植物生态学报 ›› 2025, Vol. 49 ›› Issue (4): 585-595.DOI: 10.17521/cjpe.2024.0140 cstr: 32100.14.cjpe.2024.0140
杜英杰, 范爱连, 王雪, 闫晓俊, 陈廷廷, 贾林巧, 姜琦, 陈光水*()
收稿日期:
2024-05-06
接受日期:
2024-11-12
出版日期:
2025-04-20
发布日期:
2025-04-18
通讯作者:
* (gschen@fjnu.edu.cn)基金资助:
DU Ying-Jie, FAN Ai-Lian, WANG Xue, YAN Xiao-Jun, CHEN Ting-Ting, JIA Lin-Qiao, JIANG Qi, CHEN Guang-Shui*()
Received:
2024-05-06
Accepted:
2024-11-12
Online:
2025-04-20
Published:
2025-04-18
Contact:
* (gschen@fjnu.edu.cn)
Supported by:
摘要:
研究叶片和细根功能性状的协调性及差异, 有助于从植物整体的角度更好地认识植物的生态策略。为此, 该研究通过对福建省万木林自然保护区天然常绿阔叶林内20种木本植物(10种乔木、10种灌木)的叶片与根性状进行测定与分析, 探讨亚热带天然常绿阔叶林乔木与林下灌木树种根叶功能性状协调性及生存策略的差异。研究发现, 叶片与1级根相似性状间, 仅叶氮浓度和根氮浓度间存在较强的相关性, 且不受系统发育影响。群落内叶性状存在一个叶经济轴和叶组织密度-叶厚度变异轴, 1级根性状存在一个合作轴(由负相关的根直径-比根长表示)和根经济轴(由负相关的根氮浓度-根组织密度表示)。根叶经济轴之间无显著相关性。乔木和灌木间仅在根系合作轴上存在显著差异, 乔木具有较大的根直径, 而灌木具有较高的比根长。除此之外, 灌木的比叶面积显著大于乔木。研究结果表明, 亚热带天然常绿阔叶林群落内叶性状与根性状呈现复杂的整合关系, 乔木和灌木间采取不同的地上和地下策略来适应群落内的生境异质性。该研究结果扩充了对局部尺度上根叶性状间协调性的认识, 有助于深入理解群落内的生态过程和物种共存机制。
杜英杰, 范爱连, 王雪, 闫晓俊, 陈廷廷, 贾林巧, 姜琦, 陈光水. 亚热带天然常绿阔叶林乔木树种与林下灌木树种根-叶功能性状协调性及差异. 植物生态学报, 2025, 49(4): 585-595. DOI: 10.17521/cjpe.2024.0140
DU Ying-Jie, FAN Ai-Lian, WANG Xue, YAN Xiao-Jun, CHEN Ting-Ting, JIA Lin-Qiao, JIANG Qi, CHEN Guang-Shui. Coordination and differences in root-leaf functional traits between tree species and understory shrub species in a subtropical natural evergreen broadleaf forest. Chinese Journal of Plant Ecology, 2025, 49(4): 585-595. DOI: 10.17521/cjpe.2024.0140
物种 Species | 科 Family | 生长型 Growth form |
---|---|---|
米槠 Castanopsis carlesii | 壳斗科 Fagaceae | 乔木 Tree |
青冈 Cyclobalanopsis glauca | 壳斗科 Fagaceae | 乔木 Tree |
罗浮锥 Castanopsis faberi | 壳斗科 Fagaceae | 乔木 Tree |
苦槠 Castanopsis sclerophylla | 壳斗科 Fagaceae | 乔木 Tree |
观光木 Michelia odora | 木兰科 Magnoliaceae | 乔木 Tree |
沉水樟 Cinnamomum micranthum | 樟科 Lauraceae | 乔木 Tree |
刨花润楠 Machilus pauhoi | 樟科 Lauraceae | 乔木 Tree |
天竺桂 Cinnamomum japonicum | 樟科 Lauraceae | 乔木 Tree |
细柄蕈树 Altingia gracilipes | 蕈树科 Altingiaceae | 乔木 Tree |
木荷 Schima superba | 山茶科 Theaceae | 乔木 Tree |
杜茎山 Maesa japonica | 报春花科 Primulaceae | 灌木 Shrub |
罗浮冬青 Ilex tutcheri | 冬青科 Aquifoliaceae | 灌木 Shrub |
三花冬青 Ilex triflora | 冬青科 Aquifoliaceae | 灌木 Shrub |
檵木 Loropetalum chinense | 金缕梅科 Hamamelidaceae | 灌木 Shrub |
