.02 | 1 349.56 ± 28.31 | 128.97 ± 6.53 | 0.997 | ||
9月 September | 实测 Measured | - | 1 200 | 121.21 | - | |
直角双曲线模型 Rectangular hyperbola model | 0.50 ± 0.02 | - | 142.64 ± 5.45 | 0.975 | ||
非直角双曲线模型 Nonrectangular hyperbola model | 0.30 ± 0.01 | - | 118.55 ± 5.08 | 0.995 | ||
叶子飘模型 Ye model | 0.38 ± 0.01 | 1 275.05 ± 24.58 | 121.47 ± 4.87 | 0.998 |
树种 Species | 月份 Month | 叶位 Leaf position | 拟合/实测 Fitted/measured | α | Isat (μmol·m-2·s-1) | Jmax (μmol·m-2·s-1) | R2 |
---|---|---|---|---|---|---|---|
栓皮栎 Quercus variabilis | 6月 June | 阴生叶 Shaded leaf | 拟合 Fitted | 0.39 ± 0.07 | 1 019.31 ± 55.64 | 55.17 ± 7.31 | 0.993 |
实测 Measured | - | 1 000 | 55.49 | - | |||
阳生叶 Sunlit leaf | 拟合 Fitted | 0.32 ± 0.01 | 1 075.41 ± 139.41 | 75.66 ± 7.80 | 0.997 | ||
实测 Measured | - | 1 000 | 75.53 | - | |||
7月 July | 阴生叶 Shaded leaf | 拟合 Fitted | 0.44 ± 0.03 | 981.87 ± 179.95 | 69.97 ± 7.69 | 0.994 | |
实测 Measured | - | 1 000 | 68.65 | - | |||
阳生叶 Sunlit leaf | 拟合 Fitted | 0.41 ± 0.07 | 1 172.54 ± 172.76 | 95.22 ± 4.41 | 0.996 | ||
实测 Measured | - | 1 500 | 94.99 | - | |||
8月 August | 阴生叶 Shaded leaf | 拟合 Fitted | 0.40 ± 0.04 | 1 092.35 ± 97.59 | 86.36 ± 7.47 | 0.996 | |
实测 Measured | - | 1 000 | 85.40 | - | |||
阳生叶 Sunlit leaf | 拟合 Fitted | 0.38 ± 0.02 | 1 246.39 ± 9.25 | 121.32 ± 5.96 | 0.997 | ||
实测 Measured | - | 1 200 | 120.60 | - | |||
9月 September | 阴生叶 Shaded leaf | 拟合 Fitted | 0.48 ± 0.08 | 736.50 ± 86.71 | 44.07 ± 0.08 | 0.995 | |
实测 Measured | - | 1 000 | 43.59 | - | |||
阳生叶 Sunlit leaf | 拟合 Fitted | 0.42 ± 0.06 | 1 141.58 ± 119.35 | 53.75 ± 4.93 | 0.991 | ||
实测 Measured | - | 1 800 | 53.54 | - | |||
刺槐 Robinia pseudoacacia | 6月 June | 阴生叶 Shaded leaf | 拟合 Fitted | 0.37 ± 0.02 | 1 045.23 ± 74.27 | 57.01 ± 6.10 | 0.993 |
实测 Measured | - | 1 000 | 57.47 | - | |||
阳生叶 Sunlit leaf | 拟合 Fitted | 0.37 ± 0.02 | 1 047.57 ± 76.42 | 70.38 ± 4.50 | 0.997 | ||
实测 Measured | - | 1 000 | 69.67 | - | |||
7月 July | 阴生叶 Shaded leaf | 拟合 Fitted | 0.38 ± 0.01 | 1 265.91 ± 33.74 | 168.49 ± 5.99 | 0.997 | |
实测 Measured | - | 1 000 | 166.75 | - | |||
阳生叶 Sunlit leaf | 拟合 Fitted | 0.36 ± 0.02 | 1 654.66 ± 48.58 | 200.67 ± 8.92 | 0.999 | ||
实测 Measured | - | 1 800 | 199.69 | - | |||
8月 August | 阴生叶 Shaded leaf | 拟合 Fitted | 0.36 ± 0.02 | 1 316.81 ± 39.36 | 112.22 ± 7.87 | 0.997 | |
实测 Measured | - | 1 200 | 111.20 | - | |||
阳生叶 Sunlit leaf | 拟合 Fitted | 0.37 ± 0.02 | 1 372.99 ± 25.97 | 145.84 ± 9.12 | 0.996 | ||
实测 Measured | - | 1 800 | 144.59 | - | |||
9月 September | 阴生叶 Shaded leaf | 拟合 Fitted | 0.40 ± 0.01 | 1 240.05 ± 50.69 | 112.46 ± 5.47 | 0.995 | |
实测 Measured | - | 1 000 | 111.86 | - | |||
阳生叶 Sunlit leaf | 拟合 Fitted | 0.37 ± 0.01 | 1 303.29 ± 46.66 | 130.79 ± 5.67 | 0.998 | ||
实测 Measured | - | 1 200 | 133.03 | - |
表2 阴生叶、阳生叶电子传递速率的特征参数(叶子飘模型拟合)(平均值±标准误差, n = 9)
