植物生态学报 ›› 2025, Vol. 49 ›› Issue (4): 610-623.DOI: 10.17521/cjpe.2024.0194 cstr: 32100.14.cjpe.2024.0194
李欣怡1,2(), 张丽芳2,3, 吴友贵4, 郭静5, 兰荣光4, 吕洪飞6, 于明坚1,2,*(
)(
)
收稿日期:
2024-06-12
接受日期:
2024-11-12
出版日期:
2025-04-20
发布日期:
2025-04-18
通讯作者:
* (fishmj@zju.edu.cn)基金资助:
LI Xin-Yi1,2(), ZHANG Li-Fang2,3, WU You-Gui4, GUO Jing5, LAN Rong-Guang4, LÜ Hong-Fei6, YU Ming-Jian1,2,*(
)(
)
Received:
2024-06-12
Accepted:
2024-11-12
Online:
2025-04-20
Published:
2025-04-18
Contact:
* (fishmj@zju.edu.cn)
Supported by:
摘要:
百山祖冷杉(Abies beshanzuensis)是国家一级重点保护野生植物, 目前仅存3株母树, 分布于浙江省庆元县百山祖西南坡海拔1 750 m左右的常绿落叶阔叶混交林中。为深入了解不同海拔高度下环境因子变化对百山祖冷杉幼苗生长的影响, 在庆元县山区设置11个不同海拔高度(500-1 500 m)实验点, 对移植的百山祖冷杉幼苗进行生长监测, 并结合土壤和空气温湿度、土壤微生物和土壤理化性质等环境因子的变化, 探究百山祖冷杉幼苗生长对海拔高度变化的响应机制。研究结果表明: (1) 海拔过低(500 m)导致百山祖冷杉幼苗存活率下降50%。幼苗的高度、冠宽、基径和其对应的增长率随海拔的升高先上升后下降, 在海拔700-1 100 m区域生长最佳。(2)真菌Simpson多样性指数增加对幼苗基径增长率有显著正向作用。(3)幼苗生长与空气和土壤温度存在显著的正相关关系, 而与空气和土壤湿度存在显著的负相关关系。土壤和空气温度在11-19 ℃范围内升高以及土壤和空气湿度在10%-25%范围降低能够促进幼苗生长。(4)土壤营养元素如铵态氮含量和碳氮比对幼苗高度、基径和冠宽的增长率具有显著正向作用。总之, 海拔、真菌多样性、土壤和空气温湿度以及土壤营养元素是影响百山祖冷杉幼苗生长的关键环境因子, 今后进行迁地保护时可重点考虑。
李欣怡, 张丽芳, 吴友贵, 郭静, 兰荣光, 吕洪飞, 于明坚. 不同海拔高度下百山祖冷杉幼苗的生长特征及其影响因素. 植物生态学报, 2025, 49(4): 610-623. DOI: 10.17521/cjpe.2024.0194
LI Xin-Yi, ZHANG Li-Fang, WU You-Gui, GUO Jing, LAN Rong-Guang, LÜ Hong-Fei, YU Ming-Jian. Growth characteristics of Abies beshanzuensis seedlings at different altitudes and the influencing factors. Chinese Journal of Plant Ecology, 2025, 49(4): 610-623. DOI: 10.17521/cjpe.2024.0194
指标 Indicator | 低海拔实验区 Low-altitude area (m) | 高海拔实验区 High-altitude area (m) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
500 | 600 | 700 | 800 | 900 | 1 000 | 1 100 | 1 200 | 1 300 | 1 400 | 1 500 | ||
2022年4月幼苗数量 Number of seedlings in April 2022 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | |
2023年4月幼苗数量 Number of seedlings in April 2023 | 5 | 9 | 9 | 10 | 9 | 10 | 10 | 9 | 9 | 10 | 10 | |
存活率 Survival rate (%) | 50 | 90 | 90 | 100 | 90 | 100 | 100 | 90 | 90 | 100 | 100 |
表1 不同海拔百山祖冷杉幼苗的存活率
Table 1 Survival rate of Abies beshanzuensis seedlings at different altitudes
指标 Indicator | 低海拔实验区 Low-altitude area (m) | 高海拔实验区 High-altitude area (m) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
500 | 600 | 700 | 800 | 900 | 1 000 | 1 100 | 1 200 | 1 300 | 1 400 | 1 500 | ||
2022年4月幼苗数量 Number of seedlings in April 2022 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | |
2023年4月幼苗数量 Number of seedlings in April 2023 | 5 | 9 | 9 | 10 | 9 | 10 | 10 | 9 | 9 | 10 | 10 | |