尖叶假蚊母树 Distyliopsis dunnii | 金缕梅科 Hamamelidaceae | 灌木 Shrub |
狗骨柴 Diplospora dubia | 茜草科 Rubiaceae | 灌木 Shrub |
娥眉鼠刺 Itea omeiensis | 鼠刺科 Iteaceae | 灌木 Shrub |
华幌伞枫 Heteropanax chinensis | 五加科 Araliaceae | 灌木 Shrub |
细枝柃 Eurya loquaiana | 五列木科 Pentaphylacaceae | 灌木 Shrub |
杨桐 Adinandra milletii | 五列木科 Pentaphylacaceae | 灌木 Shrub |
表1 万木林自然保护区所研究树种及所属科名、生长型
Table 1 Species and family names and growth types studied in Wanmulin Nature Reserve
物种 Species | 科 Family | 生长型 Growth form |
---|---|---|
米槠 Castanopsis carlesii | 壳斗科 Fagaceae | 乔木 Tree |
青冈 Cyclobalanopsis glauca | 壳斗科 Fagaceae | 乔木 Tree |
罗浮锥 Castanopsis faberi | 壳斗科 Fagaceae | 乔木 Tree |
苦槠 Castanopsis sclerophylla | 壳斗科 Fagaceae | 乔木 Tree |
观光木 Michelia odora | 木兰科 Magnoliaceae | 乔木 Tree |
沉水樟 Cinnamomum micranthum | 樟科 Lauraceae | 乔木 Tree |
刨花润楠 Machilus pauhoi | 樟科 Lauraceae | 乔木 Tree |
天竺桂 Cinnamomum japonicum | 樟科 Lauraceae | 乔木 Tree |
细柄蕈树 Altingia gracilipes | 蕈树科 Altingiaceae | 乔木 Tree |
木荷 Schima superba | 山茶科 Theaceae | 乔木 Tree |
杜茎山 Maesa japonica | 报春花科 Primulaceae | 灌木 Shrub |
罗浮冬青 Ilex tutcheri | 冬青科 Aquifoliaceae | 灌木 Shrub |
三花冬青 Ilex triflora | 冬青科 Aquifoliaceae | 灌木 Shrub |
檵木 Loropetalum chinense | 金缕梅科 Hamamelidaceae | 灌木 Shrub |
尖叶假蚊母树 Distyliopsis dunnii | 金缕梅科 Hamamelidaceae | 灌木 Shrub |
狗骨柴 Diplospora dubia | 茜草科 Rubiaceae | 灌木 Shrub |
娥眉鼠刺 Itea omeiensis | 鼠刺科 Iteaceae | 灌木 Shrub |
华幌伞枫 Heteropanax chinensis | 五加科 Araliaceae | 灌木 Shrub |
细枝柃 Eurya loquaiana | 五列木科 Pentaphylacaceae | 灌木 Shrub |
杨桐 Adinandra milletii | 五列木科 Pentaphylacaceae | 灌木 Shrub |
叶性状 Leaf trait | K | λ | 根性状 Root trait | K | λ |
---|---|---|---|---|---|
叶厚度 Leaf thickness | 0.11 | 0.00 | 根直径 Root diameter | 0.69 | 0.93 |
比叶面积 Specific leaf area | 0.14 | 0.00 | 比根长 Specific root length | 0.39 | 0.79 |
叶组织密度 Leaf tissue density | 0.14 | 0.00 | 根组织密度 Root tissue density | 0.39 | 0.20 |
叶碳浓度 Leaf carbon concentration | 0.19 | 0.33 | 根碳浓度 Root carbon concentration | 0.13 | 0.00 |
叶氮浓度 Leaf nitrogen concentration | 0.36 | 0.00 | 根氮浓度 Root nitrogen concentration | 0.83 | 0.92 |
表2 亚热带天然常绿阔叶林乔木与灌木叶与1级根性状的系统发育信号
Table 2 Phylogenetic signaling of leaf and first-order root traits of tree and shrub species in a subtropical natural evergreen broadleaf forest
叶性状 Leaf trait | K | λ | 根性状 Root trait | K | λ |
