植物生态学报 ›› 2025, Vol. 49 ›› Issue (1): 173-188.DOI: 10.17521/cjpe.2024.0145 cstr: 32100.14.cjpe.2024.0145
马录花1,2, 孟宪超1,2, 王贵强1,2, 马子峰1,2, 李以康1,*(), 李月梅3,*(
), 周华坤1, 张法伟1, 林丽1
收稿日期:
2024-05-08
接受日期:
2024-11-12
出版日期:
2025-01-20
发布日期:
2025-03-08
通讯作者:
* 李以康, (Li YK, ykli@nwipb.cas.cn;基金资助:
MA Lu-Hua1,2, MENG Xian-Chao1,2, WANG Gui-Qiang1,2, MA Zi-Feng1,2, LI Yi-Kang1,*(), LI Yue-Mei3,*(
), ZHOU Hua-Kun1, ZHANG Fa-Wei1, LIN Li1
Received:
2024-05-08
Accepted:
2024-11-12
Online:
2025-01-20
Published:
2025-03-08
Supported by:
摘要:
三江源区大部分草地出现不同程度退化, 建植人工草地是恢复重度退化草地生态功能的重要措施, 藓类结皮影响土壤养分循环和微生物群落结构, 探究藓类结皮促进退化草地恢复的可行性, 对正确认识生物结皮的生态作用且制定合理有效的生态恢复措施有重要意义。该研究以三江源“黑土滩”为研究对象, 设置了4种不同的禾草组合方式和3种藓类结皮接种方式, 探究藓类结皮接种对人工草地土壤微环境的影响特征与过程。主要结果有: 藓类结皮增加了土壤中有机碳、有效磷、铵态氮、硝态氮含量, 并且人工草地中速效养分含量显著高于“黑土滩”; 在门水平平均相对丰度前5的优势细菌类群为放线菌门、变形菌门、酸杆菌门、绿弯菌门、厚壁菌门; 在门水平平均相对丰度前5的优势真菌类群为子囊菌门、担子菌门、被孢菌门、未分类_k_真菌和油壶菌门。随着藓类结皮接种量增加, 细菌运算分类单元(OTU)数量减少, 真菌OTU数量增加, 藓类结皮接种未明显影响微生物多样性指数; 混合效应模型结果表明藓类结皮对有效磷、硝态氮、铵态氮含量和影响其积累的微生物有显著影响; 冗余分析结果表明; 细菌群落结构比真菌易受土壤因子的影响, Mantel test结果表明藓类结皮A1 (700 g·m-2)接种对细菌群落组成的影响比真菌群落明显, 有效磷、铵态氮、硝态氮含量与细菌群落显著正相关。以上研究结果表明, 藓类结皮接种可能通过改变微生物群落环境影响土壤养分积累和循环过程, 促进三江源人工草地生态功能恢复, 这为今后进一步探究藓类结皮添加恢复极度退化草地土壤生态功能提供了理论依据。
马录花, 孟宪超, 王贵强, 马子峰, 李以康, 李月梅, 周华坤, 张法伟, 林丽. 藓类结皮接种对三江源高寒草甸土壤性状和微生物的影响. 植物生态学报, 2025, 49(1): 173-188. DOI: 10.17521/cjpe.2024.0145
MA Lu-Hua, MENG Xian-Chao, WANG Gui-Qiang, MA Zi-Feng, LI Yi-Kang, LI Yue-Mei, ZHOU Hua-Kun, ZHANG Fa-Wei, LIN Li. Effects of moss crust inoculation on soil properties and microbial communities in alpine meadow in Sanjiangyuan, China. Chinese Journal of Plant Ecology, 2025, 49(1): 173-188. DOI: 10.17521/cjpe.2024.0145
禾草组合 Grass combination | 藓类结皮接种 Moss crust inoculation | 嵌套方式 Nesting approach |
---|---|---|
CK | Blank | “黑土滩”, 无藓类结皮添加 Black soil beach, no moss crust inoculation |
A1 | “黑土滩” +藓类结皮A1添加 Black soil beach + moss crust A1 inoculation | |
A2 | “黑土滩” +藓类结皮A2添加 Black soil beach + moss crust A2 inoculation | |
SFXF | Blank | 上繁草+下繁草, 无藓类结皮添加 Upper bushy grass + lower bushy grass, no moss crust inoculation |
A1 | 上繁草+下繁草+藓类结皮A1添加 Upper bushy grass + lower bushy grass + moss crust A1 inoculation | |
A2 | 上繁草+下繁草+藓类结皮A2添加 Upper bushy grass + lower bushy grass + moss crust A2 inoculation | |
SF | Blank | 上繁草, 无藓类结皮添加 Upper bushy grass, no moss crust inoculation |
A1 | 上繁草+藓类结皮A1添加 Upper bushy grass + moss crust A1 inoculation | |
A2 | 上繁草+藓类结皮A2添加 Upper bushy grass + moss crust A2 inoculation | |
XF | Blank | 下繁草, 无藓类结皮添加 Lower bushy grass, no moss crust inoculation |
A1 | 下繁草+藓类结皮A1添加 Lower bushy grass + moss crust A1 inoculation | |
A2 | 下繁草+藓类结皮A2添加 Lower bushy grass + moss crust A2 inoculation |
表1 三江源人工草地禾草组合和藓类结皮接种
Table 1 Grass combinations and moss crust inoculation in artificial grasslands in Sanjingyuan
禾草组合 Grass combination | 藓类结皮接种 Moss crust inoculation | 嵌套方式 Nesting approach |
---|---|---|
CK | Blank | “黑土滩”, 无藓类结皮添加 Black soil beach, no moss crust inoculation |
A1 | “黑土滩” +藓类结皮A1添加 Black soil beach + moss crust A1 inoculation | |
A2 | “黑土滩” +藓类结皮A2添加 Black soil beach + moss crust A2 inoculation | |
SFXF | Blank | 上繁草+下繁草, 无藓类结皮添加 Upper bushy grass + lower bushy grass, no moss crust inoculation |
A1 | 上繁草+下繁草+藓类结皮A1添加 Upper bushy grass + lower bushy grass + moss crust A1 inoculation | |
A2 | 上繁草+下繁草+藓类结皮A2添加 Upper bushy grass + lower bushy grass + moss crust A2 inoculation | |
SF | Blank | 上繁草, 无藓类结皮添加 Upper bushy grass, no moss crust inoculation |
