植物生态学报 ›› 2025, Vol. 49 ›› Issue (1): 59-73.DOI: 10.17521/cjpe.2024.0107 cstr: 32100.14.cjpe.2024.0107
姚博1,2, 陈云1,2, 曹雯婕1,2, 龚相文1,2, 罗永清1,2,4, 郑成卓1,2, 王旭洋1,2,4, 王正文2,3,5, 李玉强1,2,4,*()
收稿日期:
2024-04-15
接受日期:
2024-10-09
出版日期:
2025-01-20
发布日期:
2025-03-08
通讯作者:
* (liyq@lzb.ac.cn)基金资助:
YAO Bo1,2, CHEN Yun1,2, CAO Wen-Jie1,2, GONG Xiang-Wen1,2, LUO Yong-Qing1,2,4, ZHENG Cheng-Zhuo1,2, WANG Xu-Yang1,2,4, WANG Zheng-Wen2,3,5, LI Yu-Qiang1,2,4,*()
Received:
2024-04-15
Accepted:
2024-10-09
Online:
2025-01-20
Published:
2025-03-08
Supported by:
摘要:
植被-土壤系统间的养分互馈是维系陆地生态系统的结构稳定性和功能的关键环节。然而, 在沙地植被恢复演替过程中, 植被-土壤间的碳(C)、氮(N)、磷(P)互馈关系及推动植物群落演替恢复的关键因子尚不清楚。该研究应用生态化学计量学理论, 从土壤微生物视角探讨沙地植被-土壤养分互馈关系并揭示沙地退化植被生态恢复的限制因子。选择呼伦贝尔沙地植物恢复过程的不同景观类型, 包括流动沙丘、半流动沙丘、半固定沙丘、固定沙丘和沙质草地为研究对象, 采用时空互代法, 探究沙地恢复过程中植被-土壤C、N、P化学计量协调平衡特征及关键驱动因素, 进一步将植被-土壤碳氮磷化学计量与土壤微生物群落结构进行关联分析, 揭示退化沙地植被恢复过程中土壤理化因素、植物群落特征和微生物群落对植被-土壤化学计量的驱动机制。结果表明: 1)随着退化沙地植被生态恢复, 土壤C含量、N含量、P含量、C:P和N:P均呈显著增加趋势; 相反, 植物地上活体和活根C、N、P化学计量未呈现明显的变化规律, 说明随着沙地植被恢复演替及环境条件的改善, 沙地植物群落仍具有保持养分含量及其化学计量平衡相对稳定的能力。2)土壤C:P (12.08-38.40)处于较低水平, 使得土壤P表现为净矿化, 微生物分解有机质过程中不受P的限制, 地上植物活体N:P均低于10, 说明呼伦贝尔沙地植被恢复生长主要受N限制。3)随沙地植被恢复, 土壤N:P不断增加表明土壤N供应逐渐增加, 而P供应逐渐减弱, P可能成为植被恢复后期的限制元素。4)呼伦贝尔沙地植被恢复过程中, 土壤化学计量和pH对植被化学计量存在直接的显著正效应, 土壤微生物群落结构通过影响土壤化学计量间接影响植被化学计量, 此外, 土壤含水率、土壤质地和电导率对土壤化学计量和植被化学计量的间接影响作用也不容忽视。该研究结果可为退化沙地生态系统恢复的适应性管理和预测提供理论依据。
姚博, 陈云, 曹雯婕, 龚相文, 罗永清, 郑成卓, 王旭洋, 王正文, 李玉强. 呼伦贝尔退化沙地植被-土壤碳氮磷互馈关系及微生物驱动机制. 植物生态学报, 2025, 49(1): 59-73. DOI: 10.17521/cjpe.2024.0107
YAO Bo, CHEN Yun, CAO Wen-Jie, GONG Xiang-Wen, LUO Yong-Qing, ZHENG Cheng-Zhuo, WANG Xu-Yang, WANG Zheng-Wen, LI Yu-Qiang. Vegetation-soil interaction on carbon, nitrogen, and phosphorus and associated microbial driving mechanisms at Hulun Buir Sandy Land. Chinese Journal of Plant Ecology, 2025, 49(1): 59-73. DOI: 10.17521/cjpe.2024.0107
图2 呼伦贝尔沙地不同沙地类型植物多样性和生物量(平均值±标准误)。FD, 固定沙丘; MD, 流动沙丘; SFD, 半固定沙丘; SG, 沙质草地; SMD, 半流动沙丘。不同小写字母表示不同景观类型存在显著差异(p < 0.05)。
Fig. 2 Plant diversity and biomass in different types of landscapes in Hulun Buir Sandy Land (mean ± SE). FD, fixed dunes; MD, mobile dunes; SFD, semi-fixed dunes; SG, sandy grassland; SMD, semi-mobile dunes. Different lowercase letters indicate significant differences between different landscape types (p < 0.05).