---|---|---|---|---|---|
叶厚度 Leaf thickness | 0.11 | 0.00 | 根直径 Root diameter | 0.69 | 0.93 |
比叶面积 Specific leaf area | 0.14 | 0.00 | 比根长 Specific root length | 0.39 | 0.79 |
叶组织密度 Leaf tissue density | 0.14 | 0.00 | 根组织密度 Root tissue density | 0.39 | 0.20 |
叶碳浓度 Leaf carbon concentration | 0.19 | 0.33 | 根碳浓度 Root carbon concentration | 0.13 | 0.00 |
叶氮浓度 Leaf nitrogen concentration | 0.36 | 0.00 | 根氮浓度 Root nitrogen concentration | 0.83 | 0.92 |
图1 亚热带天然常绿阔叶林乔木与灌木叶与1级根性状的相关网络。A, 未去除系统发育信号。B, 去除系统发育信号。LCC, 叶碳浓度; LNC, 叶氮浓度量; LT, 叶厚度; LTD, 叶组织密度; RCC, 根碳浓度; RD, 根直径; RNC, 根氮浓度; RTD, 根组织密度; SLA, 比叶面积; SRL, 比根长。节点代表植物性状。括号中的数字表示该性状与其他性状之间的联系总数。蓝边和红边分别表示正相关和负相关(p < 0.05)。
Fig. 1 Correlation networks between leaf and first-order root traits of tree and shrub species in a subtropical natural evergreen broadleaf forest. A, Without removal of phylogenetic signals. B, With removal phylogenetic signals. LCC, leaf carbon concentration; LNC, leaf nitrogen concentration; LT, leaf thickness; LTD, leaf tissue density; RCC, root carbon concentration; RD, root diameter; RNC, root nitrogen concentration; RTD, root tissue density; SLA, specific leaf area; SRL, specific root length. Nodes represent plant traits. Numbers in parentheses indicate the total number of associations between the trait and other traits. Blue and red edges indicate positive and negative correlations, respectively (p < 0.05).
图2 亚热带天然常绿阔叶林乔木与灌木叶、1级根功能性状的主成分分析(PCA)及系统发育主成分分析(pPCA)。A, 叶片性状的主成分分析。B, 1级根性状的主成分分析。C, 叶片性状的系统发育主成分分析。D, 1级根性状的系统发育主成分分析。LCC, 叶碳浓度; LNC, 叶氮浓度; LT, 叶厚度; LTD, 叶组织密度; RCC, 根碳浓度; RD, 根直径; RNC, 根氮浓度; RTD, 根组织密度; SLA, 比叶面积; SRL, 比根长。
Fig. 2 Principal component analysis (PCA) and phylogenetic principal component analysis (pPCA) of leaf and first-order root functional traits of tree and shrub species in a subtropical natural evergreen broadleaf forest. A, PCA of leaf traits. B, PCA of first-order root traits. C, pPCA of leaf traits. D, pPCA of first-order root traits. LCC, leaf carbon concentration; LNC, leaf nitrogen concentration; LT, leaf thickness; LTD, leaf tissue density; RCC, root carbon concentration; RD, root diameter; RNC, root nitrogen concentration; RTD, root tissue density; SLA, specific leaf area; SRL, specific root length.
