植物生态学报 ›› 2025, Vol. 49 ›› Issue (4): 526-539.DOI: 10.17521/cjpe.2024.0253 cstr: 32100.14.cjpe.2024.0253
李琳1, 黄佳芳1,3,*(), 丁中浩1, 郭萍萍3, 蔡芫镔2, 李诗华4, 李云琴2, 罗敏2,*(
)
收稿日期:
2024-07-31
接受日期:
2025-01-03
出版日期:
2025-04-20
发布日期:
2025-04-18
通讯作者:
* (Huang JF, wahugeo@fjnu.edu.cn;Luo M, luomin@fzu.edu.cn)基金资助:
LI Lin1, HUANG Jia-Fang1,3,*(), DING Zhong-Hao1, GUO Ping-Ping3, CAI Yuan-Bin2, LI Shi-Hua4, LI Yun-Qin2, LUO Min2,*(
)
Received:
2024-07-31
Accepted:
2025-01-03
Online:
2025-04-20
Published:
2025-04-18
Contact:
* (Huang JF, wahugeo@fjnu.edu.cn;Luo M, luomin@fzu.edu.cn)
Supported by:
摘要:
海平面上升引起的淹水高度增加将改变潮汐湿地的碳循环过程。然而, 目前的研究主要集中在淹水高度增加对土壤总碳库的影响上, 对于其如何影响碳收支的平衡尚未厘清。基于此, 该研究在闽江河口潮汐湿地搭建“沼泽管”实验平台, 并设置CK (对照)、CK + 20 cm、CK + 40 cm 3种淹水处理, 模拟当前、未来50年和100年的海平面上升情景。通过测定淹水高度增加对短叶茳芏(Cyperus malaccensis)沼泽湿地净生态系统CO2交换量(NEE)、总初级生产力(GPP)、生态系统呼吸(ER)、植物生物量、植物光合特性指标和土壤理化指标的影响, 从而明晰海平面上升对潮汐湿地碳收支平衡的影响。研究结果表明: 淹水高度增加导致短叶茳芏地上生物量减少, 地下生物量增加。与CK相比, CK + 20 cm和CK + 40 cm处理中, GPP分别降低27%和32%, ER分别增加20%和58%。GPP的减少与淹水高度增加后地上生物量的减少和植物光合特性指标(净光合速率、气孔导度、胞间CO2浓度)的下降有关; 而ER的增加与淹水高度增加后土壤氧化还原电位和可溶性有机碳含量的增加相关。在CK、CK + 20 cm、CK + 40 cm 3种淹水处理下, NEE分别为-539.8、-102.7和185.6 g C·m-2·a-1。上述结果表明, 海平面上升情景下短叶茳芏沼泽湿地碳收支平衡被破坏。淹水高度增加20 cm, NEE增加, 表明短叶茳芏沼泽湿地碳吸收能力减弱; 淹水高度增加40 cm, NEE由负值转变为正值, 表明短叶茳芏沼泽湿地生态系统由碳吸收转变为碳排放。该研究为预测和应对未来海平面上升对潮汐湿地碳循环的影响提供了科学依据。
李琳, 黄佳芳, 丁中浩, 郭萍萍, 蔡芫镔, 李诗华, 李云琴, 罗敏. 淹水高度增加对短叶茳芏潮汐湿地净生态系统CO2交换量的影响. 植物生态学报, 2025, 49(4): 526-539. DOI: 10.17521/cjpe.2024.0253
LI Lin, HUANG Jia-Fang, DING Zhong-Hao, GUO Ping-Ping, CAI Yuan-Bin, LI Shi-Hua, LI Yun-Qin, LUO Min. Impact of increased inundation height on the net ecosystem CO2 exchange in a Cyperus malaccensis tidal marsh. Chinese Journal of Plant Ecology, 2025, 49(4): 526-539. DOI: 10.17521/cjpe.2024.0253
图1 闽江河口鳝鱼滩潮汐湿地碳通量研究位置图和沼泽管实验平台。A, 闽江河口位置图。B, 闽江河口鳝鱼滩潮汐湿地研究区(红色方框)位置图。C, “沼泽管”模拟实验示意图。CK, 对照。
Fig. 1 Location of study site for carbon flux research and a schematic diagram of marsh organ experimental platform in the Shanyutan tidal marsh of the Minjiang River Estuary. A, Diagram of the Minjiang River Estuary. B, Diagram of the study area (the red rectangle) in the Shanyutan tidal marsh of the Minjiang River Estuary. C, Schematic diagram of the “marsh organ” experiment. CK, control.