A1 | 上繁草+藓类结皮A1添加 Upper bushy grass + moss crust A1 inoculation | |
A2 | 上繁草+藓类结皮A2添加 Upper bushy grass + moss crust A2 inoculation | |
XF | Blank | 下繁草, 无藓类结皮添加 Lower bushy grass, no moss crust inoculation |
A1 | 下繁草+藓类结皮A1添加 Lower bushy grass + moss crust A1 inoculation | |
A2 | 下繁草+藓类结皮A2添加 Lower bushy grass + moss crust A2 inoculation |
图2 三江源人工草地藓类结皮接种后土壤养分含量和化学计量比。A1, 藓类结皮添加量700 g·m-2; A2, 藓类结皮添加量350 g·m-2; Blank, 无藓类结皮添加量。CK, “黑土滩”; SF, 上繁草组合; SFXF, 上繁草+下繁草组合; XF, 下繁草组合。不同小写字母表示不同量藓类结皮接种处理间的差异显著(p < 0.05), 不同大写字母表示不同禾草组合间的差异显著(p < 0.05)。SOC, 土壤有机碳含量; TN, 全氮含量; TP, 全磷含量。
Fig. 2 Soil nutrient and stoichiometric ratios after inoculation with moss crusts in artificial grasslands in Sanjingyuan. A1, moss crust addition 700 g·m-2; A2, moss crust addition 350 g·m-2; Blank, no moss crust addition. CK, black soil bank; SF, upper bushy grass combination; SFXF, upper bushy grass + lower bushy grass combination; XF, lower bushy grass combination. Lowercase letters indicate significant differences between treatments with varying amounts of moss crust inoculation (p < 0.05), while uppercase letters indicate significant differences between grass combinations (p < 0.05). SOC, soil organic carbon content; TN, total nitrogen content; TP, total phosphorus content.
图3 三江源人工草地藓类结皮接种后土壤微生物相对丰度。A, 无藓类结皮接种细菌丰度。B, 藓类结皮A1接种细菌丰度。C, 藓类结皮A2接种细菌丰度。D, 无藓类结皮接种真菌丰度。E, 真菌藓类结皮A1接种真菌丰度。F, 藓类结皮A2接种真菌丰度。A1, 藓类结皮添加量700 g·m-2; A2, 藓类结皮添加量350 g·m-2。CK, “黑土滩”; SF, 上繁草组合; SFXF, 上繁草+下繁草组合; XF, 下繁草组合。
Fig. 3 Relative abundance of soil microorganisms after inoculation with moss crusts in artificial grasslands in Sanjingyuan. A, no moss crust inoculation bacterial abundance. B, A1 moss crust inoculation bacterial abundance. C, A2 moss crust inoculation bacterial abundance. D, no moss crust inoculation fungal abundance. E, A1 moss crust inoculation fungal abundance. F, A2 moss crust inoculation fungal abundance. A1, moss crust addition 700 g·m-2; A2, moss crust addition 350 g·m-2. CK, black soil bank; SF, upper bushy grass combination; SFXF, upper bushy grass + lower bushy grass combination; XF, lower bushy grass combination.
图4 三江源人工草地藓类结皮接种后微生物Venn图。A, 无藓类结皮接种细菌Venn图。B, 细菌藓类结皮A1接种细菌Venn图。C, 藓类结皮A2接种细菌Venn图。D, 无藓类结皮接种真菌Venn图。E, 藓类结皮A1接种真菌Venn图。F, 藓类结皮A2接种真菌Venn图。A1, 藓类结皮添加量700 g·m-2; A2, 藓类结皮添加量350 g·m-2。CK, “黑土滩”; SF, 上繁草组合; SFXF, 上繁草+下繁草组合; XF, 下繁草组合。
Fig. 4 Venn diagram of microorganisms in moss crusts after inoculation of artificial grasslands in the Sanjiangyuan. A, no moss crust inoculation bacteria Venn diagram. B, A1 moss crust inoculation bacteria Venn diagram. C, A2 moss crust inoculation bacteria Venn diagram. D, no moss crust inoculation fungal Venn diagram. E, A1 moss crust inoculation fungal Venn diagram. F, A2 moss crust inoculation fungal Venn diagram. A1, moss crust addition 700 g·m-2; A2, moss crust addition 350 g·m-2. CK, black soil bank; SF, upper bushy grass combination; SFXF, upper bushy grass + lower bushy grass combination; XF, lower bushy grass combination.
图5 三江源人工草地藓类结皮接种后微生物细菌(A、B)和真菌(C、D)多样性。A1, 藓类结皮添加量700 g·m-2; A2, 藓类结皮添加量350 g·m-2。CK, “黑土滩”; SF, 上繁草组合; SFXF, 上繁草+下繁草组合; XF, 下繁草组合。
Fig. 5 Bacterial (A, B) and fungal (C, D) diversity after inoculation of moss crusts artificial grasslands in the Sanjiangyuan. A1, moss crust addition 700 g·m-2; A2, moss crust addition 350 g·m-2. CK, black soil bank; SF, upper bushy grass combination; SFXF, upper bushy grass + lower bushy grass combination; XF, lower bushy grass combination.