Table 2 Characteristic parameters of electron transport rate of shaded and sunlit leaves (fitted by Ye model) (mean ± SE, n = 9)
树种 Species | 月份 Month | 叶位 Leaf position | 拟合/实测 Fitted/measured | α | Isat (μmol·m-2·s-1) | Jmax (μmol·m-2·s-1) | R2 |
---|---|---|---|---|---|---|---|
栓皮栎 Quercus variabilis | 6月 June | 阴生叶 Shaded leaf | 拟合 Fitted | 0.39 ± 0.07 | 1 019.31 ± 55.64 | 55.17 ± 7.31 | 0.993 |
实测 Measured | - | 1 000 | 55.49 | - | |||
阳生叶 Sunlit leaf | 拟合 Fitted | 0.32 ± 0.01 | 1 075.41 ± 139.41 | 75.66 ± 7.80 | 0.997 | ||
实测 Measured | - | 1 000 | 75.53 | - | |||
7月 July | 阴生叶 Shaded leaf | 拟合 Fitted | 0.44 ± 0.03 | 981.87 ± 179.95 | 69.97 ± 7.69 | 0.994 | |
实测 Measured | - | 1 000 | 68.65 | - | |||
阳生叶 Sunlit leaf | 拟合 Fitted | 0.41 ± 0.07 | 1 172.54 ± 172.76 | 95.22 ± 4.41 | 0.996 | ||
实测 Measured | - | 1 500 | 94.99 | - | |||
8月 August | 阴生叶 Shaded leaf | 拟合 Fitted | 0.40 ± 0.04 | 1 092.35 ± 97.59 | 86.36 ± 7.47 | 0.996 | |
实测 Measured | - | 1 000 | 85.40 | - | |||
阳生叶 Sunlit leaf | 拟合 Fitted | 0.38 ± 0.02 | 1 246.39 ± 9.25 | 121.32 ± 5.96 | 0.997 | ||
实测 Measured | - | 1 200 | 120.60 | - | |||
9月 September | 阴生叶 Shaded leaf | 拟合 Fitted | 0.48 ± 0.08 | 736.50 ± 86.71 | 44.07 ± 0.08 | 0.995 | |
实测 Measured | - | 1 000 | 43.59 | - | |||
阳生叶 Sunlit leaf | 拟合 Fitted | 0.42 ± 0.06 | 1 141.58 ± 119.35 | 53.75 ± 4.93 | 0.991 | ||
实测 Measured | - | 1 800 | 53.54 | - | |||
刺槐 Robinia pseudoacacia | 6月 June | 阴生叶 Shaded leaf | 拟合 Fitted | 0.37 ± 0.02 | 1 045.23 ± 74.27 | 57.01 ± 6.10 | 0.993 |
实测 Measured | - | 1 000 | 57.47 | - | |||
阳生叶 Sunlit leaf | 拟合 Fitted | 0.37 ± 0.02 | 1 047.57 ± 76.42 | 70.38 ± 4.50 | 0.997 | ||
实测 Measured | - | 1 000 | 69.67 | - | |||
7月 July | 阴生叶 Shaded leaf | 拟合 Fitted | 0.38 ± 0.01 | 1 265.91 ± 33.74 | 168.49 ± 5.99 | 0.997 | |
实测 Measured | - | 1 000 | 166.75 | - | |||
阳生叶 Sunlit leaf | 拟合 Fitted | 0.36 ± 0.02 | 1 654.66 ± 48.58 | 200.67 ± 8.92 | 0.999 | ||
实测 Measured | - | 1 800 | 199.69 | - | |||
8月 August | 阴生叶 Shaded leaf | 拟合 Fitted | 0.36 ± 0.02 | 1 316.81 ± 39.36 | 112.22 ± 7.87 | 0.997 | |
实测 Measured | - | 1 200 | 111.20 | - | |||
阳生叶 Sunlit leaf | 拟合 Fitted | 0.37 ± 0.02 | 1 372.99 ± 25.97 | 145.84 ± 9.12 | 0.996 | ||
实测 Measured | - | 1 800 | 144.59 | - | |||
9月 September | 阴生叶 Shaded leaf | 拟合 Fitted | 0.40 ± 0.01 | 1 240.05 ± 50.69 | 112.46 ± 5.47 | 0.995 | |
实测 Measured | - | 1 000 | 111.86 | - | |||
阳生叶 Sunlit leaf | 拟合 Fitted | 0.37 ± 0.01 | 1 303.29 ± 46.66 | 130.79 ± 5.67 | 0.998 | ||
实测 Measured | - | 1 200 | 133.03 | - |
图2 阴生叶、阳生叶电子传递速率-光响应曲线比较(叶子飘模型拟合)(平均值±标准误差, n = 9)。A-D, 栓皮栎6、7、8和9月, E-H, 刺槐6、7、8和9月。
Fig. 2 Electron transport rate light-response curves of shaded and sunlit leaves (fitted by Ye model)(mean ± SE, n = 9). A-D, Q. variabilis in June, July, August and September. E-H, R. pseudoacacia in June, July, August and September.