存活率 Survival rate (%) | 50 | 90 | 90 | 100 | 90 | 100 | 100 | 90 | 90 | 100 | 100 |
图1 不同海拔百山祖冷杉幼苗的高度(A、B)、冠宽(C、D)和基径(E、F)。***代表两个实验区之间幼苗生长情况差异显著(p < 0.001); ns, 差异不显著(p > 0.05)。白色箱型图代表低海拔实验区, 灰色箱型图代表高海拔实验区。箱型图上方的相同小写字母代表不同海拔处幼苗的各生长指标间无显著差异, 不同小写字母代表存在显著差异, 显著性水平为0.05。
Fig. 1 Height (A, B), crown width (C, D), and base diameter (E, F) of Abies beshanzuensis seedlings in different altitudes. *** represents the significance of the difference in seedling growth rate between the two experimental areas (p < 0.001), ns means non-significance (p > 0.05). The white box represents the high-altitude experimental area and the grey box represents the low-altitude experimental area. Identical lowercase letters above the boxes indicate non-significant difference in growth metrics between altitudes, while different lowercase letters indicate significant difference at the 0.05 level.
图2 不同海拔百山祖冷杉幼苗的高度增长率(A、B)、冠宽增长率(C、D)和基径增长率(E、F)。*代表两个实验区之间幼苗生长情况差异显著(**, p < 0.01; ***, p < 0.001)。白色箱型图代表低海拔实验区, 灰色箱型图代表高海拔实验区。箱型图上方的相同小写字母代表不同海拔处幼苗的各生长指标间无显著差异, 不同小写字母代表存在显著差异, 显著性水平为0.05。
Fig. 2 Height growth rate (A, B), crown width growth rate (C, D), and base diameter growth rate (E, F) of Abies beshanzuensis seedlings in different altitudes. * represents the significance of the difference in seedling growth between the two experimental areas (**, p < 0.01; ***, p < 0.001). The white box represents the high-altitude experimental area and the grey box represents the low-altitude experimental area. Identical lowercase letters above the boxes indicate non-significant difference in growth metrics between altitudes, while different lowercase letters indicate significant difference at the 0.05 level.
图3 低海拔和高海拔实验区细菌和真菌的Chao1指数(A、B)、Shannon-Wiener多样性指数(C、D)和Simpson多样性指数(E、F)。Chao1指数的值越高表示群落物种数较多, 物种丰富度越高; Shannon-Wiener多样性指数的值越高表示物种多样性越高; Simpson多样性指数的值越高表示物种均匀度越低。*代表两个实验区之间细菌和真菌α多样性差异显著(**, p < 0.01; ***, p < 0.001); ns, 差异不显著(p < 0.05)。
Fig. 3 Chao1 index (A, B), Shannon-Wiener’s diversity index (C, D), and Simpson’s diversity index (E, F) of bacteria and fungi in low- and high-altitude experimental areas. The higher the value of Chao1 index, the higher the richness of species. The higher the value of Shannon-Wiener’s diversity index, the higher the species diversity. The higher the value of Simpson’s diversity index, the lower the species evenness. * represents the significance of the difference in bacterial and fungal α diversity between the two experimental areas (**, p < 0.01; ***, p < 0.001), ns means non-significance (p < 0.05).