图2 闽江河口短叶茳芏沼泽湿地日平均气温和光合有效辐射(PAR)日均值和日最大值的月动态变化。
Fig. 2 Monthly dynamics of daily mean air temperature, daily mean and maximum photosynthetically active radiation (PAR) in the Cyperus malaccensis tidal marsh of the Minjiang River Estuary.
植物性状特征 Plant trait characteristic | 淹水处理 Inundation treatment | ||||
---|---|---|---|---|---|
CK | CK + 20 cm | CK + 40 cm | F | p | |
AGB (kg·m-2) | 5.0 ± 0.2a | 4.4 ± 0.6ab | 3.5 ± 0.6b | 5.495 | <0.05 |
BGB (kg·m-2) | 3.3 ± 0.5b | 4.4 ± 0.1ab | 5.1 ± 0.3a | 10.406 | <0.05 |
Pn (μmol·m-2·s-1)1) | 33.1 ± 2.3a | 28.9 ± 1.9ab | 26.0 ± 3.5b | 9.956 | <0.05 |
gs (mmol·m-2·s-1)1) | 241.3 ± 11.5a | 198.0 ± 10.8b | 167.7 ± 11.7c | 31.989 | <0.001 |
Ci (μmol·mol-1)1) | 309.0 ± 20.1a | 274.0 ± 9.5ab | 277.9 ± 28.7b | 11.627 | <0.01 |
表1 不同淹水处理对闽江河口短叶茳芏沼泽湿地植物性状特征的影响(平均值±标准差)
Table 1 Plant traits under three inundation treatments in the Cyperus malaccensis tidal marsh of the Minjiang River Estuary (mean ± SD)
植物性状特征 Plant trait characteristic | 淹水处理 Inundation treatment | ||||
---|---|---|---|---|---|
CK | CK + 20 cm | CK + 40 cm | F | p | |
AGB (kg·m-2) | 5.0 ± 0.2a | 4.4 ± 0.6ab | 3.5 ± 0.6b | 5.495 | <0.05 |
BGB (kg·m-2) | 3.3 ± 0.5b | 4.4 ± 0.1ab | 5.1 ± 0.3a | 10.406 | <0.05 |
Pn (μmol·m-2·s-1)1) | 33.1 ± 2.3a | 28.9 ± 1.9ab | 26.0 ± 3.5b | 9.956 | <0.05 |
gs (mmol·m-2·s-1)1) | 241.3 ± 11.5a | 198.0 ± 10.8b | 167.7 ± 11.7c | 31.989 | <0.001 |
Ci (μmol·mol-1)1) | 309.0 ± 20.1a | 274.0 ± 9.5ab | 277.9 ± 28.7b | 11.627 | <0.01 |
土壤理化指标 Soil physicochemical index | 淹水处理 Inundation treatment | ||||
---|---|---|---|---|---|
CK | CK + 20 cm | CK + 40 cm | F | p | |
pH | 6.7 ± 0.2a | 6.8 ± 0.3a | 6.7 ± 1.2a | 2.398 | 0.172 |
SOC (mg·g-1) | 13.7 ± 1.3a | 11.1 ± 2.1ab | 9.4 ± 1.2b | 5.518 | <0.05 |
C:N | 11.6 ± 2.1b | 11.5 ± 0.5b | 14.9 ± 0.7a | 6.748 | <0.05 |
SO42- (mmol·L-1) | 5.2 ± 0.6a | 4.5 ± 1.0a | 4.7 ± 1.0a | 3.425 | 0.102 |
Cl- (mmol·L-1) | 82.5 ± 25.5a | 85.6 ± 6.5a | 83.0 ± 17.5a | 1.436 | 0.309 |
表2 不同淹水处理对闽江河口短叶茳芏沼泽湿地土壤理化指标的影响(平均值±标准差)
Table 2 Soil physicochemical indexes under three inundation treatments in the Cyperus malaccensis tidal marsh of the Minjiang River Estuary (mean ± SD)
土壤理化指标 Soil physicochemical index | 淹水处理 Inundation treatment | ||||
---|---|---|---|---|---|
CK | CK + 20 cm | CK + 40 cm | F | p | |
pH | 6.7 ± 0.2a | 6.8 ± 0.3a | 6.7 ± 1.2a | 2.398 | 0.172 |
SOC (mg·g-1) | 13.7 ± 1.3a | 11.1 ± 2.1ab | 9.4 ± 1.2b | 5.518 | <0.05 |
C:N | 11.6 ± 2.1b | 11.5 ± 0.5b | 14.9 ± 0.7a | 6.748 | <0.05 |
SO42- (mmol·L-1) | 5.2 ± 0.6a | 4.5 ± 1.0a | 4.7 ± 1.0a | 3.425 | 0.102 |
Cl- (mmol·L-1) | 82.5 ± 25.5a | 85.6 ± 6.5a | 83.0 ± 17.5a | 1.436 | 0.309 |
图3 3种淹水处理下闽江河口短叶茳芏沼泽湿地土壤溶解性有机碳(DOC)浓度和氧化还原电位(ORP)的月动态变化(平均值±标准差)。p < 0.05为显著差异, p < 0.01为高度显著差异, p < 0.001为极显著差异。CK, 对照。
Fig. 3 Monthly dynamics of soil dissolved organic carbon (DOC) concentrations and oxidation-reduction potential (ORP) in the Cyperus malaccensis tidal marsh of the Minjiang River Estuary under three inundation treatments (mean ± SD). p < 0.05 was significant difference, p < 0.01 was highly significant difference, and p < 0.001 was extremely significant difference. CK, control.
