植物生态学报 ›› 2025, Vol. 49 ›› Issue (4): 513-525.DOI: 10.17521/cjpe.2024.0024 cstr: 32100.14.cjpe.2024.0024
• 综述 • 下一篇
蒋晓玉1,2, 于欣淼1,2, 廖琴1, 张金伟3, 吴雪峰4, 王旭1, 潘俊彤1, 王俊锋1,2, 穆春生1,2, 石玉杰1,2,*()(
)
收稿日期:
2024-01-24
接受日期:
2024-10-09
出版日期:
2025-04-20
发布日期:
2025-04-18
通讯作者:
* (shiyj455@nenu.edu.cn)基金资助:
JIANG Xiao-Yu1,2, YU Xin-Miao1,2, LIAO Qin1, ZHANG Jin-Wei3, WU Xue-Feng4, WANG Xu1, PAN Jun-Tong1, WANG Jun-Feng1,2, MU Chun-Sheng1,2, SHI Yu-Jie1,2,*()(
)
Received:
2024-01-24
Accepted:
2024-10-09
Online:
2025-04-20
Published:
2025-04-18
Contact:
* (shiyj455@nenu.edu.cn)
Supported by:
摘要:
氧化亚氮(N2O)是具有强增温效应的温室气体, 也是破坏大气臭氧层的主要物质, 对气候变化有强烈的反馈作用。植物是陆地生态系统中除土壤外另一重要的N2O排放源, 近年来受到广泛关注。该文基于国内外现有研究成果, 综述了陆地植物排放N2O相关研究方法、机制及影响因素。现有研究主要通过原位和离体采集两种方法测定植物N2O排放量变化。陆地植物排放N2O有如下潜在机制: 1)植物体在氮代谢过程中产生N2O; 2)植物体内或体表微生物活动产生N2O; 3)植物作为土壤N2O通道, 在气体交换过程中充当媒介作用。植物排放N2O与自身因素和外界因素有关, 自身因素包括植物物种、同一植物的不同器官和不同发育时期等; 外界因素包括光照、温度、水分、养分和微生物等。但当前仍缺少关于其具体机制的深入剖析。因此, 结合宏基因组技术测定不同土壤环境条件下的植物微生物基因组, 分析其微生物群落结构, 阐释植物排放N2O在不同生境间差异的微生物机理; 结合宏转录组技术测定植物组织中的总RNA, 分析N2O排放相关基因在不同环境条件下的表达变化; 并利用同位素标记技术追踪植物体氮代谢过程, 进一步揭示植物N2O通量变化的机理, 这对补充和完善全球气候变化“Ecosys”等N2O预测模型有重要意义, 并为温室气体减排措施的制定提供理论参考。
蒋晓玉, 于欣淼, 廖琴, 张金伟, 吴雪峰, 王旭, 潘俊彤, 王俊锋, 穆春生, 石玉杰. 陆地植物排放氧化亚氮的研究进展. 植物生态学报, 2025, 49(4): 513-525. DOI: 10.17521/cjpe.2024.0024
JIANG Xiao-Yu, YU Xin-Miao, LIAO Qin, ZHANG Jin-Wei, WU Xue-Feng, WANG Xu, PAN Jun-Tong, WANG Jun-Feng, MU Chun-Sheng, SHI Yu-Jie. Studies on the emission of nitrous oxide from terrestrial plants. Chinese Journal of Plant Ecology, 2025, 49(4): 513-525. DOI: 10.17521/cjpe.2024.0024
图2 植物排放N2O的机制。AA, 氨基酸; amoA, 氨氧化古菌或细菌的氨单加氧酶基因; COX, 细胞色素c氧化酶; GS-GOGAT, 谷氨酰胺合成酶-谷氨酸合成酶; hao, 羟胺氧化还原酶; NiR, 亚硝酸还原酶; NR, 硝酸还原酶; NR-NOFNiR, 硝酸还原酶与产NO的亚硝酸还原酶构成的双酶系统; nor、norB、nirS、nirK、narG, 反硝化功能基因。
Fig. 2 Mechanism of N2O emissions from plants. AA, amino acid; amoA, ammonia monooxygenase gene of ammonia-oxidizing archaea or bacteria; COX, cytochrome c oxidase; GS-GOGAT, glutamine synthetase-glutamate synthase; hao, hydroxylamine oxidoreductase; NiR, nitrite reductase; NR, nitrate reductase; NR-NiRNOS, a dual-enzyme system composed of nitrate reductase and NO-producing nitrite reductase; nor, norB, nirS, nirK, narG, denitrification-related functional genes.
[1] |
Alegria AE, Sanchez S, Quintana I (2004). Quinone-enhanced ascorbate reduction of nitric oxide: role of quinone redox potential. Free Radical Research, 38, 1107-1112.
PMID |
[2] | Amundson RG, Davidson EA (1990). Carbon dioxide and nitrogenous gases in the soil atmosphere. Journal of Geochemical Exploration, 38, 13-41. |
[3] |
Ascenzi P, Marino M, Polticelli F, Santucci R, Coletta M (2014). Cardiolipin modulates allosterically the Nitrite reductase activity of horse heart cytochrome c. Journal of Biological Inorganic Chemistry, 19, 1195-1201.