固定效应 Fixed effect | 有机碳含量 SOC content | 有效磷含量 AP content | 铵态氮含量 NH+ 4-N content | 硝态氮含量 NO- 3-N content | TN:TP | |||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | |
禾草组合 Grass combination | 1.719 | 0.238 | 6.959 | 0.218 | 0.962 | 0.345 | 12.962 | 0.003** | 6.754 | 0.018* |
藓类结皮 Moss crust | 1.573 | 0.249 | 5.285 | 0.030* | 1.212 | 0.029* | 1.608 | 0.022* | 0.001 | 0.981 |
禾草组合×藓类结皮 Grass combination × moss crust | 1.15 | 0.318 | 3.298 | 0.082 | 1.987 | 0.185 | 1.708 | 0.216 | 2.568 | 0.013* |
表2 禾草组合和藓类结皮接种对土壤理化性质混合效应模型分析结果
Table 2 Results of mixed-effects model analyses of grass combination and moss crust inoculation on soil physicochemical properties
固定效应 Fixed effect | 有机碳含量 SOC content | 有效磷含量 AP content | 铵态氮含量 NH+ 4-N content | 硝态氮含量 NO- 3-N content | TN:TP | |||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | |
禾草组合 Grass combination | 1.719 | 0.238 | 6.959 | 0.218 | 0.962 | 0.345 | 12.962 | 0.003** | 6.754 | 0.018* |
藓类结皮 Moss crust | 1.573 | 0.249 | 5.285 | 0.030* | 1.212 | 0.029* | 1.608 | 0.022* | 0.001 | 0.981 |
禾草组合×藓类结皮 Grass combination × moss crust | 1.15 | 0.318 | 3.298 | 0.082 | 1.987 | 0.185 | 1.708 | 0.216 | 2.568 | 0.013* |
固定效应 Fixed effect | 放线菌门 Actinobacteriota | 变形菌门 Proteobacteria | 酸杆菌门 Acidobacteriota | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
禾草组合 Grass combination | 1.286 | 0.284 | 5.894 | 0.026* | 2.888 | 0.110 |
藓类结皮 Moss crust | 2.186 | 0.016* | 5.099 | 0.033* | 2.209 | 0.016* |
禾草组合×藓类结皮 Grass combination × moss crust | 0.933 | 0.355 | 8.458 | 0.007** | 3.132 | 0.099 |
表3 禾草组合和藓类结皮接种对细菌混合效应模型分析结果
Table 3 Results of mixed-effects model analyses of grass combination and moss crust inoculation on soil bacteria
固定效应 Fixed effect | 放线菌门 Actinobacteriota | 变形菌门 Proteobacteria | 酸杆菌门 Acidobacteriota | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
禾草组合 Grass combination | 1.286 | 0.284 | 5.894 | 0.026* | 2.888 | 0.110 |
藓类结皮 Moss crust | 2.186 | 0.016* | 5.099 | 0.033* | 2.209 | 0.016* |
禾草组合×藓类结皮 Grass combination × moss crust | 0.933 | 0.355 | 8.458 | 0.007** | 3.132 | 0.099 |
固定效应 Fixed effect | 子囊菌门 Ascomycota | 担子菌门 Basidiomycota | 被孢菌门 Mortierellomycota | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
禾草组合 Grass combination | 1.476 | 0.245 | 0.048 | 0.830 | 5.266 | 0.05 |
藓类结皮 Moss crust | 0.008 | 0.031* | 0.474 | 0.049* | 1.233 | 0.295 |
禾草组合×藓类结皮 Grass combination × moss crust | 2.379 | 0.138 | 0.059 | 0.81 | 7.168 | 0.025* |
表4 禾草组合和藓类结皮接种对真菌混合效应模型分析结果
Table 4 Results of mixed-effects model analyses of grass combination and moss crust inoculation on soil fungi
固定效应 Fixed effect | 子囊菌门 Ascomycota | 担子菌门 Basidiomycota | 被孢菌门 Mortierellomycota | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
禾草组合 Grass combination | 1.476 | 0.245 | 0.048 | 0.830 | 5.266 | 0.05 |
藓类结皮 Moss crust | 0.008 | 0.031* | 0.474 | 0.049* | 1.233 | 0.295 |
禾草组合×藓类结皮 Grass combination × moss crust | 2.379 | 0.138 | 0.059 | 0.81 | 7.168 | 0.025* |
图6 土壤因子与土壤微生物细菌(A)和真菌(B)的Pearson分析。AP, 土壤速效磷含量; NH4+-N, 铵态氮含量; NO3--N, 硝态氮含量; SOC, 土壤有机碳含量。Actinobacteriota, 放线菌门; Proteobacteri, 变形菌门; Acidobacteriota, 酸杆菌门; Ascomycota, 子囊菌门; Basidiomycota, 担子菌门; Chloroflexi, 绿弯菌门; Mortierellomycota, 被孢菌门; Unclassified_k__fungi, 未分类_k_真菌门。Chao1, 丰富度指数; Shannon-Wiener, 香农-维纳多样性指数。
Fig. 6 Pearson correlation analysis of edaphic factors with soil microbial bacteria (A) and fungi (B). AP, soil available phosphorus content; NH4+-N, ammonium nitrogen content; NO3--N, nitrate nitrogen content; SOC, soil organic carbon content. Chao1, richness index; Shannon-Wiener, Shannon-Wiener diversity index.