图4 3种淹水处理下闽江河口短叶茳芏沼泽湿地瞬时生态系统呼吸(ER)、总初级生产力(GPP)和净生态系统CO2交换量(NEE)的月变化(平均值±标准差)。p < 0.05为显著差异, p < 0.01为高度显著差异, p < 0.001为极显著差异。CK, 对照。
Fig. 4 Monthly dynamics of ecosystem respiration (ER), gross primary productivity (GPP) and net ecosystem CO2 exchange (NEE) in the Cyperus malaccensis tidal marsh of the Minjiang River Estuary under three inundation treatments (mean ± SD). p < 0.05 was significant difference, p < 0.01 was highly significant difference, and p < 0.001 was extremely significant difference. CK, control.
图5 3种淹水处理下闽江河口短叶茳芏潮汐湿地生态系统呼吸(ER)与土壤理化特征的相关性。p < 0.05为显著相关, p < 0.01为高度显著相关, p < 0.001为极显著相关。CK, 对照。
Fig. 5 Relationship between ecosystem respiration (ER) and soil physiochemical properties in the Cyperus malaccensis tidal marsh of the Minjiang River Estuary under three inundation treatments. DOC, dissolved organic carbon; ORP, oxidation-reduction potential. p < 0.05 was significant correlated, p < 0.01 was highly significant correlated, and p < 0.001 was extremely significant correlated. CK, control.
图6 3种淹水处理下闽江河口短叶茳芏沼泽湿地月尺度生态系统呼吸(ER)、总初级生产力(GPP)和净生态系统CO2交换量(NEE)的差异(平均值±标准差)。不同大写字母表示不同淹水处理间差异显著(p < 0.05为显著, p < 0.01为高度显著, p < 0.001为极显著)。CK, 对照。
Fig. 6 Mean monthly ecosystem respiration (ER), gross primary productivity (GPP) and net ecosystem CO2 exchange (NEE) in the Cyperus malaccensis tidal marsh of the Minjiang River Estuary under three inundation treatments (mean ± SD). Different uppercase letters represent significant differences under different inundation treatments (p < 0.05 was significant, p < 0.01 was highly significant, and p < 0.001 was extremely significant). CK, control.
图7 全球不同类型湿地净生态系统CO2交换量(NEE)、生态系统呼吸(ER)和总初级生产力(GPP)情况。
Fig. 7 Differences in net ecosystem CO2 exchange fluxes (NEE), ecosystem respiration (ER) and gross primary productivity (GPP) various wetlands globally.
图8 闽江河口短叶茳芏沼泽湿地生态系统碳收支过程对淹水高度增加的响应。AGB, 地上生物量; BGB, 地下生物量; Ci, 胞间CO2浓度; DOC, 溶解性有机碳浓度; ER, 生态系统呼吸; GPP, 总初级生产力; gs, 气孔导度; NEE, 净生态系统CO2交换量; ORP, 氧化还原电位; Pn, 净光合速率。
Fig. 8 Response of the carbon budget process of the Cyperus malaccensis tidal marsh of the Minjiang River Estuary ecosystem to enhanced inundation. AGB, aboveground biomass; BGB, belowground biomass; Ci, intercellular CO2 concentration; DOC, dissolved organic carbon concentration; ER, ecosystem respiration; GPP, gross primary productivity; gs, stomatal conductance; NEE, net ecosystem CO2 exchange; ORP, oxidation-reduction potential; Pn, net photosynthetic rate.
