植物生态学报 ›› 2025, Vol. 49 ›› Issue (1): 118-128.DOI: 10.17521/cjpe.2024.0155 cstr: 32100.14.cjpe.2024.0155
王麟, 李雪, 王愉, 王新, 胡小文, 杨梅, 朱剑霄*()
收稿日期:
2024-05-13
接受日期:
2024-12-10
出版日期:
2025-01-20
发布日期:
2025-03-08
通讯作者:
* (jxzhu@lzu.edu.cn)基金资助:
WANG Lin, LI Xue, WANG Yu, WANG Xin, HU Xiao-Wen, YANG Mei, ZHU Jian-Xiao*()
Received:
2024-05-13
Accepted:
2024-12-10
Online:
2025-01-20
Published:
2025-03-08
Supported by:
摘要:
种子包衣技术是提高极端生境幼苗建植与生长的重要措施, 但现有包衣技术多应用于经济作物。该研究针对青藏高原主要补播草种田间出苗差、建植困难等问题, 设计了养分(N)、微生物菌剂(MC)和生长调节剂(G)等不同配方种衣剂, 分别采用室内盆栽和田间实验评价了不同种衣剂处理对3种禾草种子出苗和生长的影响。室内盆栽结果表明, 养分+菌剂+生长调节剂(NMCG)处理的垂穗披碱草(Elymus nutans)和草地早熟禾(Poa pratensis)出苗率优于其他配方, 出苗率较对照(填充剂包衣, CK3)分别提高了27%和44%。养分+菌剂(NMC)处理的垂穗披碱草地上和地下生物量均最高; 复合菌剂(MC2)处理的中华羊茅(Festuca sinensis)地上生物量最高, NMC处理的中华羊茅地下生物量最高; NMCG处理的草地早熟禾地上和地下生物量最高。田间实验结果表明, 补播NMCG处理种子后, 恢复草地高度、盖度和地上、地下生物量最高; 其他配方包衣的补播恢复效果也优于原生草地(CK1); 含有微生物菌剂的种衣剂处理, 均显著提高了恢复草地优质牧草比例。综上, NMCG包衣能够显著提高高寒退化草地3种禾草草种的田间建植与表现, 为乡土草种在青藏高原高寒退化草地的高效利用提供技术支撑。
王麟, 李雪, 王愉, 王新, 胡小文, 杨梅, 朱剑霄. 不同配方种衣剂对高寒草地乡土草种种子生长与建植的影响. 植物生态学报, 2025, 49(1): 118-128. DOI: 10.17521/cjpe.2024.0155
WANG Lin, LI Xue, WANG Yu, WANG Xin, HU Xiao-Wen, YANG Mei, ZHU Jian-Xiao. Effects of different coating agents on seed growth and planting of native grasses in alpine grassland. Chinese Journal of Plant Ecology, 2025, 49(1): 118-128. DOI: 10.17521/cjpe.2024.0155
处理方式 Treatment approach | 复合微生物菌剂有效菌活性浓度 Effective active concentration of compound microbial inoculant (×1012 cfu·mL-1) |
---|---|
菌剂+养分+生长调节剂 Microbial inoculant + nutrient + growth regulator | 3.0 ± 0.4b |
菌剂+养分+生长调节剂+杀菌剂 Microbial inoculant + nutrient + growth regulator + fungicide | 2.0 ± 0.8b |
菌剂+碳粉+杀菌剂 Microbial inoculant + carbon powder + fungicide | 4.7 ± 1.0a |
菌剂+养分+生长调节剂+碳粉 Microbial inoculant + nutrient + growth regulator + carbon powder | 6.2 ± 0.6a |
表1 添加碳粉对复合微生物菌剂有效菌活性浓度的影响(平均值±标准差)
Table 1 Effect of adding carbon powder on the active concentration of effective bacteria in the compound microbial inoculant (mean ± SD)
处理方式 Treatment approach | 复合微生物菌剂有效菌活性浓度 Effective active concentration of compound microbial inoculant (×1012 cfu·mL-1) |
---|---|
菌剂+养分+生长调节剂 Microbial inoculant + nutrient + growth regulator | 3.0 ± 0.4b |
菌剂+养分+生长调节剂+杀菌剂 Microbial inoculant + nutrient + growth regulator + fungicide | 2.0 ± 0.8b |
菌剂+碳粉+杀菌剂 Microbial inoculant + carbon powder + fungicide | 4.7 ± 1.0a |
菌剂+养分+生长调节剂+碳粉 Microbial inoculant + nutrient + growth regulator + carbon powder | 6.2 ± 0.6a |
编号 Number | 处理方式 Treatment approach | 具体配方 Detailed recipe |
---|---|---|
CK1 | 不补播 No reseeding | |
CK2 | 不包衣、补播 No seed coating, reseeding | |
