植物生态学报 ›› 2025, Vol. 49 ›› Issue (4): 596-609.DOI: 10.17521/cjpe.2024.0049 cstr: 32100.14.cjpe.2024.0049
王娟1, 张登山2, 肖元明3,4, 裴全帮5, 王博3,6, 樊博3, 周国英3,4,*()(
)
收稿日期:
2024-02-18
接受日期:
2024-06-20
出版日期:
2025-04-20
发布日期:
2025-04-18
通讯作者:
* (zhougy@nwipb.cas.cn)基金资助:
WANG Juan1, ZHANG Deng-Shan2, XIAO Yuan-Ming3,4, PEI Quan-Bang5, WANG Bo3,6, FAN Bo3, ZHOU Guo-Ying3,4,*()(
)
Received:
2024-02-18
Accepted:
2024-06-20
Online:
2025-04-20
Published:
2025-04-18
Contact:
* (zhougy@nwipb.cas.cn)
Supported by:
摘要:
植物根系分泌物在植物-土壤-微生物互馈过程中发挥重要作用, 然而对长期围封后青藏高原高寒草原植物根系分泌物碳、氮、磷分泌速率和化学计量特征及其与环境因子之间的关系仍知之甚少。该研究以青海湖流域紫花针茅(Stipa purpurea)高寒草原为研究对象, 基于放牧和长期围封处理的野外实验样地, 在植物群落水平和物种水平进行根系碳、氮、磷分泌速率及其化学计量特征研究, 并进一步解析根系分泌物特征与植物群落特征和土壤因子的关系。主要结果: (1)长期围封显著降低了高寒草原群落水平根系碳、氮分泌速率以及分泌物碳磷比和氮磷比, 对磷分泌速率和分泌物碳氮比无显著影响; (2)整体上, 长期围封对高寒草原植物根系碳、氮、磷分泌速率具有显著的负效应, 同时, 除了分泌物氮磷比以外, 长期围封对分泌物碳氮比和碳磷比也表现出显著的处理效应, 特别是赖草(Leymus secalinus)的分泌物碳氮比和碳磷比在长期围封后显著下降; (3)高寒草原杂类草物种的根系分泌物能力整体上表现出高于禾草和莎草的模式, 其中阿尔泰狗娃花(Aster altaicus)根系碳、氮、磷分泌速率远高于其他物种; (4)高寒草原群落水平根系碳、氮分泌速率和分泌物氮磷比与植物群落多样性、群落组成以及土壤含水量和氮含量显著相关。进一步分析表明了高寒草原群落水平根系碳、氮、磷分泌速率的主导因子不同, 根系碳分泌速率受土壤因子影响最大, 根系氮、磷分泌速率受植物群落组成影响最大。总的来看, 长期围封对于高寒草原根系分泌速率及其化学计量特征具有显著影响, 该结果对于进一步认识草地围封管理后的其他生态系统功能变化具有重要意义。
王娟, 张登山, 肖元明, 裴全帮, 王博, 樊博, 周国英. 长期围封后高寒草原植物根系分泌物特征与环境因子关系. 植物生态学报, 2025, 49(4): 596-609. DOI: 10.17521/cjpe.2024.0049
WANG Juan, ZHANG Deng-Shan, XIAO Yuan-Ming, PEI Quan-Bang, WANG Bo, FAN Bo, ZHOU Guo-Ying. Relationships between the characteristics of root exudate and environmental factors in the alpine steppe following long-term grazing exclusion. Chinese Journal of Plant Ecology, 2025, 49(4): 596-609. DOI: 10.17521/cjpe.2024.0049
图1 青藏高原高寒草原研究区实验地位置和概况。
Fig. 1 Geographical location and landscape of experimental field site at study area in the alpine steppe on the Qingzang Plateau.