图4 细菌和真菌的Chao1指数(A、B)、Shannon-Wiener多样性指数(C、D)和Simpson多样性指数(E、F)随海拔高度的变化情况。相同小写字母代表不同海拔处微生物的α多样性指标无显著差异, 不同小写字母代表存在显著差异, 显著性水平为0.05, ns代表差异不显著(p < 0.05)。
Fig. 4 Variation in the Chao1 index (A, B), Shannon-Wiener’s diversity index (C, D), and Simpson’s diversity index (E, F) of bacteria and fungi along the altitude gradient. Identical lowercase letters indicate no significant difference in α diversity indices of microorganisms between the low- and high-altitude experimental areas, while different lowercase letters indicate significant difference at the 0.05 significance level, and ns indicates non-significant difference (p < 0.05).
图5 不同海拔非生物因子(A-N)的变化。Air humidity, 空气湿度; Air temperature, 空气温度; AP, 土壤有效磷含量; C:N, 土壤碳氮比; MWRC, 土壤最大持水量; NH4+-N, 土壤铵态氮含量; NO- 3-N, 土壤硝态氮含量; N:P, 土壤氮磷比; pH, 土壤酸碱度; Soil humidity, 土壤湿度; Soil temperature, 土壤温度; TC, 土壤全碳含量; TN, 土壤全氮含量; TP, 土壤全磷含量。纵轴为Z-score标准化后的值。蓝色回归线代表无显著性(p > 0.05), 红色回归线代表有显著性(p < 0.05)。灰色阴影区域表示95%置信区间。
Fig. 5 Variation in abiotic factors (A-N) along the altitude. AP, available phosphorus content in soil; C:N, carbon-to-nitrogen ratio in soil; MWRC, maximum water retaining capacity of soil; NH4+-N, ammonium nitrogen content in soil; NO- 3-N, nitrate nitrogen content in soil; N:P, nitrogen-to-phosphorus ratio in soil; pH, soil acidity; TC, total carbon content in soil; TN, total nitrogen content in soil; TP, total phosphorus content in soil. The vertical axis represents Z-score standardized values. Blue dashed lines indicate non-significant regression results (p > 0.05), while red solid lines indicate significant results (p < 0.05). Gray shaded area represents the 95% confidence interval.
图6 环境因子与百山祖冷杉幼苗生长的相关性分析热图。蓝色代表负相关, 红色代表正相关, 颜色越深代表相关性越大; *代表显著性水平(*, p < 0.05; **, p < 0.01; ***, p < 0.001)。Air humidity, 空气湿度; Air temperature, 空气温度; Altitude, 海拔; AP, 土壤有效磷; Base diameter, 基径; Chao1 16S, 细菌Chao1指数; Chao1 ITS, 真菌Chao1指数; C:N, 土壤碳氮比; Crown width, 冠宽; DGR, 基径增长率; Height, 苗高; HGR, 苗高增长率; MWRC, 土壤最大持水量; NH4+-N, 土壤铵态氮含量; NO- 3-N, 土壤硝态氮含量; N:P, 土壤氮磷比; pH, 土壤酸碱度; Shannon 16S, 细菌Shannon-Wiener多样性指数; Shannon ITS, 真菌Shannon-Wiener多样性指数; Simpson 16S, 细菌Simpson多样性指数; Simpson ITS, 真菌Simpson多样性指数; Soil humidity, 土壤湿度; Soil temperature, 土壤温度; TC, 土壤全碳含量; TN, 土壤全氮含量; TP, 土壤全磷含量; WGR, 冠宽增长率。
Fig. 6 Correlation analysis of environmental factors and seedling growth of Abies beshanzuensis. Blue represents the negative correlation, red represents the positive correlation; the darker the color, the greater the correlation. * represents the significance level (*, p < 0.05; **, p < 0.01; ***, p < 0.001). AP, available phosphorus content in soil; Chao1 16S, the bacterial Chao1 index; Chao1 ITS, the fungal Chao1 index; C:N, carbon-to-nitrogen ratio in soil; DGR, the growth rate of seedling base diameter; HGR, the growth rate of seedling height; MWRC, maximum water retaining capacity of soil; NH4+-N, ammonium nitrogen content in soil; NO- 3-N, nitrate nitrogen content in soil; N:P, nitrogen-to-phosphorus ratio in soil; pH, soil acidity; Shannon 16S, the bacterial Shannon-Wiener’s diversity index; Shannon ITS, the fungal Shannon-Wiener’s diversity index; Simpson 16S, the bacterial Simpson’s diversity index; Simpson ITS, the fungal Simpson’s diversity index; TC, total carbon content in soil; TN, total nitrogen content in soil; TP, total phosphorus content in soil; WGR, the growth rate of seedling crown width.