图3 呼伦贝尔沙地不同沙地类型植被碳氮磷化学计量(平均值±标准误)。FD, 固定沙丘; MD, 流动沙丘; SFD, 半固定沙丘; SG, 沙质草地; SMD, 半流动沙丘。不同小写字母表示不同景观类型存在显著差异(p < 0.05)。
Fig. 3 Plant carbon (C), nitrogen (N), phosphorus (P) and stoichiometry of different sand types in Hulun Buir Sandy Land (mean ± SE). FD, fixed dunes; MD, mobile dunes; SFD, semi-fixed dunes; SG, sandy grassland; SMD, semi-mobile dunes. Different lowercase letters indicate significant differences between different landscape types (p < 0.05).
图4 呼伦贝尔沙地不同沙地类型土壤碳氮磷化学计量(平均值±标准误)。FD, 固定沙丘; MD, 流动沙丘; SFD, 半固定沙丘; SG, 沙质草地; SMD, 半流动沙丘。不同小写字母表示不同景观类型存在显著差异(p < 0.05)。
Fig. 4 Soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP) and stoichiometry of different sand types in Hulun Buir Sandy Land (mean ± SE). FD, fixed dunes; MD, mobile dunes; SFD, semi-fixed dunes; SG, sandy grassland; SMD, semi-mobile dunes. Different lowercase letters indicate significant differences between different landscape types (p < 0.05).
图5 呼伦贝尔沙地植物-土壤碳氮磷化学计量相关性热图。SOC、TN、TP表示土壤有机碳、全氮、全磷含量, PC、PN、PP表示地上植物活体碳氮磷含量, RC、RN、RP表示活根碳氮磷含量。*, p < 0.05; **, p < 0.01。
Fig. 5 Correlation diagram of plant-soil carbon (C), nitrogen (N), phosphorus (P) and stoichiometry in Hulun Buir Sandy Land. SOC, TN and TP denote soil organic carbon, total nitrogen, and total phosphorus content; PC, PN, and PP denote aboveground plant living carbon, nitrogen, and phosphorus content; and RC, RN, and RP denote living root carbon, nitrogen, and phosphorus content. *, p < 0.05; **, p < 0.01.
图6 呼伦贝尔沙地植物-土壤碳氮磷化学计量与土壤细菌群落相关性热图。SOC、TN、TP表示土壤有机碳、全氮、全磷含量; PC、PN、PP表示地上植物活体碳氮磷含量; RC、RN、RP表示活根碳氮磷含量。*, p < 0.05; **, p < 0.01。
Fig. 6 Correlation diagram of plant-soil carbon (C), nitrogen (N), phosphorus (P) and stoichiometry with soil bacterial community in Hulun Buir Sandy Land. SOC, TN and TP denote soil organic carbon, total nitrogen, and total phosphorus content; PC, PN, and PP denote aboveground plant living carbon, nitrogen, and phosphorus content; and RC, RN, and RP denote living root carbon, nitrogen, and phosphorus content. *, p < 0.05; **, p < 0.01.
图7 呼伦贝尔沙地植物-土壤碳氮磷化学计量与土壤真菌群落相关性热图。SOC、TN、TP表示土壤有机碳、全氮、全磷含量; PC、PN、PP表示地上植物活体碳氮磷含量; RC、RN、RP表示活根碳氮磷含量。*, p < 0.05; **, p < 0.01。
Fig. 7 Correlations diagram of plant-soil carbon (C), nitrogen (N), phosphorus (P) and stoichiometry with soil fungal community in Hulun Buir Sandy Land. SOC, TN and TP denote soil organic carbon, total nitrogen, and total phosphorus content; PC, PN, and PP denote aboveground plant living carbon, nitrogen, and phosphorus content; and RC, RN, and RP denote living root carbon, nitrogen, and phosphorus content. *, p < 0.05; **, p < 0.01.