土壤因子 Soil factor | 放牧 Grazing | 围封 Fencing | p |
---|---|---|---|
SWC (%) | 18.38 ± 0.40 | 21.17 ± 0.58 | 0.005 3 |
pH | 8.10 ± 0.05 | 8.03 ± 0.03 | 0.337 7 |
NH4+-N (mg·kg-1) | 8.59 ± 0.61 | 12.61 ± 1.12 | 0.018 6 |
NO3--N (mg·kg-1) | 7.94 ± 0.42 | 7.20 ± 0.77 | 0.430 9 |
AP (mg·kg-1) | 8.90 ± 0.64 | 9.71 ± 0.48 | 0.339 4 |
SOC (g·kg-1) | 30.17 ± 1.47 | 29.96 ± 1.14 | 0.913 2 |
TC (g·kg-1) | 47.15 ± 3.28 | 64.70 ± 6.68 | 0.028 9 |
TN (g·kg-1) | 3.34 ± 0.17 | 6.38 ± 0.44 | 0.000 6 |
TP (g·kg-1) | 0.18 ± 0.01 | 0.16 ± 0.02 | 0.425 9 |
Clay (%) | 13.70 ± 0.64 | 13.46 ± 0.60 | 0.788 0 |
Silt (%) | 32.18 ± 0.99 | 34.21 ± 1.01 | 0.189 9 |
Sand (%) | 51.53 ± 1.42 | 48.89 ± 1.16 | 0.397 3 |
表1 放牧和围封处理间高寒草原土壤因子差异(平均值±标准误)
Table 1 Differences of soil factors between grazing and fencing treatments in the alpine steppe (mean ± SE)
土壤因子 Soil factor | 放牧 Grazing | 围封 Fencing | p |
---|---|---|---|
SWC (%) | 18.38 ± 0.40 | 21.17 ± 0.58 | 0.005 3 |
pH | 8.10 ± 0.05 | 8.03 ± 0.03 | 0.337 7 |
NH4+-N (mg·kg-1) | 8.59 ± 0.61 | 12.61 ± 1.12 | 0.018 6 |
NO3--N (mg·kg-1) | 7.94 ± 0.42 | 7.20 ± 0.77 | 0.430 9 |
AP (mg·kg-1) | 8.90 ± 0.64 | 9.71 ± 0.48 | 0.339 4 |
SOC (g·kg-1) | 30.17 ± 1.47 | 29.96 ± 1.14 | 0.913 2 |
TC (g·kg-1) | 47.15 ± 3.28 | 64.70 ± 6.68 | 0.028 9 |
TN (g·kg-1) | 3.34 ± 0.17 | 6.38 ± 0.44 | 0.000 6 |
TP (g·kg-1) | 0.18 ± 0.01 | 0.16 ± 0.02 | 0.425 9 |
Clay (%) | 13.70 ± 0.64 | 13.46 ± 0.60 | 0.788 0 |
Silt (%) | 32.18 ± 0.99 | 34.21 ± 1.01 | 0.189 9 |
Sand (%) | 51.53 ± 1.42 | 48.89 ± 1.16 | 0.397 3 |
功能群 Functional group | 物种名 Species name | 放牧 Grazing | 重要值 IV (%) | 围封 Fencing | 重要值 IV (%) |
---|---|---|---|---|---|
禾草 Grass (6) | 紫花针茅 Stipa purpurea | √ | 10.61 | √ | 11.60 |
草地早熟禾 Poa pratensis | √ | 7.55 | √ | 8.22 | |
赖草 Leymus secalinus | √ | 7.08 | √ | 47.18 | |
![]() | √ | 5.14 | √ | 3.01 | |
冰草 Agropyron cristatum | √ | 5.02 | √ | 3.16 | |
垂穗披碱草 Elymus nutans | √ | 4.33 | - | - | |
豆科 Legume (3) | 披针叶黄华 Thermopsis lanceolata | √ | 1.93 | √ | 1.55 |
甘肃棘豆 Oxytropis kansuensis | √ | 0.63 | - | - | |
多枝黄耆 Astragalus polycladus | √ | 1.81 | - | - | |
莎草 Sedge (2) | 无穗柄薹草 Carex ivanoviae | √ | 4.82 | √ | 5.79 |
矮生嵩草 Kobresia humilis | √ | 2.50 | - | - | |
杂类草 Forb (13) | 马蔺 Iris lactea | √ | 4.64 | - | - |
阿尔泰狗娃花 Aster altaicus | √ | 4.51 | √ | 3.31 | |
三辐柴胡 Bupleurum triradiatum | √ | 3.15 | √ | 0.90 | |
蒲公英 Taraxacum mongolicum | √ | 2.45 | - | - | |
葵花大蓟 Cirsium souliei | √ | 1.56 | - | - | |
白花枝子花 Dracocephalum heterophyllum | √ | 1.48 | √ | 1.78 | |
猪毛蒿 Artemisia scoparia | √ | 1.29 | - | - | |
蕨麻 Argentina anserina | √ | 1.16 | √ | 4.64 | |
狼毒 Stellera chamaejasme | √ | 0.82 | - | - | |