[1] | Armstrong W, Cousins D, Armstrong J, Turner DW, Beckett PM (2000). Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modelling study with Phragmites australis. Annals of Botany, 86, 687-703. |
[2] | Bai J, Luo M, Yang Y, Xiao SY, Zhai ZF, Huang JF (2021). Iron-bound carbon increases along a freshwater- oligohaline gradient in a subtropical tidal wetland. Soil Biology & Biochemistry, 154, 108128. DOI: 10.1016/j.soilbio.2020.108128. |
[3] | Bai XJ, Wang XF, Liu XH, Zhou XQ (2022). Dynamics and driving factors of carbon fluxes in wetland, cropland and grassland ecosystems in Heihe River Basin. Remote Sensing Technology and Application, 37, 94-107. |
[白雪洁, 王旭峰, 柳晓惠, 周旭强 (2022). 黑河流域湿地、农田、草地生态系统碳通量变化特征及驱动因子分析. 遥感技术与应用, 37, 94-107.]
DOI |
|
[4] | Bonneville MC, Strachan IB, Humphreys ER, Roulet NT (2008). Net ecosystem CO2 exchange in a temperate cattail marsh in relation to biophysical properties. Agricultural and Forest Meteorology, 148, 69-81. |
[5] | Duan X, Li Z, Li YH, Yuan HZ, Gao W, Chen XB, Ge TD, Wu JS, Zhu ZK (2023). Iron-organic carbon associations stimulate carbon accumulation in paddy soils by decreasing soil organic carbon priming. Soil Biology & Biochemistry, 179, 108972. DOI: 10.1016/j.soilbio.2023.108972. |
[6] | Eagle MJ, Kroeger KD, Spivak AC, Wang F, Tang J, Abdul-Aziz OI, Ishtiaq KS, O’Keefe Suttles J, Mann AG (2022). Soil carbon consequences of historic hydrologic impairment and recent restoration in coastal wetlands. Science of the Total Environment, 848, 157682. DOI: 10.1016/j.scitotenv.2022.157682. |
[7] | Forbrich I, Giblin AE (2015). Marsh-atmosphere CO2 exchange in a New England salt marsh. Journal of Geophysical Research: Biogeosciences, 120, 1825-1838. |
[8] | Han G, Chu X, Xing Q, Li D, Yu J, Luo Y, Wang G, Mao P, Rafique R (2015). Effects of episodic flooding on the net ecosystem CO2 exchange of a supratidal wetland in the Yellow River Delta. Journal of Geophysical Research: Biogeosciences, 120, 1506-1520. |
[9] | Han GX (2017). Effect of tidal action and drying-wetting cycles on carbon exchange in a salt marsh: progress and prospects. Acta Ecologica Sinica, 37, 8170-8178. |
[韩广轩 (2017). 潮汐作用和干湿交替对盐沼湿地碳交换的影响机制研究进展. 生态学报, 37, 8170-8178.] | |
[10] | Han GX, Li JY, Qu WD (2021). Effects of nitrogen input on carbon cycle and carbon budget in a coastal salt marsh. Chinese Journal of Plant Ecology, 45, 321-333. |
[韩广轩, 李隽永, 屈文笛 (2021). 氮输入对滨海盐沼湿地碳循环关键过程的影响及机制. 植物生态学报, 45, 321-333.]
DOI |
|
[11] | Hao YB, Cui XY, Wang YF, Mei XR, Kang XM, Wu N, Luo P, Zhu D (2011). Predominance of precipitation and temperature controls on ecosystem CO2 exchange in Zoige alpine wetlands of Southwest China. Wetlands, 31, 413-422. |
[12] | Haywood BJ, Hayes MP, White JR, Cook RL (2020). Potential fate of wetland soil carbon in a deltaic coastal wetland subjected to high relative sea level rise. Science of the Total Environment, 711, 135185. DOI: 10.1016/j.scitotenv.2019.135185. |
[13] |
Herbert ER, Schubauer-Berigan J, Craft CB (2018). Differential effects of chronic and acute simulated seawater intrusion on tidal freshwater marsh carbon cycling. Biogeochemistry, 138, 137-154.