CK3 | 种子填充剂包衣 Seed coating filler | 高岭土 Kaolin |
N | 复合肥+微肥 Compound fertilizer + microbial fertilizers | 农用复合肥2.5%、微肥0.1% Agricultural compound fertilizer 2.5%, microbial fertilizers 0.1% |
G | 生长调节剂 Growth regulator | 赤霉素+水杨酸+吲哚乙酸(等比) 1% Gibberellin + salicylic acid + 3-indoleacetic acid (equal ratio) 1% |
MC1 | 单一微生物菌剂+碳粉 Single-strain microbial inoculant + carbon powder | 蕈状芽孢杆菌5%、碳粉5% Bacillus mycelioides 5%, carbon powder 5% |
MC2 | 复合微生物菌剂+碳粉 Compound microbial inoculant + carbon powder | 复合微生物菌剂5%、碳粉5% Compound microbial inoculant 5%, carbon powder 5% |
NMC | 复合肥+微肥+复合微生物菌剂+碳粉 Compound fertilizer + microbial fertilizers + compound microbial agents + carbon powder | 农用复合肥2.5%、微肥0.1%、复合微生物菌剂5%、碳粉5% Agricultural compound fertilizer 2.5%, microbial fertilizers 0.1%, compound microbial inoculant 5%, carbon powder 5% |
NMCG | 复合肥+微肥+复合微生物菌剂+生长调节剂+碳粉 Compound fertilizer + microbial fertilizers + compound microbial inoculant + growth regulator + carbon powder | 农用复合肥2.5%、微肥0.1%、赤霉素+水杨酸+吲哚乙酸(等比) 1%、复合微生物菌剂5%、碳粉5% Agricultural compound fertilizer 2.5%, microbial fertilizers 0.1%, gibberellin + salicylic acid + 3 - indoleacetic acid (equal ratio) 1%, compound microbial inoculant 5%, carbon powder 5% |
表2 田间实验各处理种衣剂配方
Table 2 Seed coating formulations for different treatments in field experiments
编号 Number | 处理方式 Treatment approach | 具体配方 Detailed recipe |
---|---|---|
CK1 | 不补播 No reseeding | |
CK2 | 不包衣、补播 No seed coating, reseeding | |
CK3 | 种子填充剂包衣 Seed coating filler | 高岭土 Kaolin |
N | 复合肥+微肥 Compound fertilizer + microbial fertilizers | 农用复合肥2.5%、微肥0.1% Agricultural compound fertilizer 2.5%, microbial fertilizers 0.1% |
G | 生长调节剂 Growth regulator | 赤霉素+水杨酸+吲哚乙酸(等比) 1% Gibberellin + salicylic acid + 3-indoleacetic acid (equal ratio) 1% |
MC1 | 单一微生物菌剂+碳粉 Single-strain microbial inoculant + carbon powder | 蕈状芽孢杆菌5%、碳粉5% Bacillus mycelioides 5%, carbon powder 5% |
MC2 | 复合微生物菌剂+碳粉 Compound microbial inoculant + carbon powder | 复合微生物菌剂5%、碳粉5% Compound microbial inoculant 5%, carbon powder 5% |
NMC | 复合肥+微肥+复合微生物菌剂+碳粉 Compound fertilizer + microbial fertilizers + compound microbial agents + carbon powder | 农用复合肥2.5%、微肥0.1%、复合微生物菌剂5%、碳粉5% Agricultural compound fertilizer 2.5%, microbial fertilizers 0.1%, compound microbial inoculant 5%, carbon powder 5% |
NMCG | 复合肥+微肥+复合微生物菌剂+生长调节剂+碳粉 Compound fertilizer + microbial fertilizers + compound microbial inoculant + growth regulator + carbon powder | 农用复合肥2.5%、微肥0.1%、赤霉素+水杨酸+吲哚乙酸(等比) 1%、复合微生物菌剂5%、碳粉5% Agricultural compound fertilizer 2.5%, microbial fertilizers 0.1%, gibberellin + salicylic acid + 3 - indoleacetic acid (equal ratio) 1%, compound microbial inoculant 5%, carbon powder 5% |