楔叶委陵菜 Potentilla cuneata | √ | 0.77 | - | - | |
乳白香青 Anaphalis lactea | √ | 0.68 | - | - | |
甘肃马先蒿 Pedicularis kansuensis | √ | 0.66 | - | - | |
达乌里秦艽 Gentiana dahurica | √ | 0.21 | - | - |
表2 放牧和围封处理间高寒草原植物群落组成
Table 2 Species composition of plant community between grazing and fencing treatments in the alpine steppe
功能群 Functional group | 物种名 Species name | 放牧 Grazing | 重要值 IV (%) | 围封 Fencing | 重要值 IV (%) |
---|---|---|---|---|---|
禾草 Grass (6) | 紫花针茅 Stipa purpurea | √ | 10.61 | √ | 11.60 |
草地早熟禾 Poa pratensis | √ | 7.55 | √ | 8.22 | |
赖草 Leymus secalinus | √ | 7.08 | √ | 47.18 | |
![]() | √ | 5.14 | √ | 3.01 | |
冰草 Agropyron cristatum | √ | 5.02 | √ | 3.16 | |
垂穗披碱草 Elymus nutans | √ | 4.33 | - | - | |
豆科 Legume (3) | 披针叶黄华 Thermopsis lanceolata | √ | 1.93 | √ | 1.55 |
甘肃棘豆 Oxytropis kansuensis | √ | 0.63 | - | - | |
多枝黄耆 Astragalus polycladus | √ | 1.81 | - | - | |
莎草 Sedge (2) | 无穗柄薹草 Carex ivanoviae | √ | 4.82 | √ | 5.79 |
矮生嵩草 Kobresia humilis | √ | 2.50 | - | - | |
杂类草 Forb (13) | 马蔺 Iris lactea | √ | 4.64 | - | - |
阿尔泰狗娃花 Aster altaicus | √ | 4.51 | √ | 3.31 | |
三辐柴胡 Bupleurum triradiatum | √ | 3.15 | √ | 0.90 | |
蒲公英 Taraxacum mongolicum | √ | 2.45 | - | - | |
葵花大蓟 Cirsium souliei | √ | 1.56 | - | - | |
白花枝子花 Dracocephalum heterophyllum | √ | 1.48 | √ | 1.78 | |
猪毛蒿 Artemisia scoparia | √ | 1.29 | - | - | |
蕨麻 Argentina anserina | √ | 1.16 | √ | 4.64 | |
狼毒 Stellera chamaejasme | √ | 0.82 | - | - | |
楔叶委陵菜 Potentilla cuneata | √ | 0.77 | - | - | |
乳白香青 Anaphalis lactea | √ | 0.68 | - | - | |
甘肃马先蒿 Pedicularis kansuensis | √ | 0.66 | - | - | |
达乌里秦艽 Gentiana dahurica | √ | 0.21 | - | - |
图2 放牧和围封处理后高寒草原植物群落水平根系分泌物特征差异(平均值±标准误)。C, 碳; N, 氮; P, 磷。
Fig. 2 Differences of root exudates characteristics at plant community level under grazing and fencing treatment in the alpine steppe (mean ± SE). C, carbon; N, nitrogen; P, phosphorus.
图3 放牧和围封处理后高寒草原物种水平根系分泌物特征差异(平均值±标准误)。处理内不同物种间根系分泌物特征差异多重比较的结果用字母表示, 不同小写字母表示放牧处理下物种之间根系分泌物特征存在显著差异(p < 0.05), 不同大写字母表示围封处理下物种之间根系分泌物特征存在显著差异(p < 0.05)。C, 碳; N, 氮; P, 磷。
Fig. 3 Differences of root exudates characteristics at species level under grazing and fencing treatment in the alpine steppe (mean ± SE). Multiple comparison results of root exudates characteristics at species level within a treatment are presented with letters, in which different lowercase letters indicate significant differences in root exudation characteristics between species under grazing treatment (p < 0.05), and different uppercase letters indicate significant differences in root exudation characteristics between species under enclosure treatment (p < 0.01). C, carbon; N, nitrogen; P, phosphorus.