DOI PMID |
[14] | Hu DH, Lan WJ, Luo M, Fan TN, Chen X, Tan J, Li SH, Guo PP, Huang JF (2023). Increase in iron-bound organic carbon content under simulated sea-level rise: a “marsh organ” field experiment. Soil Biology & Biochemistry, 187, 109217. DOI: 10.1016/j.soilbio.2023.109217. |
[15] | Huang Y, Chen ZH, Tian B, Zhou C, Wang JT, Ge ZM, Tang JW (2020). Tidal effects on ecosystem CO2 exchange in a Phragmites salt marsh of an intertidal shoal. Agricultural and Forest Meteorology, 292, 108108. DOI: 10.1016/j.agrformet.2020.108108. |
[16] | IPCC the Intergovernmental Panel on Climate Change (2022). Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[17] | James CN, Copeland RC, Lytle DA (2004). Relationships between oxidation-reduction potential, oxidant, and pH in drinking water. Environmental Science, 2004, 8-14. |
[18] | Jia WT, Ma MH, Chen JL, Wu SJ (2021). Plant morphological, physiological and anatomical adaption to flooding stress and the underlying molecular mechanisms. International Journal of Molecular Sciences, 22, 1088. DOI: 10.3390/ijms22031088. |
[19] | Jimenez KL, Starr G, Staudhammer CL, Schedlbauer JL, Loescher HW, Malone SL, Oberbauer SF (2012). Carbon dioxide exchange rates from short- and long-hydroperiod Everglades freshwater marsh. Journal of Geophysical Research: Biogeosciences, 117, G04009. DOI: 10.1029/2012JG002117. |
[20] | Kandel TP, Lærke PE, Elsgaard L (2018). Annual emissions of CO2, CH4 and N2O from a temperate peat bog: comparison of an undrained and four drained sites under permanent grass and arable crop rotations with cereals and potato. Agricultural and Forest Meteorology, 256, 470-481. |
[21] | Khan N, Seshadri B, Bolan N, Saint CP, Kirkham MB, Chowdhury S, Yamaguchi N, Lee DY, Li G, Kunhikrishnan A, Qi F, Karunanithi R, Qiu R, Zhu YG, Syu CH (2016). Root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants. Advances in Agronomy, 138, 1-96. |
[22] | Kirwan ML, Guntenspergen GR (2012). Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. Journal of Ecology, 100, 764-770. |
[23] | Kirwan ML, Guntenspergen GR (2015). Response of plant productivity to experimental flooding in a stable and a submerging marsh. Ecosystems, 18, 903-913. |
[24] | Kirwan ML, Megonigal JP (2013). Tidal wetland stability in the face of human impacts and sea-level rise. Nature, 504, 53-60. |
[25] | Knox SH, Windham-Myers L, Anderson F, Sturtevant C, Bergamaschi B (2018). Direct and indirect effects of tides on ecosystem-scale CO2 exchange in a brackish tidal marsh in northern California. Journal of Geophysical Research: Biogeosciences, 123, 787-806. |
[26] | Krauss KW, Holm Jr GO, Perez BC, McWhorter DE, Cormier N, Moss RF, Johnson DJ, Neubauer SC, Raynie RC (2016). Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance. Journal of Geophysical Research: Biogeosciences, 121, 1503-1521. |
[27] | Li HQ, Li YN, Zhang FW, Liu XQ, Wu QH, Mao SJ (2014). Carbon budget of alpine Potentilla fruticosa shrubland based on comprehensive techniques of static chamber and biomass harvesting. Acta Ecologica Sinica, 34, 925-932. |
[李红琴, 李英年, 张法伟, 刘晓琴, 吴启华, 毛绍娟 (2014). 基于静态箱式法和生物量评估海北金露梅灌丛草甸碳收支. 生态学报, 34, 925-932.] | |
[28] | Li SH, Ge ZM, Xie LN, Chen W, Yuan L, Wang DQ, Li XZ, Zhang LQ (2018). Ecophysiological response of native and exotic salt marsh vegetation to waterlogging and salinity: implications for the effects of sea-level rise. Scientific Reports, 8, 2441. DOI: 10.1038/s41598-017-18721-z. |
[29] | Li X, Dong J, Han GX, Zhang QQ, Xie BH, Li PG, Zhao ML, Chen KL, Song WM (2023). Response of soil CO2 and CH4 emissions to changes in moisture and salinity at a typical coastal salt marsh of Yellow River Delta. Chinese Journal of Plant Ecology, 47, 434-446. |
[李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民 (2023). 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应. 植物生态学报, 47, 434-446.]