栓皮栎 Quercus variabilis | 刺槐 Robinia pseudoacacia | |||||
---|---|---|---|---|---|---|
α | Isat | Jmax | α | Isat | Jmax | |
Ta | -0.571 | 0.480 | 0.902** | -0.477 | 0.801* | 0.806* |
SWC | -0.364 | 0.856 | 0.953* | -0.344 | 0.965* | 0.912 |
Pn | -0.800* | 0.542 | 0.745* | -0.719* | 0.764* | 0.661 |
Chl | -0.293 | 0.873 | 0.961* | -0.435 | 0.933 | 0.871 |
表3 栓皮栎、刺槐叶片电子传递速率特征参数与环境/生物因子的相关关系
Table 3 Correlations of characteristic parameters of electron transport rate and bioenvironmental factors in Quercus variabilis and Robinia pseudoacacia
栓皮栎 Quercus variabilis | 刺槐 Robinia pseudoacacia | |||||
---|---|---|---|---|---|---|
α | Isat | Jmax | α | Isat | Jmax | |
Ta | -0.571 | 0.480 | 0.902** | -0.477 | 0.801* | 0.806* |
SWC | -0.364 | 0.856 | 0.953* | -0.344 | 0.965* | 0.912 |
Pn | -0.800* | 0.542 | 0.745* | -0.719* | 0.764* | 0.661 |
Chl | -0.293 | 0.873 | 0.961* | -0.435 | 0.933 | 0.871 |
1 |
Ambrosio ND, Arena C, Santo AV ( 2006). Temperature response of photosynthesis, excitation energy dissipation and alternative electron sinks to carbon assimilation in Beta vulgaris L. Environmental and Experimental Botany, 55, 248-257.
DOI URL |
2 |
Baker NR ( 2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113.
DOI URL |
3 |
Baly EC ( 1935). The kinetics of photosynthesis. Proceedings of the Royal Society of London Series B: Biological Sciences, 117, 218-239.
DOI URL |
4 | Bernacchi CJ, Morgan PB, Ort DR, Long SP ( 2005). The growth of soybean under free air [CO2] enrichment (FACE) stimulates photosynthesis while decreasing in vivo Rubisco capacity. Planta, 220, 434-446. |
5 |
Brading P, Warner ME, Davey P, Smith DJ, Achterberg EP, Suggett DJ ( 2011). Differential effects of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium (Dinophyceae). Limnology and Oceanography, 56, 927-938.
DOI URL |
6 | Caemmerer SV ( 2000). Biochemical Models of Leaf Photosynthesis. CSIRO Publishing, Victoria, Australia. |
7 |
Chazdon RL, Pearcy RW, Lee DW, Fetcher N, Mulkey SS ( 1996). Photosynthetic responses of tropical forest plants to contrasting light environments. In: Mulkey SS, Chazdon RL, Smith AP eds. Tropical Forest Plant Ecophysiology. Chapman and Hall, New York. 5-55.
DOI URL |
8 |
Chen Y, Xu DQ ( 2006). Two patterns of leaf photosynthetic responses to irradiance transition from saturating to limiting one in some plant species. New Phytologist, 169, 789-798.
DOI URL PMID |
9 |
Ding JX, Zou J, Tang LS, Liu WG ( 2015). Photosynthetic characteristics of three different life-form plants in the desert-oasis ecotone of Keriya River Basin. Acta Ecologica Sinica, 35, 733-741.
DOI URL |
[ 丁俊祥, 邹杰, 唐立松, 刘卫国 ( 2015). 克里雅河流域荒漠-绿洲交错带3种不同生活型植物的光合特性. 生态学报, 35, 733-741.]
DOI URL |
|
10 |
Eichelmann H, Oja V, Peterson RB, Laisk A ( 2011). The rate of nitrite reduction in leaves as indicated by O2 and CO2 exchange during photosynthesis. Journal of Experimental Botany, 62, 2205-2215.
DOI URL PMID |
11 |
Ferrier-Pagès C, Tambutté E, Zamoum T, Segonds N, Merle PL, Bensoussan N, Allemand D, Garrabou J, Tambutté S ( 2009). Physiological response of the symbiotic gorgonian Eunicella singularis to a longterm temperature increase. Journal of Experimental Biology, 212, 3007-3015.