图7 百山祖冷杉幼苗的高度(A)、冠宽(B)、基径(C)、高度增长率(D)、冠宽增长率(E)和基径增长率(F)与环境因子的回归分析图(平均值±标准误), *代表显著性水平(*, p < 0.05; **, p < 0.01; ***, p < 0.001)。微生物多样性指标缩写见图6。PC, 主成分。
Fig. 7 Regression slopes of height (A), crown width (B), base diameter (C), height growth rate (D), crown width growth rate (E), and base diameter growth rate (F) of Abies beshanzuensis seedlings against the environmental factors of Simpson 16S, simpson ITS, PC1, or PC2 (mean ± SE). * represents the significance level (*, p < 0.05; **, p < 0.01; ***, p < 0.001). The abbreviation for the microbial diversity index is consistent with those used in Fig. 6. PC, principal component.
[1] |
Awada T, Radoglou K, Fotelli MN, Constantinidou HIA (2003). Ecophysiology of seedlings of three Mediterranean pine species in contrasting light regimes. Tree Physiology, 23, 33-41.
PMID |
[2] | Chandanie WA, Kubota M, Hyakumachi M (2005). Interaction between arbuscular mycorrhizal fungus Glomus mosseae and plant growth promoting fungus Phoma sp. on their root colonization and growth promotion of cucumber (Cucumis sativus L.). Mycoscience, 46, 201-204. |
[3] | Chen YK, Yang XB, Yang Q, Li DH, Long WX, Luo WQ (2014). Factors affecting the distribution pattern of wild plants with extremely small populations in Hainan Island, China. PLoS ONE, 9, e97751. DOI: 10.1371/journal.pone.0097751. |
[4] | Cheng QB, Wu MX, Chen HT (1996). Comprehensive observations report on Fengyangshan-Baishanzu Nature Reserve of Zhejiang. Journal of Zhejiang Forestry Science and Technology, 16(6), 1-7. |
[程秋波, 吴鸣翔, 陈豪庭 (1996). 浙江凤阳山-百山祖自然保护区综合考察报告. 浙江林业科技, 16(6), 1-7.] | |
[5] | Ding XN, Shi T, Yang LF, Yang H, Wang KX, Guo XF, Shi GA (2019). Correlation between seed quality and meteorological factors of oil tree peony Fengdan at different altitudes. Journal of Henan Agricultural Sciences, 48(11), 120-126. |
[丁熙柠, 史田, 杨林菲, 杨辉, 王凯轩, 郭香凤, 史国安 (2019). 不同海拔高度油用牡丹凤丹籽粒品质与气象因子的相关性研究. 河南农业科学, 48(11), 120-126.] | |
[6] | Gan YT, Stobbe EH, Njue C (1996). Evaluation of selected nonlinear regression models in quantifying seedling emergence rate of spring wheat. Crop Science, 36, 165-168. |
[7] |
Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266.