图2 不同配方种衣剂处理下的3种禾草出苗率(平均值±标准差)。A, 垂穗披碱草。B, 中华羊茅。C, 草地早熟禾。不同小写字母表示14天出苗率在不同配方之间的差异显著(p < 0.05)。CK2, 裸种; CK3, 种子填充剂包衣; G, 生长调节剂; MC1, 单一菌剂; MC2, 复合菌剂; N, 复合肥; NMC, 养分+菌剂; NMCG, 养分+菌剂+生长调节剂。
Fig. 2 Germination rates of three types of grasses under different seed dressing formulations (mean ± SD). A, Elymus nutans. B, Festuca sinensis. C, Poa pratensis. Different lowercase letters indicate significant differences in the 14-day seedling emergence rates among different formulations (p < 0.05). CK2, no seed coating; CK3, seed coating fillers; G, growth regulator; MC1, single-strain microbial inoculant; MC2, compound microbial inoculant; N, compound fertilizer; NMC, microbial fertilizers + compound microbial inoculant; NMCG, microbial fertilizers + compound microbial inoculant + growth regulator.
图3 3种禾草地上生物量和地下生物量(平均值±标准差)。A, 垂穗披碱草。B, 中华羊茅。C, 草地早熟禾。不同小写字母表示地上/地下生物量在不同配方之间的差异显著(p < 0.05)。CK3, 种子填充剂包衣; G, 生长调节剂; MC1, 单一菌剂; MC2, 复合菌剂; N, 复合肥; NMC, 养分+菌剂; NMCG, 养分+菌剂+生长调节剂。
Fig. 3 Aboveground and belowground biomass of three types of grasslands (mean ± SD). A, Elymus nutans. B, Festuca sinensis. C, Poa pratensis. Different lowercase letters indicate significant differences in aboveground/belowground biomass among different formulations (p < 0.05). CK3, seed coating fillers; G, growth regulator; MC1, single-strain microbial inoculant; MC2, compound microbial inoculant; N, compound fertilizer; NMC, microbial fertilizers + compound microbial inoculant; NMCG, microbial fertilizers + compound microbial inoculant + growth regulator.
图4 不同配方种衣剂处理后补播草地盖度、高度、地上生物量和地下生物量(平均值±标准差)。A, 高度。B, 盖度。C, 地上生物量。D, 地下生物量。不同小写字母表示各指标在不同配方之间的差异显著(p < 0.05)。虚线表示均值, 实线表示中位数。CK1, 不补播; CK2, 裸种; CK3, 种子填充剂包衣; G, 生长调节剂; MC1, 单一菌剂; MC2, 复合菌剂; N, 复合肥; NMC, 养分+菌剂; NMCG, 养分+菌剂+生长调节剂。
Fig. 4 Coverage, height, aboveground biomass, and belowground biomass of reseeded grassland after treatment with different seed coating formulations (mean ± SD). A, Height. B, Coverage. C, Aboveground biomass. D, Belowground biomass. Different lowercase letters indicate significant differences among the indicators among different formulations (p < 0.05). The dotted line represents the mean, and the solid line represents the median. CK1, no reseeding; CK2, no seed coating; CK3, seed coating fillers; G, growth regulator; MC1, single-strain microbial inoculant; MC2, compound microbial inoculant; N, compound fertilizer; NMC, microbial fertilizers + compound microbial inoculant; NMCG, microbial fertilizers + compound microbial inoculant + growth regulator.