DOI URL PMID |
12 |
Fila G, Badeck FW, Meyer S, Cerovic Z, Ghashghaie J ( 2006). Relationships between leaf conductance to CO2 diffusion and photosynthesis in micropropagated grapevine plants, before and after ex vitro acclimatization. Journal of Experimental Botany, 57, 2687-2695.
DOI URL PMID |
13 |
Flexas J, Barón M, Bota J, Ducruet JM, Gallé A, Galmés J, Jiménez M, Pou A, Ribas-Carbó M, Sajnani C, Tomàs M, Medrano H ( 2009). Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri var. rupestris). Journal of Experimental Botany, 60, 2361-2377.
DOI URL PMID |
14 |
Govindjee ( 2002). A role for a light-harvesting antenna complex of photosystem II in photoprotection. Plant Cell, 14, 1663-1668.
DOI URL PMID |
15 |
Guo W, Zhan SY, Yin H, Li XY, Lü X, Yang L, Wang Y ( 2016). Effect of enhanced UV-B radiation on photosynthetic electron transport and light response characteristics of japonica. Journal of Nanjing Agricultural University, 39, 603-610.
DOI URL |
[ 郭巍, 战莘晔, 殷红, 李雪莹, 吕晓, 杨璐, 王一 ( 2016). UV-B辐射增强对粳稻光合电子传递与光响应特性的影响. 南京农业大学学报, 39, 603-610.]
DOI URL |
|
16 |
Harley PC, Thomas RB, Reynolds JF, Strainet BR ( 1992). Modelling photosynthesis of cotton grown in elevated CO2. Plant, Cell & Environment, 15, 271-282.
DOI URL |
17 |
Harrison WG, Platt T ( 1986). Photosynthesis-irradiance relationships in polar and temperate phytoplankton populations. Polar Biology, 5, 153-164.
DOI URL |
18 | Hu WH, Ye ZP, Yan XH, Yang XS ( 2017). PSII function and intrinsic characteristics of light-harvesting pigment molecules for sun- and shading-leaf in Magnolia grandiflora during overwintering. Bulletin of Botanical Research, 37, 281-287. |
[ 胡文海, 叶子飘, 闫小红, 杨旭升 ( 2017). 越冬期广玉兰阳生叶和阴生叶PSII功能及捕光色素分子内禀特性的比较研究. 植物研究, 37, 281-287.] | |
19 |
Jian ZY, Wang WQ, Meng L, Xu GF, Wang QL, Li WD, Yu JB ( 2010). Comparison of photosynthetic and fluorescence characteristics among taxa in Paeonia sect. Paeonia. Chinese Journal of Plant Ecology, 34, 1463-1471.
DOI URL |
[ 简在友, 王文全, 孟丽, 许桂芳, 王秋玲, 李卫东, 俞敬波 ( 2010). 芍药组内不同类群间光合特性及叶绿素荧光特性比较. 植物生态学报, 34, 1463-1471.]
DOI URL |
|
20 |
Joao S, Rui S ( 2004). Can chlorophyll fluorescence be used to estimate photosynthetic production in the seagrass Zosteranoltii. Marine Biology & Ecology, 307, 207-216.
DOI URL |
21 |
Kang HJ, Li H, Tao YL, Zhang HL, Quan W, Ouyang Z ( 2015). Discussion on simultaneous measurements of leaf gas exchange and chlorophyll fluorescence for estimating photosynthetic electron allocation. Acta Ecologica Sinica, 35, 1217-1224.
DOI URL |
[ 康华靖, 李红, 陶月良, 张海利, 权伟, 欧阳竹 ( 2015). 气体交换与荧光同步测量估算植物光合电子流的分配. 生态学报, 35, 1217-1224.]
DOI URL |
|
22 | Larcher W ( 1995). Physiological Plant Ecology. Springer- Verlag Press, Berlin, Heidelberg. |
23 |
Lawlor DW, Cornic G ( 2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment, 25, 275-294.
DOI URL PMID |
24 | Li YX, Shen SH, Li L, Wang XM, Zhang FC, Han XM ( 2012). Effects of soil moisture on leaf gas exchange and chlorophyll fluorescence parameters of winter wheat during its late growth stage. Chinese Journal of Ecology, 31, 74-80. |
[ 李永秀, 申双和, 李丽, 汪秀敏, 张富存, 韩小梅 ( 2012). 土壤水分对冬小麦生育后期叶片气体交换及叶绿素荧光参数的影响. 生态学杂志, 31, 74-80.] | |
25 | Liu JJ, Li JY, Zhang JG ( 2015). Influences of drought stress on photosynthetic characteristics and water use efficiency of 4 tree species under elevated CO2 concentration. Forest Research, 28, 339-345. |
[ 刘娟娟, 李吉跃, 张建国 ( 2015). 高CO2浓度和干旱胁迫对4种树苗光合特性的影响. 林业科学研究, 28, 339-345.] | |
26 |
Long SP, Bernacchi CJ ( 2003). Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany, 54, 2393-2401.