DOI PMID |
[8] | Herbert DA, Williams M, Rastetter EB (2003). A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment. Biogeochemistry, 65, 121-150. |
[9] | Högberg P, Näsholm T, Franklin O, Högberg MN (2017). Tamm review: on the nature of the nitrogen limitation to plant growth in Fennoscandian boreal forests. Forest Ecology and Management, 403, 161-185. |
[10] | Huang J, Mo JM (2016). The effect of simulated nitrogen deposition on the emission of carbonyl compounds from Ormosia pinnata and Cinnamomum burmannii. Expert Opinion on Environmental Biology, s1, 2016. DOI: 10.4172/2325-9655.S1-004. |
[11] |
Huang YX, Xu X, Zhang LX, Song Y, Luo ZR (2016). Ten-years period of grass and small woody plant dynamics in a 5-ha evergreen forest plot in Baishanzu, Zhejiang Province. Biodiversity Science, 24, 1353-1363.
DOI |
[黄云霞, 徐萱, 张莉芗, 宋玥, 骆争荣 (2016). 百山祖常绿阔叶林灌草层物种组成和分布的10年动态. 生物多样性, 24, 1353-1363.]
DOI |
|
[12] | International Union for Conservation of Nature and Natural Resources (IUCN) (1987). The most endangered twelve animals and twelve plants. Species: Newsletter of the SSC, 8, 21-24. |
[13] | International Union for Conservation of Nature and Natural Resources (IUCN)(2021). The IUCN Red List of Threatened Species 2021. [2024-6-11]. https://www.iucnredlist.org/species/32318/150298372. |
[14] | Jiang Y, Zhuang QL, Liang WJ (2007). Soil organic carbon pool and its affecting factors in farmland ecosystem. Chinese Journal of Ecology, 26, 278-285. |
[姜勇, 庄秋丽, 梁文举 (2007). 农田生态系统土壤有机碳库及其影响因子. 生态学杂志, 26, 278-285.] | |
[15] | Li JX, Kong FC (2000). Introduction and cultivation of Primula vialii. Yunnan Agricultural Science and Technology, (3), 28-29. |
[李景秀, 孔繁才 (2000). 高穗报春的引种栽培. 云南农业科技, (3), 28-29.] | |
[16] | Li XX, Tao C, Wang QC, Cui GF (2012). Characteristics of geographic distribution of four critically endangered species of Abies in subtropical China and its relationship with climate. Chinese Journal of Plant Ecology, 36, 1154-1164. |
[李晓笑, 陶翠, 王清春, 崔国发 (2012). 中国亚热带地区4种极危冷杉属植物的地理分布特征及其与气候的关系. 植物生态学报, 36, 1154-1164.]
DOI |
|
[17] | Lin X (1999). The world’s most endangered plant—Abies beshanzuensis. Man and the Biosphere, (3), 48. |
[林协 (1999). 世界最濒危植物——百山祖冷杉. 中国生物圈保护区, (3), 48.] | |
[18] | Liu BY, Tang H, Wang ML, Liang HL, Wen XY, Deng CH (2021). Seed germination and seedling growth and development characteristics of Illicicum difengpi, an endemic plant of karst region. Seed, 40(1), 63-68. |
[刘宝玉, 唐辉, 王满莲, 梁惠凌, 文香英, 邓成华 (2021). 喀斯特特有植物地枫皮种子萌发及幼苗生长发育特性研究. 种子, 40(1), 63-68.] | |