图4 高寒草原植物群落水平根系分泌物特征与环境因子间的关系。*, p < 0.05; **, p < 0.01; ***, p < 0.001。NMDS, 非度量多维尺度分析。
Fig. 4 Relationships between root exudates characteristics at plant community level and environmental factors. *, p < 0.05; **, p < 0.01; ***, p < 0.001. NMDS, non-metric multidimensional scaling. C, carbon; N, nitrogen; P, phosphorus.
[1] |
Bai Y, Cotrufo MF (2022). Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science, 377, 603-608.
DOI PMID |
[2] | Cai G, Shahbaz M, Ge T, Hu Y, Li B, Yuan H, Wang Y, Liu Y, Liu Q, Shibistova O, Sauheitl L, Wu J, Guggenberger G, Zhu Z (2022). Root exudates with low C/N ratios accelerate CO2 emissions from paddy soil. Land Degradation & Development, 33, 1193-1203. |
[3] | Chari NR, Taylor BN (2022). Soil organic matter formation and loss are mediated by root exudates in a temperate forest. Nature Geoscience, 15, 1011-1016. |
[4] | Chen H, Tang HY, Guo JH, Pang C, Wang YH, Wu YH, She YC (2023). Root exudates’ roles and analytical techniques progress. Soils, 55, 225-233. |
[陈虹, 唐昊冶, 郭家欢, 潘畅, 王如海, 吴永红, 余元春 (2023). 根系分泌物主要作用及解析技术进展. 土壤, 55, 225-233.] | |
[5] | Coban O, de Deyn GB, van der Ploeg M (2022). Soil microbiota as game-changers in restoration of degraded lands. Science, 375, abe0725. DOI: 10.1126/science.abe0725. |
[6] | Craine JM, Jackson RD (2010). Plant nitrogen and phosphorus limitation in 98 North American grassland soils. Plant and Soil, 334, 73-84. |
[7] |
Dietz S, Herz K, Döll S, Haider S, Jandt U, Bruelheide H, Scheel D (2019). Semi-polar root exudates in natural grassland communities. Ecology and Evolution, 9, 5526-5541.
DOI |
[8] | Dietz S, Herz K, Gorzolka K, Jandt U, Bruelheide H, Scheel D (2020). Root exudate composition of grass and forb species in natural grasslands. Scientific Reports, 10, 10691. DOI: 10.1038/s41598-019-54309-5. |
[9] | Dong SK (2023). Revitalizing the grassland on the Qinghai-Tibetan Plateau. Grassland Research, 2, 241-250. |
[10] | Du CJ, Jing J, Shen Y, Liu HX, Gao YH (2020). Short-term grazing exclusion improved topsoil conditions and plant characteristics in degraded alpine grasslands. Ecological Indicators, 108, 105680. DOI: 10.1016/j.ecolind.2019.105680. |
[11] | Fang HT, Weng BS, Chang WJ, Yang YH, Gong XY (2022). Characteristics of root distribution in alpine meadows and the relationship with soil temperature and moisture. Acta Agrestia Sinica, 30, 612-621. |
[房昊天, 翁白莎, 常文娟, 杨裕恒, 宫晓艳 (2022). 高寒草甸根系分布特征及与土壤温湿度关系的研究. 草地学报, 30, 612-621.]
DOI |
|
[12] | Feng H, Fu R, Luo J, Hou X, Gao K, Su L, Xu Y, Miao Y, Liu Y, Xu Z, Zhang N, Shen Q, Xun W, Zhang R (2023). Listening to plant’s esperanto via root exudates: reprogramming the functional expression of plant growth- promoting rhizobacteria. New Phytologist, 239, 2307-2319. |
[13] | Guo WJ, Zhang ZL, Liu Q, Yin HJ (2019). Research progress of root exudates collection technology. Chinese Journal of Applied Ecology, 30, 3951-3962. |
[郭婉玑, 张子良, 刘庆, 尹华军 (2019). 根系分泌物收集技术研究进展. 应用生态学报, 30, 3951-3962.]