图5 不同配方种衣剂处理后补播草地各功能群盖度相对贡献。A, 菌剂作用。B, 菌剂、复合肥和生长调节剂作用。不同小写字母表示各指标在不同配方之间的差异显著(p < 0.05)。CK1, 不补播; MC1, 单一菌剂; MC2, 复合菌剂; NMC, 养分+菌剂; NMCG, 养分+菌剂+生长调节剂。
Fig. 5 Contribution to community coverage by plant functional groups and seed coating formulations. A, Role of microbial agent. B, Roles of microbial agent, compound fertilizer and growth regulator. Different lowercase letters indicate significant differences in various indicators among different formulations (p < 0.05). CK1, no reseeding; MC1, single-strain microbial inoculant; MC2, compound microbial inoculant; NMC, microbial fertilizers + compound microbial inoculant; NMCG, microbial fertilizers + compound microbial inoculant + growth regulator.
[1] | Aghili F, Jansa J, Khoshgoftarmanesh AH, Afyuni M, Schulin R, Frossard E, Gamper HA (2014). Wheat plants invest more in mycorrhizae and receive more benefits from them under adverse than favorable soil conditions. Applied Soil Ecology, 84, 93-111. |
[2] |
Ali-Rachedi S, Bouinot D, Marie-Hélène Wagner, Bonnet M, Sotta B, Jullien GM (2004). Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta, 219, 479-488.
DOI PMID |
[3] | Bian D, Li C, Yang XH, Bianbaciren, Li L (2008). Analysis of the situation of grassland and degradation and it’s mechanism of the alpine pastoral area in Northewestern Tibet. Journal of Natural Resources, 23(2), 254-262. |
[边多, 李春, 杨秀海, 边巴次仁, 李林 (2008). 藏西北高寒牧区草地退化现状与机理分析. 自然资源学报, 23(2), 254-262.] | |
[4] | Chen XJ, Yang J, Gengayangpi, Wang Y, Wang D, Yang K, Zhou S (2021). Effects of different fertilization treatments on alpine grassland. Journal of Southwest Minzu University (Natural Science Edition), 47, 342-347. |
[陈晓娟, 杨建, 根呷羊批, 王钰, 王导, 杨孔, 周俗 (2021). 不同施肥处理对高寒草地的影响. 西南民族大学学报(自然科学版), 47, 342-347.] | |
[5] | Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014). The role of gibberellin signalling in plant responses to abiotic stress. Journal of Experimental Biology, 217, 67-75. |
[6] | Davies KW, Boyd CS, Madsen MD, Kerby J, Hulet A (2018). Evaluating a seed technology for sagebrush restoration across an elevation gradient: support for bet hedging. Rangeland Ecology & Management, 71, 19-24. |
[7] | Diniz D, Oliveira KA, Guimarães JA, Carvalho RM, Machado J (2006). Incorporation of microorganisms, amino acids, micronutrients and growth regulators in lettuce seeds by the film-coating technique. Brazilian Journal of Seed, 28, 37-43. |
[8] | Han J, Cai YQ, Li X, Zhai M, Huang MH, Meng J (2023). Role of carbonaceous material carrier on microorganism immobilization and its application in environmental pollution control. Journal of Shenyang Agricultural University, 54(1), 121-128. |
[韩杰, 蔡元奇, 李欣, 翟旻, 黄明华, 孟军 (2023). 碳质材料载体对微生物的固定化作用及其在环境污染控制中的应用. 沈阳农业大学学报, 54(1), 121-128.] | |
[9] | Hang B, Yang XJ, Chen YP, Sun T, Zhao GY, Wang XY (2012). The impact of inorganic fertilizer combinated with humic acid ammonia and sodium nitrophenolate on corn growth. Humic Acid, (5), 25-28. |