叶PC1 Leaf PC1 | 叶PC2 Leaf PC2 | 叶pPC1 Leaf pPC1 | 叶pPC2 Leaf pPC2 | |
---|---|---|---|---|
根PC1 Root PC1 | -0.342 (0.14) | -0.136 (0.57) | ||
根PC2 Root PC2 | 0.002 (0.99) | 0.437 (0.11) | ||
根pPC1 Root pPC1 | 0.342 (0.14) | 0.134 (0.57) | ||
根pPC2 Root pPC2 | 0.004 (0.99) | 0.438 (0.11) |
表3 亚热带天然常绿阔叶林叶片与1级根前两主成分间的相关关系(p值)
Table 3 Correlations between the first two principal components of leaf and first-order root in a subtropical natural evergreen broadleaf forest (p value)
叶PC1 Leaf PC1 | 叶PC2 Leaf PC2 | 叶pPC1 Leaf pPC1 | 叶pPC2 Leaf pPC2 | |
---|---|---|---|---|
根PC1 Root PC1 | -0.342 (0.14) | -0.136 (0.57) | ||
根PC2 Root PC2 | 0.002 (0.99) | 0.437 (0.11) | ||
根pPC1 Root pPC1 | 0.342 (0.14) | 0.134 (0.57) | ||
根pPC2 Root pPC2 | 0.004 (0.99) | 0.438 (0.11) |
主成分分析 PCA | 轴 Axis | F | p | 系统发育主成分分析 pPCA | 轴 Axis | F | p |
---|---|---|---|---|---|---|---|
叶片 Leaf | PC1 | 0.165 | 0.689 | 叶片 Leaf | pPC1 | 0.165 | 0.689 |
PC2 | 1.422 | 0.249 | pPC2 | 1.422 | 0.249 | ||
细根 Fine root | PC1 | 12.545 | 0.002 | 细根 Fine root | pPC1 | 12.485 | 0.002 |
PC2 | 0.795 | 0.384 | pPC2 | 0.824 | 0.376 |
表4 亚热带天然常绿阔叶林乔木与灌木叶与1级根性状在经济轴得分的差异
Table 4 Differences in economic axis scores for leaf and first-order root traits between tree and shrub species in a subtropical natural evergreen broadleaf forest
主成分分析 PCA | 轴 Axis | F | p | 系统发育主成分分析 pPCA | 轴 Axis | F | p |
---|---|---|---|---|---|---|---|
叶片 Leaf | PC1 | 0.165 | 0.689 | 叶片 Leaf | pPC1 | 0.165 | 0.689 |
PC2 | 1.422 | 0.249 | pPC2 | 1.422 | 0.249 | ||
细根 Fine root | PC1 | 12.545 | 0.002 | 细根 Fine root | pPC1 | 12.485 | 0.002 |
PC2 | 0.795 | 0.384 | pPC2 | 0.824 | 0.376 |
图3 亚热带天然常绿阔叶林乔木和灌木叶片和1级根性状对比。ns, p > 0.1; †, 0.05 < p < 0.1; *, p < 0.05; **, p < 0.01; “—”为中位数, “□”表示平均值。
Fig. 3 Comparison of leaf and first-order root traits of trees and shrubs in a subtropical natural evergreen broadleaf forest. ns, p > 0.1; †, 0.05 < p < 0.1; *, p < 0.05; **, p < 0.01; “—”is median, and “□”indicates mean.
[1] |
Ackerly D, Knight C, Weiss S, Barton K, Starmer K (2002). Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia, 130, 449-457.
DOI PMID |
[2] | Bardgett RD, Mommer L, de Vries FT (2014). Going underground: root traits as drivers of ecosystem processes. Trends in Ecology & Evolution, 29, 692-699. |
[3] | Bergmann J, Weigelt A, van Der Plas F, Laughlin DC, Kuyper TW, Guerrero-Ramirez NR, Valverde-Barrantes OJ, Bruelheide H, Freschet GT, Iversen CM, Kattge J, McCormack ML, Meier IC, Rillig MC, Roumet C, et al. (2020). The fungal collaboration gradient dominates the root economics space in plants. Science Advances, 6, eaba3756. DOI: 10.1126/sciadv.aba3756. |
[4] |
Blomberg SP, Garland Jr T, Ives AR (2003). Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution, 57, 717-745.
DOI PMID |
[5] |
Chen WL, Koide RT, Adams TS, DeForest JL, Cheng L, Eissenstat DM (2016). Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proceedings of the National Academy of Sciences of the United States of America, 113, 8741-8746.
DOI PMID |
[6] | Chen YT, Xu ZZ (2014). Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 38, 1135-1153. |
[陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.]