DOI |
|
[30] | Li YL, Ge ZM, Xie LN, Li SH, Tan LS (2022). Effects of waterlogging and salinity increase on CO2 efflux in soil from coastal marshes. Applied Soil Ecology, 170, 104268. DOI: 10.1016/j.apsoil.2021.104268. |
[31] | Liao L, Yu F, Yi LT, Zhang MR, Xu Y (2023). Effects of different light environments on photosynthetic physiology of Dicranopteris dichotoma under successional stages in subtropical forests. Acta Ecologica Sinica, 43, 1853-1860. |
[廖靓, 俞飞, 伊力塔, 张明如, 许焱 (2023). 亚热带森林演替阶段下不同光环境对芒萁光合生理的影响. 生态学报, 43, 1853-1860.] | |
[32] | Luo M, Huang JF, Zhu WF, Tong C (2019). Impacts of increasing salinity and inundation on rates and pathways of organic carbon mineralization in tidal wetlands: a review. Hydrobiologia, 827, 31-49. |
[33] | Luo M, Liu YX, Huang JF, Xiao LL, Zhu WF, Duan X, Tong C (2018). Rhizosphere processes induce changes in dissimilatory iron reduction in a tidal marsh soil: a rhizobox study. Plant and Soil, 433, 83-100. |
[34] | Luo M, Zeng CS, Tong C, Huang JF, Chen K, Liu FQ (2016). Iron reduction along an inundation gradient in a tidal sedge (Cyperus malaccensis) marsh: the rates, pathways, and contributions to anaerobic organic matter mineralization. Estuaries and Coasts, 39, 1679-1693. |
[35] | Luo M, Zhai ZF, Ye RZ, Xing RL, Huang JF, Tong C (2020). Carbon mineralization in tidal freshwater marsh soils at the intersection of low-level saltwater intrusion and ferric iron loading. Catena, 193, 104644. DOI: 10.1016/j.catena.2020.104644. |
[36] | Ma WJ, Li YN, Zhang FW, Han L (2023). Interannual dynamics and driving mechanism of CO2 flux in meadow grassland on the north shore of Qinghai Lake. Acta Ecologica Sinica, 43, 1102-1112. |
[马文婧, 李英年, 张法伟, 韩琳 (2023). 青海湖北岸草甸草原CO2通量年际动态及其驱动机制. 生态学报, 43, 1102-1112.] | |
[37] | Marín-Muñiz JL, Hernández ME, Moreno-Casasola P (2015). Greenhouse gas emissions from coastal freshwater wetlands in Veracruz Mexico: effect of plant community and seasonal dynamics. Atmospheric Environment, 107, 107-117. |
[38] |
Maurel C, Nacry P (2020). Root architecture and hydraulics converge for acclimation to changing water availability. Nature Plants, 6, 744-749.
DOI PMID |
[39] | McLeod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011). A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9, 552-560. |
[40] | Megonigal JP, Neubauer SC (2019). Coastal Wetlands. 2nd ed. Elsevier, Amsterdam. 641-683. |
[41] | Morris JT (2007). Estimating net primary production of salt marsh macrophytes//Principles and Standards for Measuring Primary Production. Oxford University Press, Oxford. 106-119. |
[42] |
Mueller P, Jensen K, Megonigal JP (2016). Plants mediate soil organic matter decomposition in response to sea level rise. Global Change Biology, 22, 404-414.
DOI PMID |
[43] | Neubauer SC (2013). Ecosystem responses of a tidal freshwater marsh experiencing saltwater intrusion and altered hydrology. Estuaries and Coasts, 36, 491-507. |
[44] | Pan LH, Chen K, Liao X (2024). The complete chloroplast genome and phylogenetic analysis of Cyperus malaccensis Lam (Cyperaceae). Mitochondrial DNA. Part B, Resources, 9, 114-118. |
[45] | Rogers K, Kelleway JJ, Saintilan N, Patrick Megonigal J, Adams JB, Holmquist JR, Lu M, Schile-Beers L, Zawadzki A, Mazumder D, Woodroffe CD (2019). Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature, 567, 91-95. |
[46] | Schile LM, Callaway JC, Parker VT, Vasey MC (2011). Salinity and inundation influence productivity of the halophytic plant Sarcocornia pacifica. Wetlands, 31, 1165-1174. |
[47] | Seeberg-Elverfeldt J, Schlüter M, Feseker T, Kölling M (2005). Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnology and Oceanography: Methods, 3, 361-371. |
[48] | Setia R, Marschner P, Baldock J, Chittleborough D, Smith P, Smith J (2011). Salinity effects on carbon mineralization in soils of varying texture. Soil Biology & Biochemistry, 43, 1908-1916. |
[49] | Song HJ, Guo X, Yang JC, Liu LL, Li MY, Wang JF, Guo WH (2024). Phenotypic plasticity variations in Phragmites australis under different plant-plant interactions influenced by salinity. Journal of Plant Ecology, 17, rtae035. DOI: 10.1093/jpe/rtae035. |
[50] | Spivak AC, Sanderman J, Bowen JL, Canuel EA, Hopkinson CS (2019). Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems. Nature Geoscience, 12, 685-692. |
[51] | Sulman BN, Desai AR, Mladenoff DJ (2013). Modeling soil and biomass carbon responses to declining water table in a wetland-rich landscape. Ecosystems, 16, 491-507. |
[52] | Syed KH, Flanagan LB, Carlson PJ, Glenn AJ, van Gaalen KE (2006). Environmental control of net ecosystem CO2 exchange in a treed, moderately rich Fen in northern Alberta. Agricultural and Forest Meteorology, 140, 97-114. |
[53] | Tan FF, Luo M, Zhang CW, Chen X, Huang JF (2023). Plants moderate the effects of emission fluxes of CO2 and CH4 on increased flooding in wetland soils. China Environmental Science, 43, 424-435. |
[谭凤凤, 罗敏, 张昌威, 陈欣, 黄佳芳 (2023). 植物调节湿地CO2和CH4排放对淹水增强的响应. 中国环境科学, 43, 424-435.] | |
[54] |
Tully K, Gedan K, Epanchin-Niell R, Strong A, Bernhardt ES, BenDor T, Mitchell M, Kominoski J, Jordan TE, Neubauer SC, Weston NB (2019). The invisible flood: the chemistry, ecology, and social implications of coastal saltwater intrusion. BioScience, 69, 368-378.