[杭波, 杨晓军, 陈养平, 孙婷, 赵光跃, 王小宇 (2012). 无机肥料配合腐植酸铵、复硝酚钠对玉米生长的影响. 腐植酸, (5), 25-28.] | |
[10] | He JS, Bu HY, Hu XW, Feng YH, Li SL, Zhu JX, Liu GH, Wang YR, Nan ZB (2020). Close-to-nature restoration of degraded alpine grasslands: theoretical basis and technical approach. Chinese Science Bulletin, 65, 3898-3908. |
[贺金生, 卜海燕, 胡小文, 冯彦皓, 李守丽, 朱剑霄, 刘国华, 王彦荣, 南志标 (2020). 退化高寒草地的近自然恢复: 理论基础与技术途径. 科学通报, 65, 3898-3908.] | |
[11] | Jiang HY, Li HQ, Zhang WJ, Peng F, Jiang XW (2015). Effects of seed coating on the seed vigor of maize (Zea mays L.) during storage. Seed, 34(12), 76-80. |
[姜海燕, 李贺勤, 张文健, 彭飞, 江绪文 (2015). 种子包衣对玉米种子贮藏过程中种子活力的影响. 种子, 34(12), 76-80.] | |
[12] | Li JL (2008). Study on Seed Pelleting Technology of Kentucky Bluegrass and Festuca chinensis in Cold Region. Master degree dissertation, Qinghai University, Xining. |
[李积兰 (2008). 冷地早熟禾和中华羊茅种子丸粒化技术研究. 硕士学位论文, 青海大学, 西宁.] | |
[13] | Liu J, Zhang SC, Bao HJ, Ma XY, Du MC, Ji JL, Wang W (2024). Effects of microbial fertilizer on growth-promoting effect of Triticale seedlings under saline-alkali stress. Molecular Plant Breeding, 22, 4316-4323. |
[刘晶, 张树灿, 鲍海娟, 麻心玥, 杜明川, 纪金兰, 王伟 (2024). 微生物菌肥对盐碱胁迫下小黑麦幼苗促生效果的影响. 分子植物育种, 22, 4316-4323.] | |
[14] | Liu YC, Horisawa S, Mukohata Y (2010). Effect of seed coating on plant growth and soil conditions: a preliminary study for restoration of degraded rangeland in the Qinghai-Tibetan Plateau, China. Grassland Science, 56, 145-152. |
[15] | Ma Y, Dong Q, Xu ZL, Ding ZJ (2024). Effect of different growth promoters on seedling growth of Taxus chinensis. Forestry Science and Technology Information, 56(2), 103-105. |
[马媛, 董琼, 徐志立, 丁子建 (2024). 不同生长促进剂对红豆杉幼苗生长影响研究. 林业科技情报, 56(2), 103-105.] | |
[16] | Matthew C, Hofmann WA, Osborne MA (2009). Pasture response to gibberellins: a review and recommendations. New Zealand Journal of Agricultural Research, 52, 213-225. |
[17] | Mohammad A, Mitra B, Khan AG (2004). Effects of sheared-root inoculum of Glomus intraradices on wheat grown at different phosphorus levels in the field. Agriculture, Ecosystems & Environment, 103, 245-249. |
[18] | Peng YN, Zhao TW, Liang Y, Wang ZY, Ji B (2024). Improvement effect of compound microbial fertilizer on saline-alkali land in Hexi Corridor. South-Central Agricultural Science and Technology, (3), 3-8. |
[彭轶楠, 赵廷伟, 梁燕, 王治业, 季彬 (2024). 施用复合微生物菌肥对河西走廊盐碱地的改良效果. 中南农业科技, (3), 3-8.] | |
[19] | Ren L, Qu HX, Feng XP, Liu HP (2013). Study on formula selection of wheat seed coating agent and field effect after coating. Jiangsu Agricultural Sciences, 41(7), 62-65. |
[任璐, 屈会选, 冯晓鹏, 刘慧平 (2013). 小麦种衣剂配方筛选及包膜后田间效果研究. 江苏农业科学, 41(7), 62-65.] | |
[20] | Ren ZR, Shao XQ, Li JS, Li H, He YX, Gu WN, Wang RY, Yang LJ, Liu KS (2021). Effects of microbial fertilizer on aboveground biomass and soil physiochemical properties of degraded alpine meadow. Acta Agrestia Sinica, 29, 2265-2273. |
[任卓然, 邵新庆, 李金升, 李慧, 何宜璇, 古维娜, 王茹颖, 杨灵婧, 刘克思 (2021). 微生物菌肥对退化高寒草甸地上生物量和土壤理化性质的影响. 草地学报, 29, 2265-2273.]