DOI |
|
[7] | Cheng JH, Chu PF, Chen DM, Bai YF (2016). Functional correlations between specific leaf area and specific root length along a regional environmental gradient in Inner Mongolia grasslands. Functional Ecology, 30, 985-997. |
[8] | Craine JM, Lee WG, Bond WJ, Williams RJ, Johnson LC (2005). Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology, 86, 12-19. |
[9] | Erktan A, Roumet C, Munoz F (2023). Dissecting fine root diameter distribution at the community level captures root morphological diversity. Oikos, 2023, e08907. DOI: 10.1111/oik.08907. |
[10] | Evans JR, Poorter H (2001). Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell & Environment, 24, 755-767. |
[11] | Freschet GT, Cornelissen JHC, Aerts R (2010). Evidence of the ‘plant economics spectrum’ in a subarctic flora. Journal of Ecology, 98, 362-373. |
[12] |
Freschet GT, Violle C, Bourget MY, Scherer-Lorenzen M, Fort F (2018). Allocation, morphology, physiology, architecture: the multiple facets of plant above- and below-ground responses to resource stress. New Phytologist, 219, 1338-1352.
DOI PMID |
[13] |
Geng Y, Wang L, Jin DM, Liu HY, He JS (2014). Alpine climate alters the relationships between leaf and root morphological traits but not chemical traits. Oecologia, 175, 445-455.
DOI PMID |
[14] |
Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ (2008). Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist, 180, 673-683.
DOI PMID |
[15] | Holdaway RJ, Richardson SJ, Dickie IA, Peltzer DA, Coomes DA (2011). Species- and community-level patterns in fine root traits along a 120 000-year soil chronosequence in temperate rain forest. Journal of Ecology, 99, 954-963. |
[16] | Hu YK, Pan X, Yang XJ, Liu GF, Liu XY, Song YB, Zhang MY, Cui LJ, Dong M (2019). Is there coordination of leaf and fine root traits at local scales? A test in temperate forest swamps. Ecology and Evolution, 9, 8714-8723. |
[17] | Jin N, Yu XC, Dong JL, Duan MC, Mo YX, Feng LY, Bai R, Zhao JL, Song J, Dossa GGO, Lu HZ (2024). Vertical variation in leaf functional traits of Parashorea chinensis with different canopy layers. Frontiers in Plant Science, 15, 1335524. DOI: 10.3389/fpls.2024.1335524. |
[18] | Joswig JS, Wirth C, Schuman MC, Kattge J, Reu B, Wright IJ, Sippel SD, Rüger N, Richter R, Schaepman ME, van Bodegom PM, Cornelissen JHC, Díaz S, Hattingh WN, Kramer K, et al. (2022). Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nature Ecology & Evolution, 6, 36-50. |
[19] | Kandlikar GS, Kleinhesselink AR, Kraft NJB (2022). Functional traits predict species responses to environmental variation in a California grassland annual plant community. Journal of Ecology, 110, 833-844. |
[20] |
Kitajima K, Poorter L (2010). Tissue-level leaf toughness, but not Lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytologist, 186, 708-721.
DOI PMID |
[21] | Kleyer M, Trinogga J, Cebrián-Piqueras MA, Trenkamp A, Fløjgaard C, Ejrnæs R, Bouma TJ, Minden V, Maier M, Mantilla-Contreras J, Albach DC, Blasius B (2019). Trait correlation network analysis identifies biomass allocation traits and stem specific length as hub traits in herbaceous perennial plants. Journal of Ecology, 107, 829-842. |
[22] |
Kong DL, Ma CG, Zhang Q, Li L, Chen XY, Zeng H, Guo DL (2014). Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist, 203, 863-872.
DOI PMID |
[23] | Kong DL, Wang JJ, Kardol P, Wu HF, Zeng H, Deng XB, Deng Y (2016). Economic strategies of plant absorptive roots vary with root diameter. Biogeosciences, 13, 415-424. |
[24] | Kramer-Walter KR, Bellingham PJ, Millar TR, Smissen RD, Richardson SJ, Laughlin DC (2016). Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. Journal of Ecology, 104, 1299-1310. |
[25] | Li YP, Ni YL, Xu H, Lian JY, Ye WH (2021). Relationship between variation of plant functional traits and individual growth at different vertical layers in a subtropical evergreen broad-leaved forest of Dinghushan. Biodiversity Science, 29, 1186-1197. |
[李艳朋, 倪云龙, 许涵, 练琚愉, 叶万辉 (2021). 鼎湖山南亚热带常绿阔叶林植物功能性状变异与不同垂直层次个体生长的关联. 生物多样性, 29, 1186-1197.]