图7 土壤因子与土壤微生物细菌(A)和真菌(B)的冗余分析(RDA)。虚线箭头为物种变量; Actinobacteriota, 放线菌门; Acidobacteriota, 酸杆菌门; Ascomycota, 子囊菌门; Bacteroidetes, 拟杆菌门; Basidiommycota, 担子菌门; Chloroflexi, 绿弯菌门; Chytridiomycota, 壶菌门; Firmicutes, 厚壁菌门; Gemmatimonadetes, 芽单胞菌门; Glomeromycota, 球囊菌门; Myxococcota, 黏菌门; Mortierellomycota, 被孢菌门; Olpidiomycota, 油壶菌门; Proteobacteria, 变形菌门; Rozellomycota, 罗兹菌门; Unclassified-k-fungi, 未分类_k_真菌门; 实线箭头为环境变量: SOC, 土壤有机碳含量; AP, 土壤速效磷含量; NH4+-N, 铵态氮含量; NO3--N, 硝态氮含量。A1, 藓类结皮添加量700 g·m-2; A2, 藓类结皮添加量350 g·m-2; CK, “黑土滩”。
Fig. 7 Redundancy analysis (RDA) of edaphic factors with soil microbial bacteria (A) and fungi (B). The dashed arrows are species variables, and the solid-line arrows are environmental variables: SOC, soil organic carbon content; AP, soil available phosphorus content; NH4+-N, ammonium nitrogen content; NO3--N, nitrate nitrogen content; A1, moss crust addition 700 g·m-2; A2, moss crust addition 350 g·m-2; CK, black soil bank.
图8 土壤因子与微生物的Mantel test分析。A, 无藓类结皮接种。B, 藓类结皮A1接种。C, 藓类结皮A2接种。SOC, 土壤有机碳含量; AP, 土壤速效磷含量; NH4+-N, 铵态氮含量; NO3--N, 硝态氮含量; TN, 全氮含量; TP, 全磷含量。BChao1, 细菌Chao1丰富度指数; BShannon-Wiener, 细菌Shannon-Wiener多样性指数; FChao1, 真菌Chao1丰富度指数; FShannon, 真菌Shannon-Wiener多样性指数。
Fig. 8 Mantel test analysis of soil factors and microorganisms. A, No moss crust inoculation. B, Moss crust A1 inoculation. C, Moss crust A2 inoculation. AP, soil available phosphorus content; NH4+-N, ammonium nitrogen content; NO3--N, nitrate nitrogen content; SOC, soil organic carbon content; TN, total nitrogen content; TP, total phosphorus content. BChao1, bacterial Chao1 richness index; BShannon-Wiener, bacterial Shannon-Wiener diversity index; FChao1, fungal Chao1 richness index; FShannon, fungal Shannon-Wiener diversity index.
[1] | Atashpaz B, Khormali F, Malekzadeh E, Soleymanzadeh M (2023). The effect of different sequences of biological crusts on soil physicochemical properties in dry land. Environmental Earth Sciences, 82, 614. DOI: 10.1007/s12665-023-11258-7. |
[2] | Beymer RJ, Klopatek JM (1991). Potential contribution of carbon by microphytic crusts in pinyon-juniper woodlands. Arid Land Research and Management, 5, 187-198. |
[3] | Bi YL, Li PN, Guo Y (2014). Extracellular enzyme activity and stoichiometric characteristics of biological crust in mycorrhizal restoration area of western coal mining subsidence. Journal of China Coal Societ, 49, 3593-3604. |
[毕银丽, 李璞宁, 郭芸 (2024). 半干旱区丛枝菌根真菌复垦地生物结皮胞外酶活性及化学计量特征. 煤炭学报, 49, 3593-3604.] | |
[4] | Bian DD (2011). Effects of Soil Biological Crust on Soil Biological Properties Under Different Vegetation Conditions in Loess Hilly Region. Master degree dissertation, Northwest A&F University, Yangling, Shaanxi. |
[边丹丹 (2011). 黄土丘陵区不同植被状况下土壤生物结皮对土壤生物学性质的影响. 硕士学位论文, 西北农林科技大学, 陕西杨凌.] | |
[5] | Camargo AP, de Souza RSC, Jose J, Gerhardt IR, Dante RA, Mukherjee S, Huntemann M, Kyrpides NC, Carazzolle MF, Arruda P (2023). Plant microbiomes harbor potential to promote nutrient turnover in impoverished substrates of a Brazilian biodiversity hotspot. The ISME Journal, 17, 354-370. |
[6] | Cao Y, Xiao B, Ghanbarian B (2024). Biocrusts enhance soil structural stability during freeze-thaw cycles and improve soil erosion resistance in cold-winter drylands. Catena, 243, 108206. DOI: 10.1016/j.catena.2024.108206. |
[7] | Chang T, Li S, Li YK, Xu WH, Sun J, Zhang ZH, Ma L, Qin RM, Su HY, Hu X, A DHZ, Yuan F, Li HL, Zhou HK (2023). Restoration effect of mixed sowing artificial grassland on vegetation and soil of blank soil land at the initial planting stage. Acta Agrestia Sinica, 31, 1546-1555. |
[常涛, 李珊, 李以康, 徐文华, 孙建, 张中华, 马丽, 秦瑞敏, 苏洪烨, 胡雪, 阿的哈则, 袁访, 李宏林, 周华坤 (2023). 混播人工草地建植初期对黑土滩植被和土壤的恢复效果. 草地学报, 31, 1546-1555.]