DOI URL PMID |
27 |
Luo WC, Zeng FJ, Liu B, Zhang LG, Liu Z, Song C, Peng SL, Peng HQ ( 2013). Photosynthetic and physiological characteristics of introduced plants at the desert-oasis ecotone. Acta Prataculturae Sinica, 22, 273-280.
DOI URL |
[ 罗维成, 曾凡江, 刘波, 张利刚, 刘镇, 宋聪, 彭守兰, 彭慧清 ( 2013). 绿洲-沙漠过渡带引种植物光合生理特征研究. 草业学报, 22, 273-280.]
DOI URL |
|
28 |
Martins SCV, Galmés J, Molins A, Damatta FM ( 2013). Improving the estimation of mesophyll conductance to CO2: On the role of electron transport rate correction and respiration. Journal of Experimental Botany, 64, 3285-3298.
DOI URL |
29 |
Nelson N, Yocum CF ( 2006). Structure and function of photosystems I and II. Annual Review of Plant Biology, 57, 521-565.
DOI URL PMID |
30 |
Ördög A, Wodala B, Rózsavögyi T, Tari I, Horváth F ( 2013). Regulation of guard cell photosynthetic electron transport by nitric oxide. Journal of Experimental Botany, 64, 1357-1366.
DOI URL PMID |
31 | Osborne CP, Wythe EJ, Ibrahim DG, Gilbert ME, Ripley BS ( 2008). Low temperature effects on leaf physiology and survivorship in the C3 and C4 subspecies of Alloteropsis semialata. Journal of Experimental Botany, 59, 1743-1754. |
32 |
Pavlovic A, Slováková L, Pandolfi C, Mancuso S ( 2011). On the mechanism underlying photosynthetic limitation upon trigger hair irritation in the carnivorous plant venus flytrap (Dionaea muscipula Ellis). Journal of Experimental Botany, 62, 1991-2000.
DOI URL PMID |
33 | Platt T, Gallegos CL, Harrison WG ( 1980). Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research, 38, 687-701. |
34 |
Qian Q, Qu LJ, Yuan M, Wang XJ, Yang WC, Wang T, Kong HZ, Jiang GM, Chong K ( 2013). Research advances on plant science in China in 2012. Chinese Bulletin of Botany, 48, 231-287.
DOI URL |
[ 钱前, 瞿礼嘉, 袁明, 王小菁, 杨维才, 王台, 孔宏智, 蒋高明, 种康 ( 2013). 2012年中国植物科学若干领域重要研究进展. 植物学报, 48, 231-287.]
DOI URL |
|
35 |
Qiu EF, Chen ZM, Hong W, Zheng YS, Huang BL, Yang ZQ ( 2006). Comparison on ecophysiological characteristics between sun and shade leaves in different age Dendrocalamus latiflorus. Acta Ecologica Sinica, 26, 3297-3301.
DOI URL |
[ 邱尔发, 陈卓梅, 洪伟, 郑郁善, 黄宝龙, 杨主泉 ( 2006). 不同年龄麻竹阴阳叶生态生理特性. 生态学报, 26, 3297-3301.]
DOI URL |
|
36 |
Ralph PJ, Gademann R ( 2005). Rapid light curves: A powerful tool to assess photosynthetic activity. Aquatic Botany, 82, 222-237.
DOI URL |
37 |
Rascher U, Liebig M, Lüttge U ( 2000). Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer onsite in the field. Plant, Cell & Environment, 23, 1397-1405.
DOI URL |
38 |
Ren B, Li J, Tong XJ, Mu YM, Zhang JS, Meng P ( 2017). Simulation on photosynthetic light-response of Quercus variabilis and Robinia pseudoacacia in the southern foot of the Taihang Mountain. Chinese Journal of Ecology, 36, 2206-2216.
DOI URL |
[ 任博, 李俊, 同小娟, 母艳梅, 张劲松, 孟平 ( 2017). 太行山南麓栓皮栎和刺槐叶片光合光响应模拟. 生态学杂志, 36, 2206-2216.]
DOI URL |
|
39 |
Reynolds M, Foulkes J, Furbank R, Griffiths S, King J, Murchie E, Parry M, Slafer G ( 2012). Achieving yield gains in wheat. Plant, Cell & Environment, 35, 1799-1823.
DOI URL PMID |
40 |
Robakowski P ( 2005). Susceptibility to low-temperature photoinhibition in three conifers differing in successional status. Tree Physiology, 25, 1151-1160.
DOI URL PMID |
41 |
Sofo A, Dichi B, Montanaro G, Xiloyannis C ( 2009). Photosynthetic performance and light response of two olive cultivars under different water and light regimes. Photosynthetica, 47, 602-608.