[19] | Liu C, Tian T, Li S, Wang F, Liang Y (2018). Growth response of Chinese woody plant seedlings to different light intensities. Acta Ecologica Sinica, 38, 518-527. |
[刘从, 田甜, 李珊, 王芳, 梁宇 (2018). 中国木本植物幼苗生长对光照强度的响应. 生态学报, 38, 518-527.] | |
[20] | Liu M, Li ZP, Zhang TL, Jiang CY, Che YP (2011). Discrepancy in response of rice yield and soil fertility to long-term chemical fertilization and organic amendments in paddy soils cultivated from infertile upland in subtropical China. Agricultural Sciences in China, 10, 259-266. |
[21] | Liu YH, Zhou RZ, Zeng QW (1997). Ex situ conservation of Magnoliaceae including its rare and endangered species. Journal of Tropical and Subtropical Botany, 5(2), 1-12. |
[刘玉壶, 周仁章, 曾庆文 (1997). 木兰科植物及其珍稀濒危种类的迁地保护. 热带亚热带植物学报, 5(2), 1-12.] | |
[22] | Ma JP, Pang DB, Chen L, Wan HY, Chen GL, Li XB (2022). Characteristics of soil microbial community structure under vegetation at different altitudes in Helan Mountains. Acta Ecologica Sinica, 42, 667-676. |
[马进鹏, 庞丹波, 陈林, 万红云, 陈高路, 李学斌 (2022). 贺兰山不同海拔植被下土壤微生物群落结构特征. 生态学报, 42, 667-676.] | |
[23] | Maeda SI, Konishi M, Yanagisawa S, Omata T (2014). Nitrite transport activity of a novel HPP family protein conserved in cyanobacteria and chloroplasts. Plant & Cell Physiology, 55, 1311-1324. |
[24] | National Forestry and Grassland Administration, Ministry of Agriculture and Rural Affairs (2021). List of National Key Protected Wild Plants.[2024-6-11]. https://www.forestry.gov.cn/c/www/lczc/10746.jhtml. |
[ 国家林业和草原局, 农业农村部 (2021). 国家重点保护野生植物名录.[2024-6-11]. https://www.forestry.gov.cn/c/www/lczc/10746.jhtml. | |
[25] | Newton LA, Runkle ES (2009). High-temperature inhibition of flowering of Phalaenopsis and doritaenopsis orchids. HortScience, 44, 1271-1276. |
[26] | Pan HL, Li MH, Cai XH, Wu J, Du Z, Liu XL (2009). Responses of growth and ecophsiology of plants to altitude. Ecology and Environmental Sciences, 18, 722-730. |
[潘红丽, 李迈和, 蔡小虎, 吴杰, 杜忠, 刘兴良 (2009). 海拔梯度上的植物生长与生理生态特性. 生态环境学报, 18, 722-730.]
DOI |
|
[27] | Pang Z (2023). Physiological Response and Transcriptome Analysis of Abies beshanzunesis M. H. Wu Seedlings to Different Altitudes and High Temperature Stress. Master degree dissertation, Zhejiang Sci-Tech University, Hangzhou. |
[庞振 (2023). 百山祖冷杉苗木对不同海拔高度和高温胁迫的生理响应及转录组分析. 硕士学位论文, 浙江理工大学, 杭州.] | |
[28] |
Qiu ZW, Jiang HE, Ding LL, Shang X (2020). Late Pleistocene-Holocene vegetation history and anthropogenic activities deduced from pollen spectra and archaeological data at Guxu Lake, Eastern China. Scientific Reports, 10, 9306. DOI: 10.1038/s41598-020-65834-z.