DOI |
|
[14] |
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI PMID |
[15] | He HL, Qi YB, Lv JL, Peng PP, Yan ZR, Tang ZQ, Cui K, Zhang KY (2023). Development and revision of the Chinese soil texture classification system. Journal of Agricultural Resources and Environment, 40, 501-510. |
[何海龙, 齐雁冰, 吕家珑, 彭佩佩, 晏梓然, 唐子茜, 崔珂, 张恺玥 (2023). 中国土壤质地分类系统的发展与建议修订方案. 农业资源与环境学报, 40, 501-510.] | |
[16] | He JS, Liu ZP, Yao T, Sun SC, Lü Z, Hu XW, Cao GM, Wu XW, Li L, Bu HY, Zhu JX (2020). Analysis of the main constraints and restoration techniques of degraded grassland on the Tibetan Plateau. Science & Technology Review, 38(17), 66-80. |
[贺金生, 刘志鹏, 姚拓, 孙书存, 吕植, 胡小文, 曹广民, 吴新卫, 李黎, 卜海燕, 朱剑霄 (2020). 青藏高原退化草地恢复的制约因子及修复技术. 科技导报, 38(17), 66-80.]
DOI |
|
[17] | He W, Yuan Y, Zhang Z, Xiao J, Liu Q, Laiho R, Yin H (2021). Effect of N addition on root exudation and associated microbial N transformation under Sibiraea angustata in an alpine shrubland. Plant and Soil, 460, 469-481. |
[18] | Jiao S, Lu YH, Wei GH (2022). Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Global Change Biology, 28, 140-153. |
[19] | Jing ZB, Cheng JM, Su JS, Bai Y, Jin JW (2014). Changes in plant community composition and soil properties under 3-decade grazing exclusion in semiarid grassland. Ecological Engineering, 64, 171-178. |
[20] | Kong CH, Zhang SZ, Li YH, Xia ZC, Yang XF, Meiners SJ, Wang P (2018). Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals. Nature Communications, 9, 3867. DOI: 10.1038/s41467-018-06429-1. |
[21] | Kuzyakov Y, Domanski G (2000). Carbon input by plants into the soil. Review. Journal of Plant Nutrition and Soil Science, 163, 421-431. |
[22] | Li C, Liu L, Zheng L, Yu Y, Mushinski RM, Zhou Y, Xiao C (2021a). Greater soil water and nitrogen availability increase C:N ratios of root exudates in a temperate steppe. Soil Biology & Biochemistry, 161, 108384. DOI: 10.1016/j.soilbio.2021.108384. |
[23] | Li J, Li WL, Xu XL (2021b). Root exudates induce rhizosphere effect benefits for plant N use efficiency and fitness of relatives for Glycine max. Plant and Soil, 469, 243-258. |
[24] |
Liang C, Schimel JP, Jastrow JD (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2, 17105. DOI: 10.1038/nmicrobiol.2017.105.
PMID |
[25] | Liao L, Wang J, Dijkstra FA, Lei S, Zhang L, Wang X, Liu G, Zhang C (2024). Nitrogen enrichment stimulates rhizosphere multi-element cycling genes via mediating plant biomass and root exudates. Soil Biology & Biochemistry, 190, 109306. DOI: 10.1016/j.soilbio.2023.109306. |
[26] | Liao Q, Liu H, Lu C, Liu J, Waigi MG, Ling W (2021). Root exudates enhance the PAH degradation and degrading gene abundance in soils. Science of the Total Environment, 764, 144436. DOI: 10.1016/j.scitotenv.2020.144436. |
[27] | Liu Y, Shahbaz M, Ge T, Zhu Z, Liu S, Chen L, Wu X, Deng Y, Lu S, Wu J (2020). Effects of root exudate stoichiometry on CO2 emission from paddy soil. European Journal of Soil Biology, 101, 103247. DOI: 10.1016/j.ejsobi.2020.103247. |
[28] |
Liu ZJ, Yang J, Long YP, Zhang C, Wang DP, Zhang XW, Dong WT, Zhao L, Liu CW, Zhai JX, Wang ET (2023). Single-nucleus transcriptomes reveal spatiotemporal symbiotic perception and early response in Medicago. Nature Plants, 9, 1734-1748.