DOI |
|
[8] | Chen KL, Zhou HK, Lu BB, Wu Y, Wang J, Zhao ZW, Li YZ, Wang M, Zhang Y, Chen WJ, Liu GB, Xue S (2021). Single-species artificial grasslands decrease soil multifunctionality in a temperate steppe on the Qinghai-Tibet Plateau. Agronomy, 11, 2092. DOI: 10.3390/agronomy11112092. |
[9] | Concostrina-Zubiri L, Berdugo M, Valencia E, Mendoza BJ, Maestre FT (2022). Decomposition of dryland biocrust-forming lichens and mosses contributes to soil nutrient cycling. Plant and Soil, 481, 23-34. |
[10] | Deng SQ, Zhang DY, Wang GH, Zhou XJ, Ye CR, Fu TR, Ke T, Zhang YR, Liu YD, Chen LZ (2020). Biological soil crust succession in deserts through a 59-year-long case study in China: How induced biological soil crust strategy accelerates desertification reversal from decades to years. Soil Biology & Biochemistry, 141, 107665. DOI: 10.1016/j.soilbio.2019.107665. |
[11] | Dong JF, Cui XY, Niu HS, Zhang J, Zhu CL, Li LF, Pang Z, Wang SP (2022). Effects of nitrogen addition on plant properties and microbiomes under high phosphorus addition level in the alpine steppe. Frontiers in Plant Science, 13, 894365. DOI: 10.3389/fpls.2022.894365. |
[12] | Dong S, Shang Z, Gao J, Boone RB (2020). Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agriculture, Ecosystems & Environment, 287, 106684. DOI: 10.1016/j.agee.2019.106684. |
[13] | Duan XM, Li JJ, He WP, Huang JJ, Xiong WX, Chi SJ, Luo SY, Liu JL, Zhang X, Li JY (2024). Microbial diversity and their extracellular enzyme activities among different soil particle sizes in mossy biocrust under N limitation in the southeastern Tengger Desert, China. Frontiers in Microbiology, 15, 1328641. DOI: 10.3389/fmicb.2024.1328641. |
[14] | Gao X, Dong S, Xu Y, Li Y, Li S, Wu S, Shen H, Liu S, Fry EL (2021). Revegetation significantly increased the bacterial-fungal interactions in different successional stages of alpine grasslands on the Qinghai-Tibetan Plateau. Catena, 205, 105385. DOI: 10.1016/j.catena.2021.105385. |
[15] | Guo YJ, Xue R, Wang XZ, Guo ZG, Shen YY (2016). Responding of plant community and soil nutrient in fenced mowing Qinghai-Tibetan meadow to fertilization. Journal of Southwest University for Nationalities (Natural Science Edition), 42, 383-392. |
[郭雅婧, 薛冉, 王先之, 郭正刚, 沈禹颖 (2016). 青藏高原围封刈割草地植物群落及土壤养分对施肥的响应. 西南民族大学学报(自然科学版), 42, 383-392.] | |
[16] | Hassanzadeh BM, Karimi A, Sepehr A, Lakzian A, Caballero ER (2024). Spatial relationship of landform surface features and biocrusts, and their effect on soil microbial biomass on an alluvial fan. Earth Surface Processes and Landforms, 49, 1348-1360. |
[17] | He JS, Liu ZP, Yao T, Sun C, Lu Z, Hu XW, Cao GM, Wu XW, Li i, Bu HY, Zhu JX (2020). Analysis of the main constraints and restoration techniques of degraded grassland on the Tibetan Plateau. Science & Technology Review, 38, 66-80. |
[18] | Jiang X, Niu KC (2021). Effects of grass mixed-sowing on soil microbial diversity on the Qingzang (Tibetan) Plateau. Chinese Journal of Plant Ecology, 45, 539-551. |
[姜鑫, 牛克昌 (2021). 青藏高原禾草混播对土壤微生物多样性的影响. 植物生态学报, 45, 539-551.] | |
[19] | Jing ML, Li RJ, Ma YS, Wang YL, Min XX, Yang HR, Yin CG (2012). Effect of irrigation on biomass and soil moisture in artificial grassland of black-soil-beach. Chinese Qinghai Journal of Animal and Veterinary Sciences, 42(1), 7-8. |
[景美玲, 李润杰, 马玉寿, 王彦龙, 闵星星, 杨慧茹, 伊晨刚 (2012). 黑土滩人工草地植物量及土壤水分对灌溉的响应. 青海畜牧兽医杂志, 42(1), 7-8.] | |
[20] | Gao LQ, Zhao YG, Qin NQ, Zhang GX, Yang K (2012). Impact of biological soil crust on soil physical properties in the hilly Loess Plateau region, China. Journal of Natural Resources, 27, 1316-1326. |
[高丽倩, 赵允格, 秦宁强, 张国秀, 杨凯 (2012). 黄土丘陵区生物结皮对土壤物理属性的影响. 自然资源学报, 27, 1316-1326.]
DOI |
|
[21] | Katsalirou E, Deng S, Nofziger DL, Gerakis A (2010). Long-term management effects on organic C and N pools and activities of C-transforming enzymes in prairie soils. European Journal of Soil Biology, 46, 335-341. |
[22] | Li FX, Zhang T, Luo YZ, Zhang R, Han J, Bai YF, Dong QM, Zhou HK, Shang ZH (2018). Soil microbial diversity in surface crust and non-crust of artificial grassland in black soil region of the Yellow River source region. Acta Agrestia Sinica, 26, 45-52. |
[李发祥, 张涛, 罗玉珠, 张蕊, 韩瑾, 白彦福, 董全民, 周华坤, 尚占环 (2018). 黄河源区黑土滩人工草地地表结皮与未结皮区土壤微生物多样性. 草地学报, 26, 45-52.]
DOI |
|
[23] | Li W, Wang JL, Zhang XJ, Shi SL, Cao WX (2018). Effect of degradation and rebuilding of artificial grasslands on soil respiration and carbon and nitrogen pools on an alpine meadow of the Qinghai-Tibetan Plateau. Ecological Engineering, 111, 134-142. |
[24] |
Li W, Wei TH, Yong C, Cai R, Zhou YH, Zhang YP, Li WH, Guo WX (2021). Effects of different mixed planting ratios on vegetation and soil characteristics of sown pasture in the Sanjiangyuan region. Acta Prataculturae Sinica, 30(12), 39-48.
DOI |
[李文, 魏廷虎, 永措巴占, 才仁塔次, 周玉海, 张雁平, 李文浩, 郭卫兴 (2021). 混播比例对三江源人工草地植被和土壤养分特征的影响. 草业学报, 30(12), 39-48.]