DOI |
[55] | Urbanski S, Barford C, Wofsy S, Kucharik C, Pyle E, Budney J, McKain K, Fitzjarrald D, Czikowsky M, Munger JW (2007). Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest. Journal of Geophysical Research: Biogeosciences, 112, G02020. DOI: 10.1029/2006JG000293. |
[56] |
Voesenek LACJ, Colmer TD, Pierik R, Millenaar FF, Peeters AJM (2006). How plants cope with complete submergence. New Phytologist, 170, 213-226.
PMID |
[57] | Wang F, Lu X, Sanders CJ, Tang J (2019). Author Correction: Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nature Communications, 10, 5733. DOI: 10.1038/s41467-019-13800-3. |
[58] | Wang FM, Tang JW, Ye SY, Liu JH (2021). Blue carbon sink function of Chinese coastal wetlands and carbon neutrality strategy. Bulletin of Chinese Academy of Sciences, 36, 241-251. |
[王法明, 唐剑武, 叶思源, 刘纪化 (2021). 中国滨海湿地的蓝色碳汇功能及碳中和对策. 中国科学院院刊, 36, 241-251.] | |
[59] | Wang JQ, Liu B, Chang F, Ma ZJ, Fan JH, He XJ, You SX, Aerziguli A, Yang YK, Shen XY (2022). Plant functional traits and ecological stoichiometric characteristics under water-salt gradient in the lakeshore zone of Bosten Lake. Chinese Journal of Plant Ecology, 46, 961-970. |
[王军强, 刘彬, 常凤, 马紫荆, 樊佳辉, 何想菊, 尤思学, 阿尔孜古力·阿布都热西提, 杨滢可, 沈欣艳 (2022). 博斯腾湖湖滨带水盐梯度下植物功能性状及生态化学计量特征分析. 植物生态学报, 46, 961-970.]
DOI |
|
[60] | Wang WW, Han WP, Liu WW (2023). Short-term response of leaf functional traits of the invasive plant Spartina alterniflora to a tidal gradient in coastal wetlands. Journal of Plant Ecology, 47, 216-226. |
[王文伟, 韩伟鹏, 刘文文 (2023). 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应. 植物生态学报, 47, 216-226.]
DOI |
|
[61] | Wei SY, Han GX, Chu XJ, Song WM, He WJ, Xia JY, Wu HT (2020). Effect of tidal flooding on ecosystem CO2 and CH4 fluxes in a salt marsh in the Yellow River Delta. Estuarine, Coastal and Shelf Science, 232, 106512. DOI: 10.1016/j.ecss.2019.106512. |
[62] | Wilson BJ, Mortazavi B, Kiene RP (2015). Spatial and temporal variability in carbon dioxide and methane exchange at three coastal marshes along a salinity gradient in a northern Gulf of Mexico estuary. Biogeochemistry, 123, 329-347. |
[63] | Wilson BJ, Servais S, Charles SP, Davis SE, Gaiser EE, Kominoski JS, Richards JH, Troxler TG (2018). Declines in plant productivity drive carbon loss from brackish coastal wetland mesocosms exposed to saltwater intrusion. Estuaries and Coasts, 41, 2147-2158. |
[64] | Wolf AA, Drake BG, Erickson JE, Megonigal JP (2007). An oxygen-mediated positive feedback between elevated carbon dioxide and soil organic matter decomposition in a simulated anaerobic wetland. Global Change Biology, 13, 2036-2044. |
[65] | Wu LB, Gu S, Zhao L, Xu SX, Zhou HK, Feng C, Xu WX, Li YN, Zhao XQ, Tang YH (2010). Variation in net CO2 exchange, gross primary production and its affecting factors in the planted pasture ecosystem in Sanjiangyuan Region of the Qinghai-Tibetan Plateau of China. Chinese Journal of Plant Ecology, 34, 770-780. |
[吴力博, 古松, 赵亮, 徐世晓, 周华坤, 冯超, 徐维新, 李英年, 赵新全, 唐艳鸿 (2010). 三江源地区人工草地的生态系统CO2净交换、总初级生产力及其影响因子. 植物生态学报, 34, 770-780.]