DOI PMID |
[29] | Luo YQ, Zhao XY, Li MX (2012). Ecological effect of plant root exudates and related affecting factors: a review. Chinese Journal of Applied Ecology, 23, 3496-3504. |
[罗永清, 赵学勇, 李美霞 (2012). 植物根系分泌物生态效应及其影响因素研究综述. 应用生态学报, 23, 3496-3504.] | |
[30] | Panchal P, Preece C, Peñuelas J, Giri J (2022). Soil carbon sequestration by root exudates. Trends in Plant Science, 27, 749-757. |
[31] | Shen X, Yang F, Xiao CW, Zhou Y (2020). Increased contribution of root exudates to soil carbon input during grassland degradation. Soil Biology & Biochemistry, 146, 107817. DOI: 10.1016/j.soilbio.2020.107817. |
[32] |
Sun J, Liang E, Barrio IC, Chen J, Wang J, Fu B (2021). Fences undermine biodiversity targets. Science, 374, 269-269.
DOI PMID |
[33] |
Walker TS, Bais HP, Grotewold E, Vivanco JM (2003). Root exudation and rhizosphere biology. Plant Physiology, 132, 44-51.
DOI PMID |
[34] | Wang J, Liao LR, Wang GL, Liu HF, Wu Y, Liu GB, Zhang C (2022). N-induced root exudates mediate the rhizosphere fungal assembly and affect species coexistence. Science of the Total Environment, 804, 150148. DOI: 10.1016/j.scitotenv.2021.150148. |
[35] | Wang J, Wang XT, Liu GB, Wang GL, Wu Y, Zhang C (2020). Fencing as an effective approach for restoration of alpine meadows: evidence from nutrient limitation of soil microbes. Geoderma, 363, 114148. DOI: 10.1016/j.geoderma.2019.114148. |
[36] | Wang J, Xiao YM, Wang B, Fan B, Zhang DS, Zhou GY (2023). Different effects of long-term grazing exclusion and growth stages on soil fungi and bacteria in an alpine steppe on the Qinghai-Tibetan Plateau. Global Ecology and Conservation, 47, e02641. DOI: 10.1016/j.gecco.2023.e02641. |
[37] | Wang J, Zhang DS, Xiao YM, Wang B, Zhou GY (2023). Diversity of species and functional traits drive jointly responses of aboveground biomass to long-term grazing exclusion at alpine steppe. Acta Ecologica Sinica, 43, 2465-2475. |
[王娟, 张登山, 肖元明, 王博, 周国英 (2023). 物种多样性和功能性状驱动高寒草原地上生物量对长期禁牧的响应. 生态学报, 43, 2465-2475.] | |
[38] | Wang XF, Ma HB, Liu J, Miao HT, Shen Y, Zhou Y, Ma JL (2022). Research advances on the effects of grazing on plant functional traits in grassland. Chinese Journal of Applied Ecology, 33, 569-576. |
[王晓芳, 马红彬, 刘杰, 苗海涛, 沈艳, 周瑶, 马静利 (2022). 放牧对草原植物功能性状影响研究进展. 应用生态学报, 33, 569-576.]
DOI |
|
[39] | Wen T, Yu GH, Hong WD, Yuan J, Niu GQ, Xie PH, Sun FS, Guo LD, Kuzyakov Y, Shen QR (2022a). Root exudate chemistry affects soil carbon mobilization via microbial community reassembly. Fundamental Research, 2, 697-707. |
[40] | Wen Z, White PJ, Shen J, Lambers H (2022b). Linking root exudation to belowground economic traits for resource acquisition. New Phytologist, 233, 1620-1635. |
[41] | Williams A, Langridge H, Straathof AL, Fox G, Muhammadali H, Hollywood KA, Xu Y, Goodacre R, de Vries FT (2021). Comparing root exudate collection techniques: an improved hybrid method. Soil Biology & Biochemistry, 161, 108391. DOI: 10.1016/j.soilbio.2021.108391. |
[42] | Williams A, Langridge H, Straathof AL, Muhamadali H, Hollywood KA, Goodacre R, de Vries FT (2022). Root functional traits explain root exudation rate and composition across a range of grassland species. Journal of Ecology, 110, 21-33. |
[43] |
Wu LK, Lin XM, Lin WX (2014). Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 38, 298-310.