DOI PMID |
[4] |
Aslam M, Huffaker RC, Rains DW, Rao KP (1979). Influence of light and ambient carbon dioxide concentration on nitrate assimilation by intact barley seedlings. Plant Physiology, 63, 1205-1209.
DOI PMID |
[5] | Baggs EM (2011). Soil microbial sources of nitrous oxide: recent advances in knowledge, emerging challenges and future direction. Current Opinion in Environmental Sustainability, 3, 321-327. |
[6] | Balogh E, Kalapos B, Ahres M, Boldizsár Á, Gierczik K, Gulyás Z, Gyugos M, Szalai G, Novák A, Kocsy G (2022). Far-red light coordinates the diurnal changes in the transcripts related to nitrate reduction, glutathione metabolism and antioxidant enzymes in barley. International Journal of Molecular Sciences, 23, 7479. DOI: 10.3390/ijms23137479. |
[7] | Benamar A, Rolletschek H, Borisjuk L, Avelange-Macherel MH, Curien G, Mostefai HA, Andriantsitohaina R, Macherel D (2008). Nitrite-nitric oxide control of mitochondrial respiration at the frontier of Anoxia. Biochimica et Biophysica Acta-Bioenergetics, 1777, 1268-1275. |
[8] | Blomberg MRA, Ädelroth P (2018). Mechanisms for enzymatic reduction of nitric oxide to nitrous oxide—A comparison between nitric oxide reductase and cytochrome c oxidase. Biochimica et Biophysica Acta-Bioenergetics, 1859, 1223-1234. |
[9] | Bowatte S, Newton PCD, Brock S, Theobald P, Luo D (2015). Bacteria on leaves: a previously unrecognised source of N2O in grazed pastures. The ISME Journal, 9, 265-267. |
[10] | Bowatte S, Newton PCD, Theobald P, Brock S, Hunt C, Lieffering M, Sevier S, Gebbie S, Luo D (2014). Emissions of nitrous oxide from the leaves of grasses. Plant Soil, 374, 275-283. |
[11] |
Brudvig GW, Stevens TH, Chan SI (1980). Reactions of Nitric oxide with cytochrome c oxidase. Biochemistry, 19, 5275-5285.
PMID |
[12] | Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013). Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 20130122. DOI: 10.1098/rstb.2013.0122. |
[13] |
Casella S, Leporini C, Nuti M (1984). Nitrous oxide production by nitrogen-fixing, fast-growing rhizobia. Microbial Ecology, 10, 107-114.
DOI PMID |
[14] |
Castello PR, David PS, McClure T, Crook Z, Poyton RO (2006). Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metabolism, 3, 277-287.
DOI PMID |
[15] |
Chamizo-Ampudia A, Sanz-Luque E, Llamas A, Galvan A, Fernandez E (2017). Nitrate reductase regulates plant nitric oxide homeostasis. Trends in Plant Science, 22, 163-174.
DOI PMID |
[16] | Chang C, Janzen HH, Nakonechny EM, Cho CM (1998). Nitrous oxide emission through plants. Soil Science Society of America Journal, 62, 35-38. |
[17] | Chen GX (1990). Research on N2O emissions from plants. Journal of Applied Ecology, 4, 295-298. |
[陈冠雄 (1990). 植物释放N2O的研究. 应用生态学报, 4, 295-298.] | |
[18] | Chen X, Boeckx P, Shen S, van Cleemput O (1999). Emission of N2O from rye grass (Lolium perenne L.). Biology and Fertility of Soils, 28, 393-396. |
[19] | Chen X, Shen SM, Zhang L, Wu J, Wang XQ (1995). Preliminary research on the effect of nitrogen and phosphorus supply on N2O emission by crops. Journal of Applied Ecology, 6, 104-105. |
[陈欣, 沈善敏, 张璐, 吴杰, 王学强 (1995). N、P供给对作物排放N2O的影响研究初报. 应用生态学报, 6, 104-105.] | |
[20] | Cho CM, Sakdinan L, Chang C (2010). Denitrification intensity and capacity of three irrigated alberta soils. Soil Science Society of America Journal, 43, 945-950. |
[21] | Sparacino-Watkins CE, Tejero J, Sun B, Gauthier MC, Thomas J, Ragireddy V, Merchant BA, Wang J, Azarov I, Basu P, Gladwin MT (2014). Nitrite reductase and nitric-oxide synthase activity of the mitochondrial molybdopterin enzymes mARC1 and mARC2. The Journal of Biological Chemistry, 289, 10345-10358. |
[22] |
Cuhel J, Simek M, Laughlin RJ, Bru D, Chèneby D, Watson CJ, Philippot L (2010). Insights into the effect of soil pH on N(2)O and N(2) emissions and denitrifier community size and activity. Applied and Environmental Microbiology, 76, 1870-1878.