DOI |
|
[26] |
Liu GF, Freschet GT, Pan X, Cornelissen JHC, Li Y, Dong M (2010). Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytologist, 188, 543-553.
DOI PMID |
[27] | Luo XZ, Keenan TF, Chen JM, Croft H, Colin Prentice I, Smith NG, Walker AP, Wang H, Wang R, Xu C, Zhang Y (2021). Global variation in the fraction of leaf nitrogen allocated to photosynthesis. Nature Communications, 12, 4866. DOI: 10.1038/s41467-021-25163-9. |
[28] | Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO (2018). Evolutionary history resolves global organization of root functional traits. Nature, 555, 94-97. |
[29] | Makita N, Hirano Y, Yamanaka T, Yoshimura K, Kosugi Y (2012). Ectomycorrhizal-fungal colonization induces physio-morphological changes in Quercus serrata leaves and roots. Journal of Plant Nutrition and Soil Science, 175, 900-906. |
[30] |
McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo DL, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, et al. (2015). Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 207, 505-518.
DOI PMID |
[31] | Niinemets Ü (2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82, 453-469. |
[32] |
Niinemets Ü, Ellsworth DS, Lukjanova A, Tobias M (2001). Site fertility and the morphological and photosynthetic acclimation of Pinus sylvestris needles to light. Tree Physiology, 21, 1231-1244.
PMID |
[33] | Ntawuhiganayo EB, Uwizeye FK, Zibera E, Dusenge ME, Ziegler C, Ntirugulirwa B, Nsabimana D, Wallin G, Uddling J (2020). Traits controlling shade tolerance in tropical montane trees. Tree Physiology, 40, 183-197. |
[34] | Pagel M (1999). Inferring the historical patterns of biological evolution. Nature, 401, 877-884. |
[35] |
Poorter H, Lambers H, Evans JR (2014). Trait correlation networks: a whole-plant perspective on the recently criticized leaf economic spectrum. New Phytologist, 201, 378-382.
DOI PMID |
[36] | Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182, 565-588. |
[37] |
Silva JLA, Souza AF, Caliman A, Voigt EL, Lichston JE (2018). Weak whole-plant trait coordination in a seasonally dry South American stressful environment. Ecology and Evolution, 8, 4-12.
DOI PMID |
[38] | Silvertown J (2004). Plant coexistence and the niche. Trends in Ecology & Evolution, 19, 605-611. |
[39] |
Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D (2005). Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytologist, 167, 493-508.
PMID |
[40] |
Valladares F, Martinez-ferri E, Balaguer L, Perez-corona E, Manrique E (2000). Low leaf-level response to light and nutrients in Mediterranean evergreen oaks: a conservative resource-use strategy? New Phytologist, 148, 79-91.
DOI PMID |
[41] |
Valverde-Barrantes OJ, Freschet GT, Roumet C, Blackwood CB (2017). A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytologist, 215, 1562-1573.
DOI PMID |
[42] | Valverde-Barrantes OJ, Horning AL, Smemo KA, Blackwood CB (2016). Phylogenetically structured traits in root systems influence arbuscular mycorrhizal colonization in woody angiosperms. Plant and Soil, 404, 1-12. |
[43] | Valverde-Barrantes OJ, Smemo KA, Blackwood CB (2015). Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Functional Ecology, 29, 796-807. |
[44] | Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J (2012). The return of the variance: intraspecific variability in community ecology. Trends in Ecology & Evolution, 27, 244-252. |
[45] | Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892. |
[46] |
Wang RL, Wang QF, Zhao N, Yu GR, He NP (2017). Complex trait relationships between leaves and absorptive roots: coordination in tissue N concentration but divergence in morphology. Ecology and Evolution, 7, 2697-2705.
DOI PMID |
[47] | Wang ZY, Chen XP, Cheng Y, Wang MT, Zhong QL, Li M, Cheng DL (2021). Leaf and fine root economics spectrum across 49 woody plant species in Wuyi Mountains. Chinese Journal of Plant Ecology, 45, 242-252. |
[王钊颖, 陈晓萍, 程英, 王满堂, 钟全林, 李曼, 程栋梁 (2021). 武夷山49种木本植物叶片与细根经济谱. 植物生态学报, 45, 242-252.] | |
[48] | Weemstra M, Freschet GT, Stokes A, Roumet C (2020). Patterns in intraspecific variation in root traits are species-specific along an elevation gradient. Functional Ecology, 35, 342-356. |
[49] |
Weemstra M, Mommer L, Visser EJW, van Ruijven J, Kuyper TW, Mohren GMJ, Sterck FJ (2016). Towards a multidimensional root trait framework: a tree root review. New Phytologist, 211, 1159-1169.