DOI |
[吴林坤, 林向民, 林文雄 (2014). 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 38, 298-310.]
DOI |
|
[44] | Wu QY, Lin YL, Sun YH, Wei QH, Liu JT, Li XF, Cui GW (2021). Research progress on effects of root exudates on plant growth and soil nutrient uptake. Chinese Journal of Grassland, 43(11), 97-104. |
[吴清莹, 林宇龙, 孙一航, 魏千皓, 刘婧婷, 李雪峰, 崔国文 (2021). 根系分泌物对植物生长和土壤养分吸收的影响研究进展. 中国草地学报, 43(11), 97-104.] | |
[45] | Wu TN, Wu GL, Wang D, Shi ZH (2014). Soil-hydrological properties response to grazing exclusion in a steppe grassland of the Loess Plateau. Environmental Earth Sciences, 71, 745-752. |
[46] | Wu XW, Wang YC, Sun SC (2021). Long-term fencing decreases plant diversity and soil organic carbon concentration of the Zoige alpine meadows on the eastern Tibetan Plateau. Plant and Soil, 458, 191-200. |
[47] | Xiao YM, Li CB, Yang Y, Peng YF, Yang YH, Zhou GY (2020). Soil fungal community composition, not assembly process, was altered by nitrogen addition and precipitation changes at an alpine steppe. Frontiers in Microbiology, 11, 579072. DOI: 10.3389/fmicb.2020.579072. |
[48] | Yan S, Yin L, Dijkstra FA, Wang P, Cheng W (2023). Priming effect on soil carbon decomposition by root exudate surrogates: a meta-analysis. Soil Biology & Biochemistry, 178, 108955. DOI: 10.1016/j.soilbio.2023.108955. |
[49] | Yu HW, He YY, Zhang W, Chen L, Zhang JL, Zhang XB, Dawson W, Ding JQ (2022). Greater chemical signaling in root exudates enhances soil mutualistic associations in invasive plants compared to natives. New Phytologist, 236, 1140-1153. |
[50] | Yu Y, Zhou Y, Janssens IA, Deng Y, He X, Liu L, Yi Y, Xiao N, Wang X, Li C, Xiao C (2024). Divergent rhizosphere and non-rhizosphere soil microbial structure and function in long-term warmed steppe due to altered root exudation. Global Change Biology, 30, e17111. DOI: 10.1111/gcb.17111. |
[51] | Zhang BB, Liu F, Ding JZ, Fang K, Yang GB, Liu L, Chen YL, Li F, Yang YH (2016). Soil inorganic carbon stock in alpine grasslands on the Qinghai-Xizang Plateau: an updated evaluation using deep cores. Chinese Journal of Plant Ecology, 40, 93-101. |
[张蓓蓓, 刘芳, 丁金枝, 房凯, 杨贵彪, 刘莉, 陈永亮, 李飞, 杨元合 (2016). 青藏高原高寒草地3米深度土壤无机碳库及分布特征. 植物生态学报, 40, 93-101.]
DOI |
|
[52] | Zhang F, Hou Y, Zed R, Mauchline TH, Shen J, Zhang F, Jin K (2023a). Root exudation of organic acid anions and recruitment of beneficial actinobacteria facilitate phosphorus uptake by maize in compacted silt loam soil. Soil Biology & Biochemistry, 109074. DOI: 10.1016/j.soilbio.2023.109074. |
[53] | Zhang XB, Pei GT, Sun JF, Huang YX, Huang QQ, Xie HX, Mo JY, Zhao MJ, Hu BQ (2023b). Responses of soil nitrogen cycling to changes in aboveground plant litter inputs: a meta-analysis. Geoderma, 439, 116678. DOI: 10.1016/j.geoderma.2023.116678. |
[54] | Zhao M, Zhao J, Yuan J, Hale L, Wen T, Huang Q, Vivanco J, Zhou J, Kowalchuk GA, Shen Q (2021). Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth. Plant, Cell & Environment, 44, 613-628. |
[55] | Zheng D, Zhao DS (2017). Characteristics of natural environment of the Tibetan Plateau. Science & Technology Review, 35(6), 13-22. |
[郑度, 赵东升 (2017). 青藏高原的自然环境特征. 科技导报, 35(6), 13-22.]