DOI PMID |
[23] | Dai Z, Yu M, Chen H, Zhao H, Huang Y, Su W, Xia F, Chang SX, Brookes PC, Dahlgren RA, Xu JM (2020). Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Global Change Biology, 26, 5267-5276. |
[24] | Davidson EA, Keller M, Erickson HE, Verchot LV, Veldkamp E (2000). Testing a conceptual model of soil emissions of nitrous and nitric oxides: using two functions based on soil nitrogen availability and soil water content, the hole-in-the-pipe model characterizes a large fraction of the observed variation of nitric oxide and nitrous oxide emissions from soils. Bioscience, 50, 667-680. |
[25] | Ding L (2009). Preliminary Study of Processes of Nitrous Oxide Emission from Soil & Plant in the Northeast Farmland. Master degree dissertation, Jilin Agricultural University, Changchun. |
[丁雷 (2009). 东北农田土壤和植物N2O排放过程初探. 硕士学位论文, 吉林农业大学, 长春.] | |
[26] | Ding SL (2015). Heavy Metal Stress on the Influence of Robiniapseudoaeaeia-rhizobia Symbiosis System Rootexudate and Rhizosphere Soil Microbial Diversity. Master degree dissertation, North West Agriculture and Forestry University, Yangling, Shaanxi. |
[丁淑兰 (2015). 重金属胁迫对刺槐—根瘤菌共生体系的根系分泌物及土壤微生物多样性的影响. 硕士学位论文, 西北农林科技大学, 陕西杨凌.] | |
[27] | Dowdell RJ, Burford RCJR, Cannell RQ (1979). Oxygen concentrations in a clay soil after ploughing or direct drilling. Journal of Soil Science, 30, 239-245. |
[28] | Dowdell EB (2006). Alcohol use, smoking, and feeling unsafe: health risk behaviors of two urban seventh grade classes. Issues in Comprehensive Pediatric Nursing, 30, 239-245. |
[29] |
Du R, Peng YZ, Cao SB, Wang SY, Niu M (2016). Characteristic of nitrous oxide production in partial denitrification process with high nitrite accumulation. Bioresource Technology, 203, 341-347.
DOI PMID |
[30] | Frolking SE, Mosier AR, Ojima DS, Li C, Parton WJ, Potter CS, Priesack E, Stenger R, Haberbosch C, Dörsch P, Flessa H, Smith KA (1998). Comparison of N2O emissions from soils at three temperate agricultural sites: simulations of year-round measurements by four models. Nutrient Cycling in Agroecosystems, 52, 77-105. |
[31] | Gautam H, Sehar Z, Rehman MT, Hussain A, AlAjmi MF, Khan NA (2021). Nitric oxide enhances photosynthetic nitrogen and sulfur-use efficiency and activity of ascorbate-glutathione cycle to reduce high temperature stress-induced oxidative stress in rice (Oryza sativa L.) plants. Biomolecules, 11, 305. DOI: 10.3390/biom11020305. |
[32] | Giweta M, Dyck M, Malhi SS (2017). Effects of long-term fertilization history and current N and S fertilizer applications on nitrous oxide production from S-deficient soils in a laboratory incubation. Canadian Journal of Soil Science, 97, 0105. DOI: 10.1139/cjss-2016-0105. |
[33] |
Goshima N, Mukai T, Suemori M, Takahashi M, Caboche M, Morikawa H (1999). Emission of nitrous oxide (N2O) from transgenic tobacco expressing antisense NiR mRNA. The Plant Journal, 19, 75-80.
PMID |
[34] | Gu JF, Yang JC (2022). Nitrogen (N) transformation in paddy rice field: its effect on N uptake and relation to improved N management. Crop and Environment, 1, 7-14. |
[35] | Guo S, Zhou Y, Li Y, Gao Y, Shen Q (2008). Effects of different nitrogen forms and osmotic stress on water use efficiency of rice (Oryza sativa). Annals of Applied Biology, 153, 127-134. |
[36] |
Gupta KJ, Igamberdiev AU (2011). The anoxic plant mitochondrion as a nitrite: no reductase. Mitochondrion, 11, 537-543.
DOI PMID |
[37] | Gupta KJ, Stoimenova M, Kaiser WM (2005). In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. Journal of Experimental Botany, 56, 2601-2609. |
[38] | Hakata M, Takahashi M, Zumft W, Sakamoto A, Morikawa H (2003). Conversion of the nitrate nitrogen and nitrogen dioxide to nitrous oxides in plants. Acta Biotechnologica, 23, 249-257. |
[39] |
Harper JE (1981). Evolution of nitrogen oxide(s) during in vivo nitrate reductase assay of soybean leaves. Plant Physiology, 68, 1488-1493.
DOI PMID |
[40] |
He M, Xu QY, Xia Y, Yang LM, Fan YX, Yang YS (2023). Plant phosphorus acquisition mechanisms and their response to global climate changes. Chinese Journal of Plant Ecology, 47, 291-305.
DOI |
[何敏, 许秋月, 夏允, 杨柳明, 范跃新, 杨玉盛 (2023). 植物磷获取机制及其对全球变化的响应. 植物生态学报, 47, 291-305.]