DOI |
|
[21] | Rocha I, Ma Y, Souza-Alonso P, Vosátka M, Freitas H, Oliveira RS (2019). Seed coating: a tool for delivering beneficial microbes to agricultural crops. Frontiers in Plant Science, 10, 1357. DOI: 10.3389/fpls.2019.01357. |
[22] | Silletti S, Di Stasio E, van Oosten MJ, Ventorino V, Pepe O, Napolitano M, Marra R, Woo SL, Cirillo V, Maggio A (2021). Biostimulant activity of Azotobacter chroococcum and Trichoderma harzianum in durum wheat under water and nitrogen deficiency. Agronomy, 11, 380. DOI: 10.3390/agronomy11020380. |
[23] |
Song ZZ, Jiang ZH, Hou XQ, Fu Y, Yu ZM (2024). Preparation of microbial seed coating agents and their effect on barley growth. Journal of Nuclear Agricultural Sciences, 38, 1798-1804.
DOI |
[宋忠振, 姜子豪, 侯晓晴, 富洋, 俞志敏 (2024). 微生物种衣剂的制备及其对大麦生长的影响. 核农学报, 38, 1798-1804.]
DOI |
|
[24] | Su XT, Li YJ, Han YC, Sun ZP, Da CL (2024). Effects of chemical fertilizers and microbial fertilizer on soil nutrients and soil microbial biomass in degraded alpine meadow. Grassland and Turfgrass Science, 44(5), 1-12. |
[苏小桐, 李亚娟, 韩玉春, 孙志萍, 达朝玲 (2024). 化肥与菌肥配施对高寒退化草地土壤养分与土壤微生物量的影响. 草原与草坪, 44(5), 1-12.] | |
[25] | Szemruch CL, Ferrari L (2013). Encrusting offers protection against phytotoxic chemicals and maintains the physiological quality of sunflower (Helianthus annuus) seeds. Seed Science and Technology, 41, 125-132. |
[26] | Tang W, Zhang Y, Wang SP, Ding S, Qian C (2019). Application progress of microbial agents in water remediation. Journal of Environmental Engineering Technology, 9(2), 151-158. |
[唐伟, 张远, 王书平, 丁森, 钱昶 (2019). 微生物菌剂在水体修复中的应用进展. 环境工程技术学报, 9(2), 151-158.] | |
[27] | Tao LJ, Zhang JB, Dong ZW, Zhang SY, Liu SYH (2024). Effects of γ-polyglutamic acid combined with chemical fertilizer on soil microbial community structure and function in Xinjiang cotton fields. Acta Microbiologica Sinica, 30(5), 1-20. |
[陶龙锦, 张经博, 董正武, 张雨思, 刘隋赟昊 (2024). γ-聚谷氨酸配施化肥对新疆棉田土壤微生物群落结构及功能的影响. 微生物学报, 30(5), 1-20.] | |
[28] | Wang CT, Long RJ, Cao GM, Wang QL, Ding LM, Shi JJ (2006). Soil carbon and nitrogen contents along elevation gradients in the source region of Yangtze, Yellow and Lantsang rivers. Journal of Plant Ecology (Chinese Version), 30, 441-449. |
[王长庭, 龙瑞军, 曹广民, 王启兰, 丁路明, 施建军 (2006). 三江源地区主要草地类型土壤碳氮沿海拔变化特征及其影响因素. 植物生态学报, 30, 441-449.]