PMID |
[29] | Russell MB, Weiskittel AR (2011). Maximum and largest crown width equations for 15 tree species in Maine. Northern Journal of Applied Forestry, 28, 84-91. |
[30] | Shao YZ, Zhang XC, Phan LK, Xiang QP (2017). Elevation shift in Abies Mill. (Pinaceae) of subtropical and temperate China and Vietnam-corroborative evidence from cytoplasmic DNA and ecological niche modeling. Frontiers in Plant Science, 8, 578. DOI: 10.3389/fpls.2017.00578. |
[31] | Song C, Zeng FJ, Liu B, Zhang LG, Luo WC, Peng SL, Stefan KA (2012). Influence of water condition on morphological characteristics and biomass of Calligonum caput-medusae Schrenk seedlings. Chinese Journal of Ecology, 31, 2225-2233. |
[宋聪, 曾凡江, 刘波, 张利刚, 罗维成, 彭守兰, Stefan KA (2012). 不同水分条件对头状沙拐枣幼苗形态特征及生物量的影响. 生态学杂志, 31, 2225-2233.] | |
[32] | Sui YY, Zhang XY, Jiao XG, Wang QC, Zhao J (2005). Effect of long-term different fertilizer applications on organic matter and nitrogen of black farmland. Journal of Soil Water Conservation, 19(6), 192-194. |
[隋跃宇, 张兴义, 焦晓光, 王其存, 赵军 (2005). 长期不同施肥制度对农田黑土有机质和氮素的影响. 水土保持学报, 19(6), 192-194.] | |
[33] | Tang H, Li TT, Shen CH, Hu YY, Wu JS (2014). Effects of nitrogen forms on foliar photosynthesis, nutrient status and nitrogen metabolism of Torreya grandis seedlings. Scientia Silvae Sinicae, 50(10), 158-163. |
[唐辉, 李婷婷, 沈朝华, 胡渊渊, 吴家胜 (2014). 氮素形态对香榧苗期光合作用、主要元素吸收及氮代谢的影响. 林业科学, 50(10), 158-163.] | |
[34] | Tao S, Hua XY, Wang YN, Guo N, Yan XF, Lin JX (2017). Research advance in effects of different nitrogen forms on growth and physiology of plants. Guizhou Agricultural Sciences, 45(12), 64-68. |
[陶爽, 华晓雨, 王英男, 郭娜, 阎秀峰, 蔺吉祥 (2017). 不同氮素形态对植物生长与生理影响的研究进展. 贵州农业科学, 45(12), 64-68.] | |
[35] |
van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist, 205, 1406-1423.
DOI PMID |
[36] | Wang GH, Jin J, Xu MN, Liu XB (2006). Effects of plant, soil and soil management on soil microbial community diversity. Chinese Journal of Ecology, 25, 550-556. |
[王光华, 金剑, 徐美娜, 刘晓冰 (2006). 植物、土壤及土壤管理对土壤微生物群落结构的影响. 生态学杂志, 25, 550-556.] | |
[37] | Wu MX (1976). Abies beshanzuensis M. H. Wu—A new species of Abies from Chekiang. Journal of Systematics and Evolution, 14(2), 15-21. |
[吴鸣翔 (1976). 百山祖冷杉——一种新的冷杉的发现. 植物分类学报, 14(2), 15-21.] | |
[38] | Wu YG (2019). Save critically endangered plants and protect Abies beshanzuensis in all aspects. Zhejiang Forestry, (9), 36-37. |
[吴友贵 (2019). 拯救极度濒危植物——全方位保护百山祖冷杉. 浙江林业, (9), 36-37.] | |
[39] | Wu YG, Rao LB, Chen DL, Zhou RF, Ye ZL (2010). Artificial seedling-raising of Abies beshanzuensis seed. Journal of Anhui Agricultural Sciences, 38, 12038-12039. |
[吴友贵, 饶龙兵, 陈德良, 周荣飞, 叶珍林 (2010). 百山祖冷杉种子的人工育苗试验. 安徽农业科学, 38, 12038-12039.] | |
[40] | Wu YG, Zhu ZC, Wu QQ, Cai HM, Chen DY (2023). The seed rain of critically endangered plant Abies beshanzuensis. Bulletin of Botanical Research, 43, 711-719. |
[吴友贵, 朱志成, 吴倩倩, 蔡焕满, 陈定云 (2023). 极危植物百山祖冷杉的种子雨. 植物研究, 43, 711-719.]
DOI |
|
[41] | Xiang QP (2001). A preliminary survey on the distribution of rare and endangered plants of Abies in China. Guihaia, 21(2), 113-117. |
[向巧萍 (2001). 中国的几种珍稀濒危冷杉属植物及其地理分布成因的探讨. 广西植物, 21(2), 113-117.] | |
[42] | Xiang XG, Cao M, Zhou ZK (2006). Fossil history and modern distribution of the genus Abies (Pinaceae). Acta Botanica Yunnanica, 28, 439-452. |
[向小果, 曹明, 周浙昆 (2006). 松科冷杉属植物的化石历史和现代分布. 云南植物研究, 28, 439-452.] | |
[43] |
Xing Y, Ma XH (2015). Research progress on effect of nitrogen form on plant growth. Journal of Agricultural Science and Technology, 17(2), 109-117.