DOI |
|
[25] | Li WL, Shang XJ, Yan HP, Xu J, Liang TG, Zhou HK (2023). Impact of restoration measures on plant and soil characteristics in the degraded alpine grasslands of the Qinghai Tibetan Plateau: a meta-analysis. Agriculture, Ecosystems & Environment, 347, 108394. DOI: 10.1016/j.agee.2023.108394. |
[26] | Li XL (2002). Natural factors and formative mechanism of “Black Beach” formed on grassland in Qinghai Tibetan Plateau. Pratacultural Science, 19, 20-22. |
[李希来 (2002). 青藏高原“黑土滩”形成的自然因素与生物学机制. 草业科学, 19, 20-22.] | |
[27] | Li X, Perry GLW, Brierley G, Gao J, Zhang J, Yang Y (2013). Restoration prospects for Heitutan degraded grassland in the Sanjiangyuan. Journal of Mountain Science, 10, 687-698. |
[28] | Li YG, Huang YJ, Yin BF, Zhou XB, Zhang YM (2024). Shrub and patch size of moss crusts regulate soil multifunctionality in a temperate desert of Central Asia. Soil Science Society of America Journal, 88, 890-904. |
[29] | Li YG, Zhou XB, Zhang YM (2019). Moss patch size and microhabitats influence stoichiometry of moss crusts in a temperate desert, Central Asia. Plant and Soil, 443, 55-72. |
[30] | Li YK, Ma LH, Meng XC, Ma ZF, Wang GQ, Zhou HK, Yang YS (2024). A method for rehabilitating degraded grasslands: China, 202410361563.7.2024-05-31. |
[李以康, 马录花, 孟宪超, 马子峰, 王贵强, 周华坤, 杨永胜(2024). 一种修复退化草地的方法: 中国, 202410361563.7.2024-05-31.] | |
[31] | Li YM, Cao GM, Wang YS (2006). Effects of reclamation on soil organic carbon in Haibei alpine meadow. Chinese Journal of Ecology, 25, 911-915. |
[李月梅, 曹广民, 王跃思 (2006). 开垦对海北高寒草甸土壤有机碳的影响. 生态学杂志, 25, 911-915.] | |
[32] | Li Z, Wang YL, Yu XJ, Tong YS, Li Y (2021). Productive and reproductive performance of perennial foragesin Sanjingyuan area. Chinese Journal of Grassland, 43(12), 11-19. |
[李珍, 王彦龙, 鱼小军, 童永尚, 李颖 (2021). 13份多年生禾草在三江源地区的生产性能与繁殖能力. 中国草地学报, 43(12), 11-19.] | |
[33] | Liu KL (2011). Community Structure Analysis of Culturable Bacteria in Desert Biological Crust and Non-Oxygen Producing Photosynthetic Bacteria in Two Saline-Alkali Lakes in Inner Mongolia. Master degree dissertation, Inner Mongolia Agricultural University, Hohhot. |
[刘柯澜 (2011). 内蒙古荒漠生物结皮可培养细菌及两个盐碱湖中不产氧光合细菌群落结构分析. 硕士学位论文, 内蒙古农业大学, 呼和浩特.] | |
[34] | Liu T, Mao L, Pang XP, Jin SH, Zhang J, Guo ZG (2017). Effect of areas of land used for engineering construction on soil moisture and nutrient in the alpine steppe regions of the Qinghai-Tibet Plateau. Pratacultural Science, 34, 2175-2182. |
[刘彤, 毛亮, 庞晓攀, 金少红, 张静, 郭正刚 (2017). 青藏高原高寒草原区工程迹地面积对其恢复过程中土壤水分和养分含量变化的影响. 草业科学, 34, 2175-2182.] | |
[35] | Liu X, Huang XT, Qin WP, Li XA, Ma ZW, Shi HX, Li LH, Li CZ (2022). Effects of establishing cultivated grassland on soil organic carbon fractions in a degraded alpine meadow on the Tibetan Plateau. PeerJ, 10, e14012. DOI: 10.7717/peerj.140122/18. |
[36] | Ma LH, Meng XC, Wang GQ, Ma ZF, Li YK, Zhou HK, Song MH (2024). Effects of short-term addition of moss crusts on vegetation and soil of artificial grassland in the Tibetan Plateau. Acta Agrestia Sinica, 32, 1348-1358. |
[马录花, 孟宪超, 王贵强, 马子峰, 李以康, 周华坤, 宋明华 (2024). 苔藓结皮短期添加对青藏高原人工草地植被和土壤的影响. 草地学报, 32, 1348-1358.]
DOI |
|
[37] |
Mao B, Zeng Y, Lai CT, Yang Y, Zhou CH, Li ZT, Xu QS, Li TH (2023). Effects of nitrogen reduction fertilization on sugarcane biomass and the concentrations of soil nitrate and ammonium nitrogen. Chinese Journal of Ecology, 42, 2604-2612.
DOI |
[毛兵, 曾悦, 赖彩婷, 杨艳, 周春宏, 李卓亭, 徐强胜, 李廷化 (2023). 减氮施肥对甘蔗生物量及土壤硝态氮和铵态氮的影响. 生态学杂志, 42, 2604-2612.] | |
[38] | Ming J, Zhao YG, Sun YY, Liu Z (2024). Biocrusts impact soil properties and ecological stoichiometry characteristics in frozen ground regions on the Qinghai-Tibet Plateau. Soil Ecology Letters, 6, 230212. DOI: 10.1007/s42832-023-0212-4. |
[39] | Ming J, Zhao YG, Wu QB, He HL, Gao LQ (2022). Soil temperature dynamics and freezing processes for biocrustal soils in frozen soil regions on the Qinghai-Tibet Plateau. Geoderma, 409, 115655. DOI: 10.1016/j.geoderma.2021.115655. |
[40] | Nie XQ, Wang D, Zhou GY, Ren LN, Chen YZ, Du YG, Ping CJ (2023). Characteristics of soil microbial community structure in three rivers source regions alpine wetlands. Chinese Journal of Soil Science, 54, 1401-1408. |
[聂秀青, 王冬, 周国英, 任立宁, 陈永哲, 杜岩功, 平才吉 (2023). 三江源地区高寒湿地土壤微生物群落特征. 土壤通报, 54, 1401-1408.] | |
[41] | Qian JX, Wang D, Zhao LR, Cui Z, Li SX, Liu Y (2024). Severe degradation and artificial restoration diversely drive runoff and sediment processes in alpine meadows. Geoderma, 443, 116828. DOI: 10.1016/j.geoderma.2024.116828. |
[42] | Qin FW, Kang BY, Jiang FY, Xu HK, Zhou HK, Wei XT, Liu XL, Shao XQ (2019). Effects of biological crusts succession on soil microbial communities in alpine steppe. Acta Agrestia Sinica, 27, 832-840. |
[秦福雯, 康濒月, 姜风岩, 徐恒康, 周华坤, 位晓婷, 刘晓丽, 邵新庆 (2019). 生物结皮演替对高寒草原土壤微生物群落的影响. 草地学报, 27, 832-840.]