DOI URL |
42 |
Tang WZ, Li XS, Huang HY, Cai CE, Huo YZ, He PM ( 2009). Effects of different light intensity and temperature treatment on photosynthesis and chlorophyll fluorescence in Ulva linza. Journal of Fisheries of China, 33, 752-769.
DOI URL |
[ 汤文仲, 李信书, 黄海燕, 蔡春尔, 霍元子, 何培民 ( 2009). 不同光强和温度对长石莼(缘管浒苔)光合作用和叶绿素荧光参数的影响. 水产学报, 33, 752-769.]
DOI URL |
|
43 | Thornley JHM ( 1976). Mathematical Models in Plant Physiology. Academic Press, London. |
44 |
White AJ, Critchley C ( 1999). Rapid light curves: A new fluorescence method to assess the state of the photosynthetic apparatus. Photosynthesis Research, 59, 63-72.
DOI URL |
45 |
Xie JM, Yu JH, Huang GB, Feng Z ( 2011). Correlations between changes of absorption and transformation of light energy by PSII in pepper leaves and the variety tolerance under low temperature & weak light. Scientia Agricultura Sinica, 44, 1855-1862.
DOI URL |
[ 颉建明, 郁继华, 黄高宝, 冯致 ( 2011). 低温弱光下辣椒叶片PSII光能吸收和转换变化及与品种耐性的关系. 中国农业科学, 44, 1855-1862.]
DOI URL |
|
46 | Xu DQ ( 2013). Photosynthesis. Science Press, Beijing. |
[ 许大全 ( 2013). 光合作用学. 科学出版社, 北京.] | |
47 |
Xu JZ, Yu YM, Pen SZ, Yang SH, Liao LX ( 2014). A modified nonrectangular hyperbola equation for photosynthetic light-response curves of leaves with different nitrogen status. Photosynthetica, 52, 117-123.
DOI URL |
48 |
Xu L, Gao ZQ, An W, Li YL, Jiao XF, Wang CY ( 2016). Flag leaf photosynthetic characteristics, change in chlorophyll fluorescence parameters, and their relationship with yield of winter wheat sowed in spring. Chinese Journal of Applied Ecology, 27, 133-142.
DOI URL |
[ 徐澜, 高志强, 安伟, 李彦良, 焦雄飞, 王创云 ( 2016). 冬麦春播条件下旗叶光合特性、叶绿素荧光参数变化及其与产量的关系. 应用生态学报, 27, 133-142.]
DOI URL |
|
49 |
Yan LX, Yu ZW, Shi Y, Zhao JY, Zhang YL ( 2017). Effects of supplemental irrigation based on soil moisture measurement on flag leaf chlorophyll fluorescence and senescence characteristics in two wheat cultivars. Scientia Agricultura Sinica, 50, 1416-1429.
DOI URL |
[ 闫丽霞, 于振文, 石玉, 赵俊晔, 张永丽 ( 2017). 测墒补灌对2个小麦品种旗叶叶绿素荧光及衰老特性的影响. 中国农业科学, 50, 1416-1429.]
DOI URL |
|
50 | Yan XH, Yin JH, Duan SH, Zouh B, Hu WH, Liu S ( 2013). Photosynthesis light response curves of four rice varieties and model fitting. Chinese Journal of Ecology, 32, 604-610. |
[ 闫小红, 尹建华, 段世华, 周兵, 胡文海, 刘帅 ( 2013). 四种水稻品种的光合光响应曲线及其模型拟合. 生态学杂志, 32, 604-610.] | |
51 |
Yan XH, Zhou B, Wang N, Ye ZP, Yin ZF ( 2016). Differences of photosynthetic characteristics based on a mechanistic model of light-response for three herbaceous plants. Journal of Nanjing Forestry University (Natural Sciences Edition), 40, 63-69.
DOI URL |
[ 闫小红, 周兵, 王宁, 叶子飘, 尹增芳 ( 2016). 基于光响应机理模型的3种草本植物光合特性差异解析. 南京林业大学学报(自然科学版), 40, 63-69.]
DOI URL |
|
52 | Yao CY, Lu XS, Xu DW, Wu J ( 2011). Study on the relations of six forage’s photo-response characteristics and aboveground biomass under orchard. Chinese Agricultural Science Bulletin, 27, 69-73. |
[ 姚春艳, 卢欣石, 徐大伟, 吴健 ( 2011). 果林下6种牧草的光响应特性与地上生物量关系的研究. 中国农学通报, 27, 69-73.] | |
53 |
Yao JP, Chen L, Cui HX, Yao T ( 2010). Responses of photosynthesis and heat-tolerance in seedling of four lilacs to high-temperature. Grassland & Turf,( 5), 50- 55, 58.