DOI |
|
[66] | Xia JB, Ren JY, Zhao XM, Zhao FJ, Yang HJ, Liu JH (2018). Threshold effect of the groundwater depth on the photosynthetic efficiency of Tamarix chinensis in the Yellow River Delta. Plant and Soil, 433, 157-171. |
[67] | Xing QH, Shangguan KX, Liao GX, Liu CA, Lei W, Zhang Y (2021). Net ecosystem CO2 exchange and its environmental regulation in the Liao River estuarine reed wetland. Marine Environmental Science, 40, 228-234. |
[邢庆会, 上官魁星, 廖国祥, 刘长安, 雷威, 张悦 (2021). 辽河口芦苇湿地净生态系统CO2交换及其环境调控. 海洋环境科学, 40, 228-234.] | |
[68] | Zhang HB, Luo YM, Liu XH, Fu CC (2015). Current researches and prospects on the coastal blue carbon. Scientia Sinica (Terrae), 45, 1641-1648. |
[章海波, 骆永明, 刘兴华, 付传城 (2015). 海岸带蓝碳研究及其展望. 中国科学: 地球科学, 45, 1641-1648.] | |
[69] | Zhao J, Malone SL, Oberbauer SF, Olivas PC, Schedlbauer JL, Staudhammer CL, Starr G (2019). Intensified inundation shifts a freshwater wetland from a CO2 sink to a source. Global Change Biology, 25, 3319-3333. |
[1] | 王贝贝, 吴苏, 王苗苗, 胡锦涛. 日光诱导叶绿素荧光不同组分在作物总初级生产力估算中的贡献比例: 多时间尺度分析[J]. 植物生态学报, 2025, 49(4): 562-572. |
[2] | 王音, 同小娟, 张劲松, 李俊, 孟平, 刘沛荣, 张静茹. 干旱对栓皮栎人工林碳水通量及其耦合的影响[J]. 植物生态学报, 2024, 48(9): 1157-1171. |
[3] | 张梦迪, 向官海, 文艺瑶, 王欢, 呼格吉勒, 白永飞, 王忠武, 郑淑霞. 灌丛斑块和草本斑块碳交换对季节性降水增加的响应——基于地上净初级生产力和叶面积指数标准化的比较分析[J]. 植物生态学报, 2024, 48(8): 1035-1049. |
[4] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[5] | 刘沛荣, 同小娟, 孟平, 张劲松, 张静茹, 于裴洋, 周宇. 散射辐射对中国东部典型人工林总初级生产力的影响[J]. 植物生态学报, 2022, 46(8): 904-918. |
[6] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
[7] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[8] | 丁键浠, 周蕾, 王永琳, 庄杰, 陈集景, 周稳, 赵宁, 宋珺, 迟永刚. 叶绿素荧光主动与被动联合观测应用前景[J]. 植物生态学报, 2021, 45(2): 105-118. |
[9] | 冯朝阳, 王鹤松, 孙建新. 中国北方植被水分利用效率的时间变化特征及其影响因子[J]. 植物生态学报, 2018, 42(4): 453-465. |
[10] | 张素彦, 蒋红志, 王扬, 张艳杰, 鲁顺保, 白永飞. 凋落物去除和添加处理对典型草原生态系统碳通量的影响[J]. 植物生态学报, 2018, 42(3): 349-360. |
[11] | 靳宇曦, 刘芳, 张军, 韩梦琪, 王忠武, 屈志强, 韩国栋. 不同载畜率处理下短花针茅荒漠草原生态系统净碳交换特征[J]. 植物生态学报, 2018, 42(3): 361-371. |
[12] | 刘晓, 戚超, 闫艺兰, 袁国富. 不同生态系统水分利用效率指标在黄土高原半干旱草地应用的适宜性评价[J]. 植物生态学报, 2017, 41(5): 497-505. |
[13] | 王克清, 王鹤松, 孙建新. 遥感GPP模型在中国地区多站点的应用与比较[J]. 植物生态学报, 2017, 41(3): 337-347. |
[14] | 闫敏, 李增元, 田昕, 陈尔学, 谷成燕. 黑河上游植被总初级生产力遥感估算及其对气候变化的响应[J]. 植物生态学报, 2016, 40(1): 1-12. |
[15] | 初小静, 韩广轩, 邢庆会, 于君宝, 吴立新, 刘海防, 王光美, 毛培利. 阴天和晴天对黄河三角洲芦苇湿地净生态系统CO2交换的影响[J]. 植物生态学报, 2015, 39(7): 661-673. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19