DOI |
|
[43] | Qiu XX, Cao GC, Zhang Z, Zhao ML, He QX, Cheng MY, Gao SY (2022). Vertical distribution characteristics of soil organic carbon and total nitrogen density in alpine farmland and their relationships with altitude. Chinese Journal of Soil Science, 53, 623-630. |
[邱巡巡, 曹广超, 张卓, 赵美亮, 何启欣, 程梦园, 高斯远 (2022). 高寒农田土壤有机碳和全氮密度垂直分布特征及其与海拔的关系. 土壤通报, 53, 623-630.] | |
[44] | Shang ZH, Dong QM, Shi JJ, Zhou HK, Dong SK, Shao XQ, Li SX, Wang YL, Ma YS, Ding LM, Cao GM, Long RJ (2018). Research progress in recent ten years of ecological restoration for ‘Black Soil Land’ degraded grassland on Tibetan Plateau—Concurrently discuss of ecological restoration in Sangjiangyuan region. Acta Agrestia Sinica, 26, 1-21. |
[尚占环, 董全民, 施建军, 周华坤, 董世魁, 邵新庆, 李世雄, 王彦龙, 马玉寿, 丁路明, 曹广民, 龙瑞军 (2018). 青藏高原“黑土滩”退化草地及其生态恢复近10年研究进展——兼论三江源生态恢复问题. 草地学报, 26, 1-21.]
DOI |
|
[45] | Shi JJ, Ma YS, Dong QM, Shao XQ, Wu GL, Wang YL, Liu Y, Zhang CP, Wang XL (2018). Effects of artificial regulation on production performance of perennial grass mixtures in the region of three rivers sources. Acta Agrestia Sinica, 26, 907-916. |
[施建军, 马玉寿, 董全民, 邵新庆, 武高林, 王彦龙, 刘玉, 张春平, 王晓丽 (2018). 人工调控对三江源区多年生禾草混播草地生产性能的影响. 草地学报, 26, 907-916.]
DOI |
|
[46] |
Song RL, Wang H, Zhang D, Lü Z, Zhu ZY, Zhang L, Liu YL, Caiwengongbao, Wu L (2018). Conservation outcomes assessment of Sanjiangyuan alpine grassland with MODIS-EVI approach. Biodiversity Science, 26, 149-157.
DOI |
[47] | Song SH, Zhang JY, Wang H (2019). Determination total nitrogen in the Kjeldahl digests of soil samples by continuous flow analyzer in comparison with automated distillation-titration instrument. Soil and Fertilizer Sciences in China, (5), 207-212. |
[宋书会, 张金尧, 汪洪 (2019). 连续流动分析仪与自动凯氏定氮仪测定土壤全氮含量比较. 中国土壤与肥料, (5), 207-212.] | |
[48] | Tian C, Pang J, Bu C, Wu S, Bai H, Li Y, Guo Q, Siddique KHM (2023). The microbiomes in lichen and moss biocrust contribute differently to carbon and nitrogen cycles in arid ecosystems. Microbial Ecology, 86, 497-508. |
[49] | Wang DJ, Zhou HK, Yao BQ, Wang WY, Dong SK, Shang ZH, She YD, Ma L, Huang XT, Zhang ZH, Zhang Q, Zhao FY, Zuo J, Mao Z (2020). Effects of nutrient addition on degraded alpine grasslands of the Qinghai-Tibetan Plateau: a meta-analysis. Agriculture, Ecosystems & Environment, 301, 106970. DOI: 10.1016/j.agee.2020.106970. |
[50] | Wang L, Qin SG, Zhang YQ, Wu B, Feng W, Liu J, Bai YX, She WW (2017). Influence of biological soil crusts on soil moisture in Artemisia ordosica community in Mu Us Desert, northwestern China. Journal of Beijing Forestry University, 39(3), 48-56. |
[王莉, 秦树高, 张宇清, 吴斌, 冯薇, 刘军, 白宇轩, 佘维维 (2017). 生物土壤结皮对毛乌素沙地油蒿群落土壤水分的影响. 北京林业大学学报, 39(3), 48-56.] | |
[51] | Wang M, Chen SY, Wei PJ, Jia YL, Hou GL, Xu HJ, Yang MX (2022). Effects of artificial grasslands on the freeze-thaw process of black soil beaches in permafrost regions. Pratacultural Science, 39, 2016-2028. |
[王淼, 陈生云, 魏培洁, 贾映兰, 侯光良, 徐浩杰, 杨梅学 (2022). 人工建植对多年冻土区“黑土滩”冻融过程的影响. 草业科学, 39, 2016-2028.] | |
[52] | Wang ZY, Li ZY, Dong SK, Fu ML, Li YS, Li SM, Wu SN, Ma CH, Ma TX, Cao Y (2022). Evolution of ecological patterns and its driving factors on Qinghai-Tibet Plateau over the past 40 years. Acta Ecologica Sinica, 42, 8941-8952. |
[王子滢, 李周园, 董世魁, 符曼琳, 李泳珊, 李生梅, 武胜男, 马春晖, 马天啸, 曹越 (2022). 近40年青藏高原生态格局演变及其驱动因素. 生态学报, 42, 8941-8952.] | |
[53] | Xiao Y, Jishi AW, Zhao WX, Tian LH (2022). Soil nutrients, enzyme activities and microbial biomass characteristics of different artificial grasslands in the eastern margin of the Qinghai-Tibetan Plateau. Chinese Journal of Grassland, 44(9), 90-99. |
[肖颖, 吉使阿微, 赵文学, 田莉华 (2022). 青藏高原东缘不同人工草地土壤养分、酶活性及微生物生物量特征. 中国草地学报, 44(9), 90-99.] | |
[54] | Xie YC, Wen XM, Tu YL, He YN, Wang YJ, Luo SW, Ge H, Zhang DY (2024). Mechanisms of artificial biological soil crusts development for anti-desertification engineering on the Qinghai-Tibetan Plateau. Environmental Technology & Innovation, 33, 103542. DOI: 10.1016/j.eti.2024.103542. |
[55] | Xu XL, Wang L, Li J, Cai HY (2017). Analysis of the grassland restoration trend and degradation situation in the “Three-River Headwaters” region since the implementation of the ecological project. Journal of Geo-Information Science, 19, 50-58. |
[徐新良, 王靓, 李静, 蔡红艳 (2017). 三江源生态工程实施以来草地恢复态势及现状分析. 地球信息科学学报, 19, 50-58.]