DOI URL |
[ 姚军朋, 陈莉, 崔洪霞, 姚拓 ( 2010). 丁香属植物光合机构的热响应特征研究. 草原与草坪,( 5), 50- 55, 58.]
DOI URL |
|
54 |
Ye ZP, Hu WH, Xiao YA, Fan DY, Yin JH, Duan SH, Yan XH, He L, Zhang SS ( 2014). A mechanistic model of light-response of photosynthetic electron flow and its application. Chinese Journal of Plant Ecology, 38, 1241-1249.
DOI URL |
[ 叶子飘, 胡文海, 肖宜安, 樊大勇, 尹建华, 段世华, 闫小红, 贺俐, 张斯斯 ( 2014). 光合电子流对光响应的机理模型及其应用. 植物生态学报, 38, 1241-1249.]
DOI URL |
|
55 |
Ye ZP, Hu WH, Yan XH ( 2016 a). Comparison on light-response models of actual photochemical efficiency in photosystem II. Chinese Journal of Plant Ecology, 40, 1208-1217.
DOI URL |
[ 叶子飘, 胡文海, 闫小红 ( 2016 a). 光系统II实际光化学量子效率对光的响应模型的比较. 植物生态学报, 40, 1208-1217.]
DOI URL |
|
56 |
Ye ZP, Hu WH, Yan XH, Duan SH ( 2016 b). Photosynthetic characteristics of different plant species based on a mechanistic model of light-response of photosynthesis. Chinese Journal of Ecology, 35, 2544-2552.
DOI URL |
[ 叶子飘, 胡文海, 闫小红, 段世华 ( 2016 b). 基于光响应机理模型的不同植物光合特性. 生态学杂志, 35, 2544-2552.]
DOI URL |
|
57 | Ye ZP, Kang HJ, Tao YL, Wang LX ( 2011). Comparative analysis on the fitting effect of different models of Koelreuteria bipinnata var. integrifoliola rapid light curves. Chinese Journal of Ecology, 30, 1662-1667. |
[ 叶子飘, 康华靖, 陶月良, 王立新 ( 2011). 不同模型对黄山栾树快速光曲线拟合效果的比较. 生态学杂志, 30, 1662-1667.] | |
58 |
Ye ZP, Robakowski P, Suggett DJ ( 2013 a). A mechanistic model for the light response of photosynthetic electron transport rate based on light harvesting properties of photosynthetic pigment molecules. Planta, 237, 837-847.
DOI URL PMID |
59 |
Ye ZP, Suggett JD, Robakowski P, Kang HJ ( 2013 b). A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of photosystem II in C3 and C4 species. New Phytologist, 199, 110-120.
DOI URL PMID |
60 |
Ye ZP, Yan XH, Duan SH ( 2015). Investigation on the relationship between saturation irradiance and chlorophyll contents of flag leaves and intrinsic characteristics of light-harvesting pigment molecules in high-yielding rice. Journal of Jinggangshan University (Natural Science), 36, 25-32.
DOI URL |
[ 叶子飘, 闫小红, 段世华 ( 2015). 高产水稻剑叶的叶绿素含量、捕光色素分子的内禀特性与饱和光强关系的研究. 井冈山大学学报(自然科学版), 36, 25-32.]
DOI URL |
|
61 | Ye ZP, Zhao ZH ( 2009). Effects of shading on the photosynthesis and chlorophyll content of Bidens pilosa. Chinese Journal of Ecology, 28, 19-22. |
[ 叶子飘, 赵则海 ( 2009). 遮光对三叶鬼针草光合作用和叶绿素含量的影响. 生态学杂志, 28, 19-22.] | |
62 |
Yun JY, Yang JD, Zhao HL ( 2006). Research progress in the mechanism for drought and high temperature to affect plant photosynthesis. Acta Botanica Boreali-Occidentalia Sinica, 26, 641-648.
DOI URL |
[ 云建英, 杨甲定, 赵哈林 ( 2006). 干旱和高温对植物光合作用的影响机制研究进展. 西北植物学报, 26, 641-648.]
DOI URL |
|
63 |
Zeng ZF, Yan XH, Hu WH ( 2014). Effects of NaCl stress on plant growth and photosynthetic characteristics in the cucumber seedling. Journal of Jinggangshan University (Natural Science), 35, 39-42.
DOI URL |
[ 曾志峰, 严小红, 胡文海 ( 2014). NaCl胁迫对黄瓜幼苗生长及光合作用特征的影响. 井冈山大学学报(自然科学版), 35, 39-42.]
DOI URL |
|
64 |
Zhang GS, Hao L, Yan ZJ, Zhao X, Wang Y, Bai YR, Li XL ( 2017). The responses of chlorophyll fluorescence kinetics parameters of six tree species to soil moisture changes. Chinese Journal of Ecology, 36, 3079-3085.