DOI |
|
[41] | He ZH (2018). Effects of Potassium Fertilizer Application Rate and Base-topdressing Ratio on Flue-cured Tobacco Growth. Master degree dissertation, Yan’an University, Yan’an, Shaanxi. |
[贺治慧 (2018). 钾肥施用量和基追比对烤烟生长的影响. 硕士学位论文, 延安大学, 陕西延安.] | |
[42] | Hoff T, Truong HN, Caboche M (1994). The use of mutants and transgenic plants to study nitrate assimilation. Plant, Cell & Environment, 17, 489-506. |
[43] | Houghton JT, Meira Filho LG, Bruce J, Hoesung Lee, Callander BA, Haites E, Harris N, Maskell K (1995). Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC 1992 IS92 Emission Scenarios. Cambridge University Press, Cambridge, UK. |
[44] | Hu HW, Chen DL, He JZ (2015). Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiology Reviews, 39, 729-749. |
[45] | Hu L, Wu Y, Dawuda M, Liao W, Lv J, Li Y, Yu J, Xie J, Feng Z, Zhang G, Calderón-Urrea A (2021). Appropriate ammonium/nitrate mitigates low light stress in Brassica pekinensis by regulating the nitrogen metabolism and expression levels of key proteins. Journal of Plant Growth Regulation, 40, 574-593. |
[46] | Huang GH, Chen GX, Xu H, Wu J, Wang YJ, Yu KW (1992). Research on N2O release from sterile soybean plants. Acta Botanica Sinica, 34, 835-839. |
[黄国宏, 陈冠雄, 徐惠, 吴杰, 王玉杰, 于克伟 (1992). 无菌大豆植株释放N2O研究. 植物学报, 34, 835-839.] | |
[47] | Huang R (2019). Effects of Organic Substitution on Greenhouse Gas Emission and Nitrogen Transformation in Vegetable Garden Soil. PhD dissertation, Southwest University, Chongqing. |
[黄容 (2019). 有机替代对菜园土壤温室气体排放和氮转化的影响. 博士学位论文, 西南大学, 重庆.] | |
[48] | Hussain S, Khaliq A, Noor MA, Tanveer M, Hussain HA, Hussain S, Shah T, Mehmood T (2019). Metal toxicity and nitrogen metabolism in plants: an overview//Datta R, Meena RS, Pathan SI, Ceccherini MT. Carbon and Nitrogen Cycling in Soil. Springer, Singapore. 221-248. |
[49] |
Igamberdiev AU, Hill RD (2009). Plant mitochondrial function during anaerobiosis. Annals of Botany, 103, 259-268.
DOI PMID |
[50] | IPCC Intergovernmental Panel on Climate Change (2013). The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[51] | IPCC Intergovernmental Panel on Climate Change (2019). Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Cambridge University Press, Cambridge, UK. |
[52] | IPCC Intergovernmental Panel on Climate Change (2021). Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[53] | Itakura M, Uchida Y, Akiyama H, Hoshino YT, Shimomura Y, Morimoto S, Tago K, Wang Y, Hayakawa C, Uetake Y, Sánchez C, Eda SM, Hayatsu M, Minamisawa K (2013). Mitigation of nitrous oxide emissions from soils by Bradyrhizobium japonicum inoculation. Nature Climate Change, 3, 208-212. |
[54] | Jiang SY (2018). The Effect of Low Nitrogen Nutrition on Root Growth and Nitrogen Absorption and Utilization of Wheat Seedlings and Its Physiological Mechanisms. PhD dissertation, Nanjing Agricultural University, Nanjing. |
[姜苏育 (2018). 低氮营养对小麦幼苗根系生长与氮素吸收利用的影响及其生理机制. 博士学位论文, 南京农业大学, 南京.] | |
[55] | Kaur H, Kaur H, Kaur H, Srivastava S (2023). The beneficial roles of trace and ultratrace elements in plants. Plant Growth Regulation, 100, 219-236. |
[56] | Kawamura Y, Takahashi M, Arimura G, Isayama T, Irifune K, Goshima N, Morikawa H (1996). Determination of levels of NO3-, NO2- and NO4+ ions in leaves of various plants by capillary electrophoresis. Plant and Cell Physiology, 37, 878-880. |
[57] | Kim GW, Kim PJ, Khan MI, Lee SJ (2021). Effect of rice planting on nitrous oxide (N2O) emission under different levels of nitrogen fertilization. Agronomy, 11, 217. DOI: 10.3390/agronomy11020217. |
[58] |
Klepper LA (1987). Nitric oxide emissions from soybean leaves during in vivo nitrate reductase assays. Plant Physiology, 85, 96-99.
DOI PMID |
[59] |
Köberl M, Dita M, Martinuz A, Staver C, Berg G (2015). Agroforestry leads to shifts within the gammaproteobacterial microbiome of banana plants cultivated in Central America. Frontiers in Microbiology, 6, 91. DOI: 10.3389/fmicb.2015.00091.