DOI |
|
[56] |
Yang HY, Liu YM, Wang TP, Hui R (2017). Effects of biological soil crusts on the amount and activities of soil microbes in desert areas. Journal of Desert Research, 37, 950-960.
DOI |
[杨航宇, 刘艳梅, 王廷璞, 回嵘 (2017). 生物土壤结皮对荒漠区土壤微生物数量和活性的影响. 中国沙漠, 37, 950-960.]
DOI |
|
[57] | Ye F, Wang XX, Wang Y, Wu SJ, Wu JP, Hong YG (2021). Different pioneer plant species have similar rhizosphere microbial communities. Plant and Soil, 464, 165-181. |
[58] | Zhang JX, Wang ZQ, Quan XL, Liang J, Shi HL, Chen MC, Qiao YM (2021). Responses of soil microbial communities of sown perennial grassland in alpine region to different sowing ways and growth years. Acta Agrestia Sinica, 29, 270-280. |
[张杰雪, 王占青, 全小龙, 梁军, 史惠兰, 陈梦词, 乔有明 (2021). 高寒地区人工草地土壤微生物群落对不同种植方式和年限的响应. 草地学报, 29, 270-280.]
DOI |
|
[59] | Zhang YH, Zhang SY, Zhang SH, Liu YX, Zhao J, Li JQ (2021). Effect of moss crust on sandy soil properties and bacterial community in Mu Us sandy land. Acta Pedologica Sinica, 58, 1585-1597. |
[张雨虹, 张韶阳, 张树辉, 柳宇鑫, 赵吉, 李静泉 (2021). 毛乌素沙地苔藓结皮对沙化土壤性质和细菌群落的影响. 土壤学报, 58, 1585-1597.] | |
[60] | Zhou WJ, Bu CF, Wei YX (2022). Microbial community composition and diversity characteristics of lithophytic moss biocrusts of Qinling Mountains. Acta Botanica Boreali-Occidentalia Sinica, 42, 1600-1610. |
[周雯娟, 卜崇峰, 韦应欣 (2022). 秦岭石生苔藓结皮的微生物群落组成和多样性特征. 西北植物学报, 42, 1600-1610.] | |
[61] | Zhou X, Zhang Y, Downing A (2012). Non-linear response of microbial activity across a gradient of nitrogen addition to a soil from the Gurbantunggut Desert, Northwestern China. Soil Biology & Biochemistry, 47, 67-77. |
[1] | 李冬梅 孙龙 韩宇 胡同欣 杨光 蔡慧颖. 计划火烧对红松人工林生物多样性与生态系统多功能性关系的影响[J]. 植物生态学报, 2025, 49(3): 0-0. |
[2] | 姚博, 陈云, 曹雯婕, 龚相文, 罗永清, 郑成卓, 王旭洋, 王正文, 李玉强. 呼伦贝尔退化沙地植被-土壤碳氮磷互馈关系及微生物驱动机制[J]. 植物生态学报, 2025, 49(1): 59-73. |
[3] | 龙吉兰, 蒋铮, 刘定琴, 缪宇轩, 周灵燕, 冯颖, 裴佳宁, 刘瑞强, 周旭辉, 伏玉玲. 干旱下植物根系分泌物及其介导的根际激发效应研究进展[J]. 植物生态学报, 2024, 48(7): 817-827. |
[4] | 刘瑶, 钟全林, 徐朝斌, 程栋梁, 郑跃芳, 邹宇星, 张雪, 郑新杰, 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(6): 744-759. |
[5] | 杨佳婷, 潘应骥, 常春玲, 刘艳杰. 本地植物与土壤微生物互作对植物入侵影响的研究进展[J]. 植物生态学报, 2024, 48(12): 1547-1560. |
[6] | 王梁, 赵学超, 杨少博, 王清奎. 杉木叶和细根诱导的土壤有机碳分解激发效应及其对氮添加的响应[J]. 植物生态学报, 2024, 48(11): 1434-1444. |
[7] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[8] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[9] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[10] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[11] | 孙彩丽, 仇模升, 黄朝相, 王艺伟. 黔西南石漠化过程中土壤胞外酶活性及其化学计量变化特征[J]. 植物生态学报, 2022, 46(7): 834-845. |
[12] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[13] | 朱玉荷, 肖虹, 王冰, 吴颖, 白永飞, 陈迪马. 蒙古高原草地不同深度土壤碳氮磷化学计量特征对气候因子的响应[J]. 植物生态学报, 2022, 46(3): 340-349. |
[14] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[15] | 毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响[J]. 植物生态学报, 2021, 45(8): 891-902. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19