DOI PMID |
[50] |
Weigelt A, Mommer L, Andraczek K, Iversen CM, Bergmann J, Bruelheide H, Fan Y, Freschet GT, Guerrero-Ramírez NR, Kattge J, Kuyper TW, Laughlin DC, Meier IC, van der Plas F, Poorter H, et al. (2021). An integrated framework of plant form and function: the belowground perspective. New Phytologist, 232, 42-59.
DOI PMID |
[51] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[52] | Yang YY, Xiao CC, Wu XM, Long WX, Feng G, Liu GY (2021). Differing trade-off patterns of tree vegetative organs in a tropical cloud forest. Frontiers in Plant Science, 12, 680379. DOI: 10.3389/fpls.2021.680379. |
[53] | Zhou T, Cui YC, Ye YY, Zhao WJ, Hou YJ, Wu P, Ding FJ (2022). Leaf functional traits of typical karst forest plants under different niches. Journal of Central South University of Forestry & Technology, 42(10), 129-140. |
[周汀, 崔迎春, 叶雨艳, 赵文君, 侯贻菊, 吴鹏, 丁访军 (2022). 不同小生境下典型喀斯特森林植物叶片功能性状特征. 中南林业科技大学学报, 42(10), 129-140.] |
[1] | 王梦雪 胡明艳 储诚进 陈阳 罗文启 马子龙. 亚热带森林不同菌根真菌树种叶片和细根的C、N、P化学计量特征[J]. 植物生态学报, 2025, 49(化学计量与功能性状): 0-0. |
[2] | 赵洪贤, 刘鹏, 史曼英, 徐铭泽, 贾昕, 田赟, 查天山. 毛乌素沙地典型固沙植物黑沙蒿和赖草叶片氮分配对最大净光合速率的影响[J]. 植物生态学报, 2025, 49(3): 460-474. |
[3] | 秦嘉晨, 王欢, 朱江, 王扬, 田晨, 白永飞, 杨培志, 郑淑霞. 基于种内与种间性状变异的放牧过滤作用及其尺度效应[J]. 植物生态学报, 2024, 48(7): 858-871. |
[4] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[5] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[6] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[7] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[8] | 陈香蕾, 崔树娟, 赵晨军, 顾洪亮, 陈晓萍, 李锦隆, 孙俊. 基于叶形分类的木本植物单叶片面积预测模型[J]. 植物生态学报, 2024, 48(12): 1683-1691. |
[9] | 徐铭泽, 赵洪贤, 李成, 李满乐, 田赟, 刘鹏, 查天山. 季节尺度毛乌素沙地黑沙蒿的叶片性状网络特征及驱动因素[J]. 植物生态学报, 2024, 48(12): 1650-1665. |
[10] | 王思琦, 金光泽. 五角槭不同生活史阶段叶枝根性状的变异与权衡[J]. 植物生态学报, 2024, 48(11): 1510-1523. |
[11] | 王振宇, 黄志群. 亚热带27种木本植物叶片性状对植食作用的影响: 验证生长-防御权衡假说[J]. 植物生态学报, 2024, 48(11): 1501-1509. |
[12] | 李民青, 周孝明, 王双龙, 陈丽丹, 李从娟, 刘冉. 干旱胁迫下乔木状沙拐枣枝干光合作用对水力性状与叶片光合作用的影响[J]. 植物生态学报, 2024, 48(11): 1524-1535. |
[13] | 胡楚婷, 杨柳依依, 石绍林, 周琰, 陈婷婷, 郑博瀚, 杨暘, 卢小玲, 王陈玲, 倪健. 浙江金华典型人工植被的植物功能性状[J]. 植物生态学报, 2024, 48(10): 1336-1350. |
[14] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[15] | 周莹莹, 林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J]. 植物生态学报, 2023, 47(5): 733-744. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19