PMID |
[60] | Kohl L, Koskinen M, Polvinen T, Tenhovirta S, Rissanen K, Patama M, Zanetti A, Pihlatie M (2021). An automated system for trace gas flux measurements from plant foliage and other plant compartments. Atmospheric Measurement Techniques, 14, 4445-4460. |
[61] |
Lenhart K, Behrendt T, Greiner S, Steinkamp J, Well R, Giesemann A, Keppler F (2019). Nitrous oxide effluxes from plants as a potentially important source to the atmosphere. New Phytologist, 221, 1398-1408.
DOI PMID |
[62] | Levy-Booth DJ, Prescott CE, Grayston SJ (2014). Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biology & Biochemistry, 75, 11-25. |
[63] | Li N, Chen GX (1993). Effects of N-deficiency supply on root growth in wheat seedlings and its physiological. Journal of Applied Ecology, 4, 295-298. |
[李楠, 陈冠雄 (1993). 控释肥和覆草旱种对晚稻田CH4和N2O排放的影响. 应用生态学报, 4, 295-298.] | |
[64] | Li YY, Chen GX, Xu H, Zhang Y, Zhang XD (2003). The contribution of maize and soybean to N2O emission from the soil-plant system during seedling stage. Environmental Science, 24(6), 38-42. |
[李玥莹, 陈冠雄, 徐慧, 张颖, 张旭东 (2003). 苗期玉米、大豆在土壤-植物系统N2O排放中的贡献. 环境科学, 24(6), 38-42.] | |
[65] | Liu H, Zheng X, Li Y, Yu J, Ding H, Sveen TR, Zhang Y (2022). Soil moisture determines nitrous oxide emission and uptake. Science of the Total Environment, 822, 153566. DOI: 10.1016/j.scitotenv.2022.153566. |
[66] |
Lundberg JO, Weitzberg E, Gladwin MT (2008). The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nature Reviews Drug Discovery, 7, 156-167.
DOI PMID |
[67] | Malvi UR (2011). Interaction of micronutrients with major nutrients with special reference to potassium. Karnataka Journal of Agricultural Sciences, 24, 106-109. |
[68] | Mosier AR, Mohanty SK, Bhadrachalam A, Chakravorti SP (1990). Evolution of dinitrogen and nitrous oxide from the soil to the atmosphere through rice plants. Biology and Fertility of Soils, 9, 61-67. |
[69] |
Mu XH, Chen YL (2021). The physiological response of photosynthesis to nitrogen deficiency. Plant Physiology and Biochemistry, 158, 76-82.
DOI PMID |
[70] |
Okubo T, Ikeda S, Sasaki K, Ohshima K, Hattori M, Sato T, Minamisawa K (2014). Phylogeny and functions of bacterial communities associated with field-grown rice shoots. Microbes and Environments, 29, 329-332.
PMID |
[71] | Pacheco PJ, Bedmar EJ, Mesa S, Tortosa G, Delgado MJ (2023). Ensifer meliloti denitrification is involved in infection effectiveness and N2O emissions from alfalfa root nodules. Plant and Soil, 486, 519-534. |
[72] | Pang YX (2017). Research on the Mechanism of N2O Emission from Land Plant Leaves. Master degree dissertation, Fujian Agriculture and Forestry University, Fuzhou. |
[庞亚星 (2017). 陆地植物叶片排放N2O的机理研究. 硕士学位论文, 福建农林大学, 福州.] | |
[73] | Pate JS (1973). Uptake, assimilation and transport of nitrogen compounds by plants. Soil Biology & Biochemistry, 5, 109-119. |
[74] | Paul EA, Clark FE (1989). Soil Microbiology and Biochemistry. Academic Press, Pittsburgh, USA. 147-163. |
[75] | Poh LS, Jiang X, Zhang ZB, Liu Y, Ng WJ, Zhou Y (2015). N2O accumulation from denitrification under different temperatures. Applied Microbiology and Biotechnology, 99, 9215-9226. |
[76] | Qin SP, Pang YX, Hu HX, Liu T, Yuan D, Clough T, Wrage-Mönnig N, Luo JF, Zhou SG, Ma L, Hu CS, Oenema O (2024). Foliar N2O emissions constitute a significant source to atmosphere. Global Change Biology, 30, e17181. DOI: 10.1111/gcb.17181. |
[77] |
Ravishankara AR, Daniel JS, Portmann RW (2009). Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science, 326, 123-125.
DOI PMID |
[78] | Rice CW, Rogers KL (1993). Denitrification in subsurface environments: potential source for atmospheric nitrous oxide//Harper LA, Mosier AR, Duxbury JM, Rolston chair DE. Agricultural Ecosystem Effects on Trace Gases and Global Climate Change. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, USA. 121-132. |
[79] |
Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002). Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. Journal of Experimental Botany, 53, 103-110.
PMID |
[80] | Rolston DE, Duxbury JM, Harper LA, Mosier AR, Rogers KL (1993). Denitrification in subsurface environments: potential source for atmospheric nitrous oxide//Harper LA, Mosier AR, Duxbury JM, Rolston DE. Agricultural Ecosystem Effects on Trace Gases and Global Climate Change. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, USA. |
[81] | Rückauf U, Augustin J, Russow R, Merbach W (2004). Nitrate removal from drained and reflooded fen soils affected by soil N transformation processes and plant uptake. Soil Biology & Biochemistry, 36, 77-90. |
[82] |
Sanchez-Cruz P, Alegría AE (2009). Quinone-enhanced reduction of nitric oxide by xanthine/xanthine oxidase. Chemical Research in Toxicology, 22, 818-823.