DOI |
|
[29] | Wang H, Lu SJ (2012). Experimental study on inoculation of rhizobia on eight alfalfa varieties by pelleting. Inner Mongolia Prataculture, 24(3), 21-25. |
[王宏, 陆绍军 (2012). 八种紫花苜蓿丸衣化接种根瘤菌试验研究. 内蒙古草业, 24(3), 21-25.] | |
[30] | Wang XY, Yang JS (2018). Research progress of seed coating technology. Bulletin of Agricultural Science and Technology, (12), 230-232. |
[王晓勇, 杨今胜 (2018). 种子包衣技术研究进展. 农业科技通讯, (12), 230-232.] | |
[31] | Wang ZY, Ye SY, Liao L, Zhu SM, Yu GJ, Sun XX, Lin WX (2006). The effects of different phosphorus, potassium and plant growth retardant application rates on the heat-resistance of Festuca arundinacea I. The influence of high temperature on protective enzymes in the leaves of Festuca arundinacea. Pratacultural Science, 23(7), 85-89. |
[王志勇, 叶水英, 廖丽, 朱寿民, 余高镜, 孙小霞, 林文雄 (2006). 磷钾肥和多效唑对高羊茅越夏性的影响研究I. 高温对高羊茅叶片中保护酶的影响. 草业科学, 23(7), 85-89.] | |
[32] | Williams MI, Dumroese RK, Page-Dumroese DS, Hardegree SP (2016). Can biochar be used as a seed coating to improve native plant germination and growth in arid conditions? Journal of Arid Environments, 125, 8-15. |
[33] | Wu M (2020). Study on the Effects of Microbial Agents on Soil and Plants in the Mu Us Sandy Land. Master degree dissertation, Beijing Forestry University, Beijing. |
[吴苗 (2020). 微生物菌剂对毛乌素沙地土壤和植物的影响研究. 硕士学位论文, 北京林业大学, 北京.] | |
[34] | Xiong TF, Lin QS, Feng X (2022). Effects of seed pelletized coating of plant growth regulators on seedling quality of choy sum. Seed, 41(6), 102-106. |
[熊腾飞, 林庆胜, 冯夏 (2022). 植物生长调节剂种子丸粒化包衣对菜心种苗质量的影响. 种子, 41(6), 102-106.] | |
[35] | Xu JY, Wang QH, Ma C, Liang M, Wang M, Xue S (2025). Impact of different artificial grass species on soil enzyme activity and enzyme stoichiometry in alpine regions. Research of Soil and Water Conservation, 32(1), 73-81. |
[徐嘉翊, 王巧红, 马铖, 梁蒙, 王梅, 薛萐 (2025). 高寒地区不同人工牧草种类对土壤酶活性及酶化学计量比的影响. 水土保持研究, 32(1), 73-81.] | |
[36] | Yang XL, Liu DX, He HJ, Zou JM, Wang DQ, Zhang L, Tang YY (2023). Preparation and characterization of EI-Co/Zr@AC and the mechanisms underlying its removal for atrazine in aqueous solution. Environmental Science and Pollution Research, 31, 5116-5131. |
[37] | Yang ZZ, Zhang CP, Dong QM, Yang XX, Chu H, Li XA, Wei LN, Zhang YF (2018). Effects of reseeding on plant community composition and diversity of moderately degraded alpine grassland in Qinghai-Tibetan Plateau. Acta Agrestia Sinica, 26, 1071-1077. |
[杨增增, 张春平, 董全民, 杨晓霞, 褚晖, 李小安, 魏琳娜, 张艳芬 (2018). 补播对中度退化高寒草地群落特征和多样性的影响. 草地学报, 26, 1071-1077.]
DOI |
|
[38] |
Zhang J, Feng YC, Yu ZJ, Huo SP, Zhang XD, Yan QJ, Xiang ZF, Zhang FK (2014). Effect of seeds coating within Fe, Mn, Mo on seedling growth in maize. Chinese Agricultural Science Bulletin, 30(24), 156-161.