DOI |
|
[56] |
Zhou M, Guo YM, Sheng J, Yuan YJ, Zhang WH, Bai WM (2022). Using anatomical traits to understand root functions across root orders of herbaceous species in a temperate steppe. New Phytologist, 234, 422-434.
DOI PMID |
[57] | Zhou S, Lin JJ, Wang P, Zhu P, Zhu B (2023b). Resistant soil organic carbon is more vulnerable to priming by root exudate fractions than relatively active soil organic carbon. Plant and Soil, 488, 71-82. |
[58] | Zhou X, Zhang J, Khashi u Rahman M, Gao D, Wei Z, Wu F, Dini-Andreote F (2023a). Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes. Molecular Plant, 16, 849-864. |
[59] | Zhu GD, Guo N, Lü GY, Wang CJ (2020). Effects of enclosure on soil physiochemical properties and stable carbon and nitrogen isotopes in Inner Mongolia Desert Steppe. Soils, 52, 840-845. |
[朱国栋, 郭娜, 吕广一, 王成杰 (2020). 围封对内蒙古荒漠草原土壤理化性质及稳定碳氮同位素的影响. 土壤, 52, 840-845.] |
[1] | 陈龙 郭柯 勾晓华 赵秀海 马泓若. 祁连圆柏林群落组成及特征[J]. 植物生态学报, 2025, 49(植被): 0-0. |
[2] | 梁天豪 熊德成 刘源豪 杜旭龙 杨智杰 黄锦学. 不同菌根类型树种的根系分泌物特征及其根际效应研究进展[J]. 植物生态学报, 2025, 49(预发表): 1-0. |
[3] | 于江珊, 许浩, 郭永忠, 侯继华. 器官年龄在油松叶、枝、根化学计量特征变异以及协调中的重要作用[J]. , 2025, 49(化学计量与功能性状): 0-. |
[4] | 张辉, 赵赟鹏, 刘晓琛, 郭增鹏, 胡国瑞, 冯彦皓, 马妙君. 高寒草甸退化过程中土壤种子库的变化及其在植物群落更新中的潜在作用[J]. 植物生态学报, 2025, 49(1): 74-82. |
[5] | 王雯莹, 肖元明, 王小赟, 徐嘉昕, 马玉花, 李强峰, 周国英. 多功能群物种配置模式下退化高寒草甸植物多样性与生态系统多功能性的关联[J]. 植物生态学报, 2025, 49(1): 103-117. |
[6] | 王麟, 李雪, 王愉, 王新, 胡小文, 杨梅, 朱剑霄. 不同配方种衣剂对高寒草地乡土草种种子生长与建植的影响[J]. 植物生态学报, 2025, 49(1): 118-128. |
[7] | 龙吉兰, 蒋铮, 刘定琴, 缪宇轩, 周灵燕, 冯颖, 裴佳宁, 刘瑞强, 周旭辉, 伏玉玲. 干旱下植物根系分泌物及其介导的根际激发效应研究进展[J]. 植物生态学报, 2024, 48(7): 817-827. |
[8] | 王艺彤, 叶尔江·拜克吐尔汉, 廖丹, 王娟. 雌雄异株植物髭脉槭不同生长阶段叶片元素计量特征与性二态间的相互关系[J]. 植物生态学报, 2024, 48(6): 760-769. |
[9] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[10] | 李昀奕, 郑矜, 严晓艳, 李霜, 罗林, 童晋, 赵春章. 云杉和华西箭竹叶际与根际细菌群落对增温的响应[J]. 植物生态学报, 2024, 48(12): 1692-1707. |
[11] | 李林, 孙毅, 杨晓琼, 方海东, 闫帮国. 七彩花生根瘤内生菌对氮添加的响应及其与植物化学计量特征的关系[J]. 植物生态学报, 2024, 48(10): 1374-1384. |
[12] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[13] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[14] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[15] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19