DOI PMID |
[83] |
Saraste M, Castresana J (1994). Cytochrome oxidase evolved by tinkering with denitrification enzymes. FEBS Letters, 341, 1-4.
PMID |
[84] | Saunois M, Jackson RB, Bousquet P, Poulter B, Canadell JG (2016). The growing role of methane in anthropogenic climate change. Environmental Research Letters, 11, 120207. DOI: 10.1088/1748-9326/11/12/120207. |
[85] |
Shi YF, Ke XS, Yang XX, Liu YH, Hou X (2022). Plants response to light stress. Journal of Genetics and Genomics, 49, 735-747.
DOI PMID |
[86] |
Signore A, Bell L, Santamaria P, Wagstaff C, van Labeke MC (2020). Red light is effective in reducing nitrate concentration in rocket by increasing nitrate reductase activity, and contributes to increased total glucosinolates content. Frontiers in Plant Science, 11, 604. DOI: 10.3389/fpls.2020.00604.
PMID |
[87] |
Smart DR, Bloom AJ (2001). Wheat leaves emit nitrous oxide during nitrate assimilation. Proceedings of the National Academy of Sciences of the United States of America, 98, 7875-7878.
PMID |
[88] | Song T, Zhang XL, Li J, Wu XY, Feng HX, Dong WY (2021). A review of research progress of heterotrophic nitrification and aerobic denitrification microorganisms (HNADMs). Science of the Total Environment, 801, 149319. DOI: 10.1016/j.scitotenv.2021.149319. |
[89] | Stange CF, Spott O, Arriaga H, Menéndez S, Estavillo JM, Merino P (2013). Use of the inverse abundance approach to identify the sources of NO and N2O release from Spanish forest soils under oxic and hypoxic conditions. Soil Biology & Biochemistry, 57, 451-458. |
[90] |
Stoimenova M, Igamberdiev AU, Gupta KJ, Hill RD (2007). Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. Planta, 226, 465-474.
DOI PMID |
[91] | Sun H (2018). Study on the Emission of N2O from Plants Under the Co-denitrification of Endophytes and Plants. PhD dissertation, University of Chinese Academy of Sciences, Beijing. |
[孙浩 (2018). 内生菌-植物共反硝化作用下植物源N2O的排放研究. 博士学位论文, 中国科学院大学, 北京.] | |
[92] | Sun H, Li YT, Xu H (2018). Is endophyte-plant co-denitrification a source of nitrous oxides emission? —An experimental investigation with soybean. Agronomy, 8, 108. DOI: 10.3390/agronomy8070108. |
[93] | Sun HY, Xin QW, Lin XS, Luo HL, Lin H, Yan SJ, Liu WL, Lan SR (2019). Effects of plant species and diversity on methane emissions and functional gene abundances in constructed wetlands. Acta Ecologica Sinica, 39, 8565-8574. |
[孙红英, 辛全伟, 林兴生, 罗海凌, 林辉, 严少娟, 刘文莉, 兰思仁 (2019). 人工湿地植物种类及多样性对甲烷释放及功能基因丰度的影响. 生态学报, 39, 8565-8574.] | |
[94] | Sun YJ, Wu H, Wang YN (2011). The influence factors on N2O emissions from nirification and denitrification reaction. Ecology and Environmental Sciences, 20, 384-388. |
[孙英杰, 吴昊, 王亚楠 (2011). 硝化反硝化过程中N2O释放影响因素. 生态环境学报, 20, 384-388.]
DOI |
|
[95] | Syakila A, Kroeze C (2011). The global nitrous oxide budget revisited. Greenhouse Gas Measurement and Management, 1, 17-26. |
[96] | Tang W, Guo HP, Baskin CC, Xiong WD, Yang C, Li ZY, Song H, Wang TR, Yin JN, Wu XL, Miao FH, Zhong SZ, Tao QB, Zhao YR, Sun J (2022). Effect of light intensity on morphology, photosynthesis and carbon metabolism of alfalfa (Medicago sativa) seedlings. Plants, 11, 1688. DOI: 10.3390/plants11131688. |
[97] | Thörn M, Sörensson F (1996). Variation of nitrous oxide formation in the denitrification basin in a wastewater treatment plant with nitrogen removal. Water Research, 30, 1543-1547. |
[98] | Tian H, Yang J, Lu C, Xu R, Canadell JG, Jackson RB, Arneth A, Chang J, Chen G, Ciais P, Gerber S, Ito A, Huang Y, Joos F, Lienert S, et al. (2018). The global N2O model intercomparison project. Bulletin of the American Meteorological Society, 99, 1231-1251. |
[99] |
Timilsina A, Dong W, Luo J, Lindsey S, Wang Y, Hu C (2020). Nitrogen isotopic signatures and fluxes of N2O in response to land-use change on naturally occurring saline-alkaline soil. Scientific Reports, 10, 21253. DOI: 10.1039/s41598-020-78149-w.