DOI |
[邢瑶, 马兴华 (2015). 氮素形态对植物生长影响的研究进展. 中国农业科技导报, 17(2), 109-117.] | |
[44] | Zhu YG, Miller RM (2003). Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. Trends in Plant Science, 8, 407-409. |
[1] | 韦鑫, 江蓝, 郑晨成, 朱静, 陈博, 李文周, 赖淑瑜, 刘金福, 何中声. 戴云山海拔梯度木本植物性系统分布特征及其影响因素[J]. 植物生态学报, 2025, 49(预发表): 0-. |
[2] | 朱瑞德, 杨俊薇, 刘宵含, 陈冰瑞, 池秀莲, 田地, 杨光, 程蒙, 戴亚峰, 王诗文, 陈仲. 霍山石斛设施和林下栽培模式中养分对植物-微生物关联的调控[J]. , 2025, 49(地上地下生态过程关联): 0-. |
[3] | 马富龙 王雨晴 郝 瑜 段继超 刘霏霏 席琳乔 韩路. 海拔梯度对昆仑山中部草原植物与土壤微生物群落结构与多样性的影响[J]. 植物生态学报, 2025, 49(5): 732-747. |
[4] | 上官瑶瑶 顾雪丹 张正中 赵祜 李毅 闫建芳 魏星宇. 红砂幼苗对光周期和光质配比的响应[J]. 植物生态学报, 2025, 49(5): 788-800. |
[5] | 葛小彩, 李锦隆, 孙俊, 武盼盼, 胡丹丹, 程栋梁, 钟全林. 武夷山亚高山草甸土壤呼吸组分特征及影响因素[J]. 植物生态学报, 2025, 49(3): 502-512. |
[6] | 李冬梅, 孙龙, 韩宇, 胡同欣, 杨光, 蔡慧颖. 计划火烧对红松人工林生物多样性与生态系统多功能性关系的影响[J]. 植物生态学报, 2025, 49(3): 379-392. |
[7] | 郑琳敏, 熊小玲, 姜永孟, 王曼, 张锦秀, 曾志伟, 吕茂奎, 谢锦升. 武夷山不同海拔杉木凋落叶和细根分解规律以及驱动因素的差异[J]. 植物生态学报, 2025, 49(2): 244-255. |
[8] | 姚博, 陈云, 曹雯婕, 龚相文, 罗永清, 郑成卓, 王旭洋, 王正文, 李玉强. 呼伦贝尔退化沙地植被-土壤碳氮磷互馈关系及微生物驱动机制[J]. 植物生态学报, 2025, 49(1): 59-73. |
[9] | 马录花, 孟宪超, 王贵强, 马子峰, 李以康, 李月梅, 周华坤, 张法伟, 林丽. 藓类结皮接种对三江源高寒草甸土壤性状和微生物的影响[J]. 植物生态学报, 2025, 49(1): 173-188. |
[10] | 钱尼澎, 高浩鑫, 宋超杰, 董淳超, 刘琪璟. 长白山白桦径向生长季节动态及其对环境因子的响应[J]. 植物生态学报, 2024, 48(8): 1001-1010. |
[11] | 龙吉兰, 蒋铮, 刘定琴, 缪宇轩, 周灵燕, 冯颖, 裴佳宁, 刘瑞强, 周旭辉, 伏玉玲. 干旱下植物根系分泌物及其介导的根际激发效应研究进展[J]. 植物生态学报, 2024, 48(7): 817-827. |
[12] | 刘瑶, 钟全林, 徐朝斌, 程栋梁, 郑跃芳, 邹宇星, 张雪, 郑新杰, 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(6): 744-759. |
[13] | 徐子怡, 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[14] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[15] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19