DOI URL |
[ 张国盛, 郝蕾, 闫子娟, 赵鑫, 王颖, 白玉荣, 李小龙 ( 2017). 6种树种叶片叶绿素荧光动力学参数对土壤水分变化的响应. 生态学杂志, 36, 3079-3085.]
DOI URL |
|
65 |
Zhang LG, Zeng FJ, Liu B, Liu Z, An GX, Li HF, Yuan N ( 2012). Study of the photosynthesis characteristics and physical signs of four plants at the desert-oasis ecoton. Acta Prataculturae Sinica, 21, 103-111.
DOI URL |
[ 张利刚, 曾凡江, 刘波, 刘镇, 安桂香, 李海峰, 袁娜 ( 2012). 绿洲-荒漠过渡带四种植物光合及生理特征的研究. 草业学报, 21, 103-111.]
DOI URL |
|
66 | Zhang SS ( 2014). Effect of Simulated Warming on Photosynthetic Adaptability and Reproductive Ecology of Invasive Solidago Canadensis, Bidens frondosa and Native Pterocypsela laciniata. Master degree dissertation, Southwest University Chongqing. |
[ 张斯斯 ( 2014). 模拟增温对菊科2种入侵植物繁殖生态学及光合特性的影响. 硕士学位论文, 西南大学, 重庆.] | |
67 | Zhang YZ, Li HD, Li X, Xiao J, Xu K ( 2013). Effects of light intensity and water stress on leaf photosynthetic characteristics of ginger. Acta Horticulturae Sinica, 40, 2255-2262. |
[ 张永征, 李海东, 李秀, 肖静, 徐坤 ( 2013). 光强和水分胁迫对姜叶片光合特性的影响. 园艺学报, 40, 2255-2262.] | |
68 | Zhong CF, Wu XY, Yao HJ, Shi Z, Gao RF ( 2008). Characteristics of chlorophyll a fluorescence kinetics of Euonymus japonicus during early spring in Beijing region. Journal of Beijing Forestry University, 30, 9-15. |
[ 钟传飞, 武晓颖, 姚洪军, 施征, 高荣孚 ( 2008). 北京地区大叶黄杨春初返青过程的叶绿素荧光动力学研究. 北京林业大学学报, 30, 9-15.] |
[1] | 王复标, 叶子飘. 植物电子传递速率光响应模型的研究进展[J]. 植物生态学报, 2024, 48(3): 287-305. |
[2] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[3] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. |
[4] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[5] | 李景, 王欣, 王振华, 王斌, 王成章, 邓美凤, 刘玲莉. 臭氧和气溶胶复合污染对杨树叶片光合作用的影响[J]. 植物生态学报, 2020, 44(8): 854-863. |
[6] | 章异平, 海旭莹, 徐军亮, 吴文霞, 曹鹏鹤, 安文静. 秦岭东段栓皮栎枝条非结构性碳水化合物含量的季节动态[J]. 植物生态学报, 2019, 43(6): 521-531. |
[7] | 何秋月, 闫美杰, 张建国, 杜盛. 黄土高原半湿润区刺槐树干液流对人工截留降雨输入及环境因子的响应[J]. 植物生态学报, 2018, 42(4): 466-474. |
[8] | 叶子飘, 段世华, 安婷, 康华靖. 最大电子传递速率的确定及其对电子流分配的影响[J]. 植物生态学报, 2018, 42(4): 498-507. |
[9] | 叶子飘, 段世华, 安婷, 康华靖. C4作物电子传递速率对CO2响应模型的构建及应用[J]. 植物生态学报, 2018, 42(10): 1000-1008. |
[10] | 段贝贝, 赵成章, 徐婷, 郑慧玲, 冯威, 韩玲. 兰州北山不同坡向刺槐叶脉密度与气孔性状的关联性分析[J]. 植物生态学报, 2016, 40(12): 1289-1297. |
[11] | 李力, 张祥星, 郑睿, 郭建青. 夏玉米光合特性及光响应曲线拟合[J]. 植物生态学报, 2016, 40(12): 1310-1318. |
[12] | 叶子飘, 胡文海, 闫小红. 光系统II实际光化学量子效率对光的响应模型的比较[J]. 植物生态学报, 2016, 40(11): 1208-1217. |
[13] | 史元春, 赵成章, 宋清华, 杜晶, 陈静, 王继伟. 兰州北山刺槐枝叶性状的坡向差异性[J]. 植物生态学报, 2015, 39(4): 362-370. |
[14] | 吴旭, 陈云明, 唐亚坤. 黄土丘陵区刺槐和侧柏人工林树干液流特征及其对降水的响应[J]. 植物生态学报, 2015, 39(12): 1176-1187. |
[15] | 周旋,何正飚,康宏樟,孙逍,刘春江. 温带-亚热带栓皮栎种子形态的变异及其与环境因子的关系[J]. 植物生态学报, 2013, 37(6): 481-491. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19