PMID |
[100] | Timilsina A, Oenema O, Luo J, Wang Y, Dong W, Pandey B, Bizimana F, Zhang Q, Zhang C, Yadav RKP, Li X, Liu X, Liu B, Hu C (2022). Plants are a natural source of nitrous oxide even in field conditions as explained by 15N site preference. Science of the Total Environment, 805, 150262. DOI: 10.1016/j.scitotenv.2021.150262. |
[101] |
Tischner R, Planchet E, Kaiser WM (2004). Mitochondrial electron transport as a source for nitric oxide in the unicellular green alga Chlorella sorokiniana. FEBS Letters, 576, 151-155.
DOI PMID |
[102] | Turner NC (1986). Crop water deficits: a decade of progress. Advances in Agronomy, 39, 1-51. |
[103] | Ussiri D, Lal R (2012). Global sources of nitrous oxide//Ussiri D, Lal R. Soil Emission of Nitrous Oxide and Its Mitigation. Springer, Dordrecht, The Netherlands. 131-175. |
[104] | Wang SJ, Duan SL, George TS, Feng G, Zhang L (2024). Adding plant metabolites improve plant phosphorus uptake by altering the rhizosphere bacterial community structure. Plant and Soil, 497, 503-522. |
[105] |
Wang WF, Zhai YY, Cao LX, Tan HM, Zhang RD (2017). Improvement of rice seedling growth and nitrogen use efficiency by seed inoculation with endophytic denitrifiers. Environmental Science and Pollution Research International, 24, 14477-14483.
DOI PMID |
[106] | Wang S, Duan S, George TS, Zhang L (2023). Adding plant metabolites improve plant phosphorus uptake by altering the rhizosphere bacterial community structure. Plant and Soil, 497, 503-522. |
[107] | Wen Y, Corre MD, Rachow C, Chen L, Veldkamp E (2017). Nitrous oxide emissions from stems of alder, beech and spruce in a temperate forest. Plant and Soil, 420, 423-434. |
[108] | Wrage N, Velthof GL, van Beusichem ML, Oenema O (2001). Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology & Biochemistry, 33, 1723-1732. |
[109] | Yan X, Shi S, Du L, Xing G (2000). Pathways of N2O emission from rice paddy soil. Soil Biology & Biochemistry, 32, 437-440. |
[110] | Yang SH, Chen GX, Lin JH, Wu J, Ma YQ (1995). N2O emission from woody plants and its relation to their physiological activities. Chinese Journal of Applied Ecology, 6, 337-340. |
[杨思河, 陈冠雄, 林继惠, 吴杰, 马越强 (1995). 几种木本植物的N2O释放与某些生理活动的关系. 应用生态学报, 6, 337-340.] | |
[111] | Yang Y, Chen GX, Li YY, Cui ZH, Zhang LJ (2005). N2O emission from soybean in relation to light density and photosynthesis. Journal of Shenyang Agricultural University, 36(3), 282-285. |
[杨宇, 陈冠雄, 李玥莹, 崔震海, 张立军 (2005). 大豆N2O释放与光照度和光合作用的关系. 沈阳农业大学学报, 36(3), 282-285.] | |
[112] |
Yao H, Campbell CD, Chapman SJ, Freitag TE, Nicol GW, Singh BK (2013). Multi-factorial drivers of ammonia oxidizer communities: evidence from a national soil survey. Environmental Microbiology, 15, 2545-2556.
DOI PMID |
[113] | Yu KW, Huang B, Chen GX, Wu J (1997). Field measurement of N2O flux from soybean plant and effect of light on it. Chinese Journal of Applied Ecology, 8, 171-176. |
[于克伟, 黄斌, 陈冠雄, 吴杰 (1997). 田间大豆植株N2O通量的测定及光照的影响. 应用生态学报, 8, 171-176.] | |
[114] | Yu KW, Wang ZP, Chen GX (1997). Nitrous oxide and methane transport through rice plants. Biology and Fertility of Soils, 24, 341-343. |
[115] | Zhai YJ, Li YH, Chen YH (2013). Major progress of global and China regional climate change projection. Journal of Arid Meteorology, 31, 803-813. |
[翟颖佳, 李耀辉, 陈玉华 (2013). 全球及中国区域气候变化预估研究主要进展简述. 干旱气象, 31, 803-813.]