DOI |
[张健, 冯云超, 余志江, 霍仕平, 张兴端, 晏庆九, 向振凡, 张芳魁 (2014). 玉米种子增铁、锰、钼包衣对幼苗生长影响. 中国农学通报, 30(24), 156-161.] | |
[39] | Zhang W, Li HY, Yao T, Li QP, Peng DC, He SM, Zhou Z, Chai JL (2024). Effects of adding a growth-promoting agent and organic fertilizer to alpine meadow on soil enzyme activities. Grassland and Turf, 44(1), 150-157. |
[张蔚, 李海云, 姚拓, 李青璞, 彭东超, 贺善睦, 周泽, 柴加丽 (2024). 促生菌剂及有机肥的添加对高寒草甸土壤酶活性的影响. 草原与草坪, 44(1), 150-157.] | |
[40] | Zhao GF (2022). Design of seed coating process in alpine region. Agricultural Machinery Using & Maintenance, (9), 121-123. |
[赵国福 (2022). 一种高寒地区种子包衣工艺设计. 农机使用与维修, (9), 121-123.] | |
[41] | Zheng GD, Gong S, Huang YX, Huang JT (2022). Effects of different amounts of combination of organic fertilizer and microbial agent on yield, quality of peanut and soil fertility. Journal of Peanut Science, 51(2), 25-31. |
[郑国栋, 龚屾, 黄炎霞, 黄金堂 (2022). 不同用量有机肥与菌剂组合对花生产量、品质及土壤肥力的影响. 花生学报, 51(2), 25-31.] | |
[42] | Zhou YF, Bai YS, Yue T, Li QW, Huang YN, Jiang W, He C, Wang JB (2023). Research progress on the growth- promoting characteristics of plant growth-promoting rhizobacteria. Microbiology China, 50, 644-666. |
[周益帆, 白寅霜, 岳童, 李庆伟, 黄艳娜, 蒋玮, 何川, 王金斌 (2023). 植物根际促生菌促生特性研究进展. 微生物学通报, 50, 644-666.] | |
[43] | Zhu XF, Sun Y, Wang SP, Wang H, Zhao JN, Wang M (2020). Effects of microbial seed coat on quinoa yield and growth. Journal of Plateau Agriculture, 4, 551-557. |
[朱雪峰, 孙玉, 王生萍, 王红, 赵建宁, 旺姆 (2020). 微生物种衣剂对藜麦产量及生长发育的影响. 高原农业, 4, 551-557.] | |
[44] |
Zohar-Perez C, Chernin L, Chet I, Nussinovitch A (2003). Structure of dried cellular alginate matrix containing fillers provides extra protection for microorganisms against UVC radiation. Radiation Research, 160, 198-204.
PMID |
[1] | 陈龙 郭柯 勾晓华 赵秀海 马泓若. 祁连圆柏林群落组成及特征[J]. 植物生态学报, 2025, 49(植被): 0-0. |
[2] | 王娟 张登山 肖元明 裴全帮 王博 樊博 周国英. 长期围封后高寒草原植物根系分泌物特征与环境因子关系[J]. 植物生态学报, 2025, 49(预发表): 1-0. |
[3] | 郝毅晴, 刘伟, 杨阳, 安冰儿, 范冰, 李超, 崔久辉, 程延彬, 孙佳美, 潘庆民. 有机肥和无机肥对退化草原羊草种群密度和个体生物量的影响[J]. 植物生态学报, 2025, 49(1): 148-158. |
[4] | 王雯莹, 肖元明, 王小赟, 徐嘉昕, 马玉花, 李强峰, 周国英. 多功能群物种配置模式下退化高寒草甸植物多样性与生态系统多功能性的关联[J]. 植物生态学报, 2025, 49(1): 103-117. |
[5] | 张辉, 赵赟鹏, 刘晓琛, 郭增鹏, 胡国瑞, 冯彦皓, 马妙君. 高寒草甸退化过程中土壤种子库的变化及其在植物群落更新中的潜在作用[J]. 植物生态学报, 2025, 49(1): 74-82. |
[6] | 马东峰, 贾存智, 王学朋, 赵鹏鹏, 胡小文. 甘南高寒退化草甸多物种组配的修复效果评估[J]. 植物生态学报, 2025, 49(1): 93-102. |
[7] | 夏敏菖, 李倩倩, 钱清清, 任淑君, 梁应冲, 陈亭颖, 李映佳, 牟宗敏, 陈穗云. 青霉菌灭活菌丝体对白车轴草和黑麦草生长及生理特性的影响[J]. 植物生态学报, 2025, 49(1): 189-198. |
[8] | 李昀奕, 郑矜, 严晓艳, 李霜, 罗林, 童晋, 赵春章. 云杉和华西箭竹叶际与根际细菌群落对增温的响应[J]. 植物生态学报, 2024, 48(12): 1692-1707. |
[9] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[10] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[11] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[12] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[13] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[14] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[15] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19