DOI |
|
[116] | Zhang C, Ju X, Zhang J, Rees RM, Müller C (2023). Soil pH and long-term fertilization affect gross N transformation and N2O production pathways in Chinese and UK croplands. Biology and Fertility of Soils, 59, 527-539. |
[117] | Zhang J, Müller C, Cai Z (2015). Heterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soils. Soil Biology & Biochemistry, 84, 199-209. |
[118] | Zhang LJ, Yang Y, Ruan YY, Fan JJ, Chen GX (2006). A new model of light regulation for N2O emission from plants. Journal of Shenyang Agricultural University, 37(2), 131-136. |
[张立军, 杨宇, 阮燕晔, 樊金娟, 陈冠雄 (2006). 一种新的植物N2O释放光调节模式. 沈阳农业大学学报, 37(2), 131-136.] | |
[119] | Zhang M, Huang SB, Xiao XN (2012). Effect of C/N ratio and pH on nitrous oxide production of themophic aerobic denitrifier. Chinese Journal of Environmental Engineering, 61, 275-279. |
[张苗, 黄少斌, 肖先念 (2012). C/N和pH值对高温好氧反硝化菌产N2O的影响研究. 环境工程学报, 6, 275-279.] | |
[120] | Zhao D, Liu XM (2018). Changes in organic nitrogen components during the decomposition process of sheep manure and cow manure in typical grasslands of Inner Mongolia. Journal of Inner Mongolia University (Natural Science Edition), 49(2), 174-181. |
[赵东, 刘新民 (2018). 内蒙古典型草原羊粪和牛粪分解过程中有机氮组分的变化. 内蒙古大学学报(自然科学版), 49(2), 174-181.] | |
[121] |
Zhao X, Sampath V, Caughey WS (1995). Cytochrome c oxidase catalysis of the reduction of nitric oxide to nitrous oxide. Biochemical and Biophysical Research Communications, 212, 1054-1060.
PMID |
[122] | Zhu CF, Luo HD, Luo LC, Wang KY, Liao Y, Zhang S, Huang SS, Guo XM, Zhang L (2022). Nitrogen and biochar addition affected plant traits and nitrous oxide emission from Cinnamomum camphora. Frontiers in Plant Science, 13, 905537. DOI: 10.3389/fpls.2022.905537. |
[123] | Zhu TX, Gao K, Zhang YL (2011). 钾肥对小黑麦拔节期生物量及品质的影响. Effect of potassium fertilizer on biomass and quality at jointing stage of Triticale. Crops, (6), 57-59. |
[朱铁霞, 高凯, 张永亮 (2011). 钾肥对小黑麦拔节期生物量及品质的影响. 作物杂志, (6), 57-59.] | |
[124] | Zou JW, Huang Y, Sun WJ, Zheng XH (2005). Contribution of plants to N2O emissions in soil-winter wheat ecosystem: pot and field experiments. Plant and Soil, 269, 205-211. |
[1] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[2] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[3] | 魏杰, 陈昌华, 王晶苑, 温学发. 箱式通量观测技术和方法的理论假设及其应用进展[J]. 植物生态学报, 2020, 44(4): 318-329. |
[4] | 赵佳玉, 肖薇, 张弥, 王晶苑, 温学发, 李旭辉. 通量梯度法在温室气体及同位素通量观测研究中的应用与展望[J]. 植物生态学报, 2020, 44(4): 305-317. |
[5] | 王明明,刘新平,何玉惠,张铜会,魏静,车力木格,孙姗姗. 科尔沁沙地封育恢复过程中植物群落特征变化及影响因素[J]. 植物生态学报, 2019, 43(8): 672-684. |
[6] | 刘程竹, 贾娟, 戴国华, 马田, 冯晓娟. 中性糖在土壤中的来源与分布特征[J]. 植物生态学报, 2019, 43(4): 284-295. |
[7] | 皮春燕, 刘鑫, 王喆, 包维楷. 苔藓-蓝藻共生体关系与固氮能力研究进展[J]. 植物生态学报, 2018, 42(4): 407-418. |
[8] | 李茜, 王芳, 曹扬, 彭守璋, 陈云明. 陕西省森林土壤固碳特征及其影响因素[J]. 植物生态学报, 2017, 41(9): 953-963. |
[9] | 杨丽丽, 龚吉蕊, 刘敏, 杨波, 张子荷, 罗亲普, 翟占伟, 潘琰. 氮沉降对草地凋落物分解的影响研究进展[J]. 植物生态学报, 2017, 41(8): 894-913. |
[10] | 郭建荣, 万贤崇. 杨树根压昼夜周期性及其影响因子[J]. 植物生态学报, 2017, 41(3): 369-377. |
[11] | 窦渤凯, 王义东, 薛冬梅, 王中良. 挺水和湿生草本植物传输甲烷的过程与机制研究进展[J]. 植物生态学报, 2017, 41(11): 1208-1218. |
[12] | 徐冰鑫, 胡宜刚, 张志山, 陈永乐, 张鹏, 李刚. 模拟增温对荒漠生物土壤结皮-土壤系统CO2、CH4和N2O通量的影响[J]. 植物生态学报, 2014, 38(8): 809-820. |
[13] | 刘伟, 王继明, 王智平. 内蒙古典型草原植物功能型对土壤甲烷吸收的影响[J]. 植物生态学报, 2011, 35(3): 275-283. |
[14] | 李海防, 夏汉平, 傅声雷, 张杏锋. 剔除林下灌草和添加翅荚决明对尾叶桉林土壤温室气体排放的影响[J]. 植物生态学报, 2009, 33(6): 1015-1022. |
[15] | 牟长城, 石兰英, 孙晓新. 小兴安岭典型草丛沼泽湿地CO2、CH4和N2O的排放动态及其影响因素[J]. 植物生态学报, 2009, 33(3): 617-623. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19