图8 呼伦贝尔沙地土壤碳氮磷化学计量与土壤理化因素和植物群落特征的关系。2-0.05 mm表示土壤机械组成; Aboveground, 地上生物量; BD, 土壤密度; Belowground, 地下生物量; DF, 禾本科和莎草优势度; EC, 土壤电导率; FM, 土壤田间持水量; Pielou, 物种均匀度; SM, 土壤饱和含水量; SOC, 土壤有机碳含量; TN, 土壤全氮含量; TP, 土壤全磷含量。
Fig. 8 Relationships between soil carbon (C), nitrogen (N), phosphorus (P) stoichiometry and soil physicochemical factors and plant community characteristics in Hulun Buir Sandy Land. 2-0.05 mm indicates soil mechanical composition; Aboveground, aboveground biomass; BD, soil density; Belowground, belowground biomass; DF, dominance by grasses and sedges; EC, soil conductivity; FM, soil field water holding capacity; Pielou, species evenness; SM, soil saturated moisture; SOC, soil organic carbon content; TN, total nitrogen content; TP, total phosphorus content.
图9 呼伦贝尔沙地植物碳氮磷化学计量与土壤理化因素和植物群落特征的关系。2-0.05 mm表示土壤机械组成; Aboveground, 地上生物量; BD, 土壤密度; Belowground, 地下生物量; DF, 禾本科和莎草优势度; EC, 土壤电导率; FM, 土壤田间持水量; Pielou, 物种均匀度; SM, 土壤饱和含水量 PC、PN、PP, 地上植物活体碳、氮、磷含量; RC、RN、RP, 活根碳、氮、磷含量。
Fig. 9 Relationship between plant carbon (C), nitrogen (N), phosphorus (P) stoichiometry and soil physicochemical factors and plant community characteristics in Hulun Buir Sandy Land. 2-0.05 mm indicates soil mechanical composition; aboveground, aboveground biomass; BD, soil density; belowground, belowground biomass; DF, dominance by forbs; EC, soil conductivity; FM, soil field water holding capacity; Pielou, species evenness; SM, soil saturated moisture; PC, PN, PP, aboveground plant living carbon, nitrogen, phosphorus content; RC, RN, RP, living root carbon, nitrogen, phosphorus content.
图10 呼伦贝尔沙地植被-土壤碳氮磷化学计量的驱动路径分析。土壤质地: 土壤机械组成0.25-0.1 mm、0.1-0.05 mm; 土壤含水率: 土壤田间持水量、土壤饱和含水量; 微生物群落结构: 真菌群落主成分分析的第一轴; 土壤化学计量, 土壤有机碳含量、全氮含量、全磷含量、有机碳:全氮、有机碳:全磷; 植被生物量, 地上生物量、地下生物量、总生物量; 植被化学计量, 活体碳、活体氮、活体碳:氮、根系磷、根系碳:氮。*, p < 0.05; ***, p < 0.001。GOF为评估模型拟合优度。
Fig. 10 Driving path analysis of vegetation-soil carbon (C), nitrogen (N), phosphorus (P) stoichiometry in Hulun Buir Sandy Land. Soil texture: soil mechanical composition 0.25-0.1 mm, 0.1-0.05 mm; soil moisture: soil field water holding capacity and saturated moisture; microbial community: first axis of fungal community principal component of analysis; soil stoichiometry: soil organic carbon content, total nitrogen content, total phosphorus content, soil organic carbon:total nitrogen, total nitrogen:total phosphorus; vegetation biomass: aboveground biomass, belowground biomass, total biomass; plant stoichiometry: aboveground plant living carbon content, aboveground plant living nitrogen content, aboveground plant living carbon:nitrogen, living root phosphorus content living root carbon:nitrogen. *, p < 0.05; ***, p < 0.001. The model fit is assessed using the GOF value.
[1] | Bao SD (2005). Soil and Agricultural Chemistry Analysis. 3rd ed. China Agricultural Science and Technology Press, Beijing. |
[鲍士旦 (2005). 土壤农化分析. 3版. 中国农业科技出版社, 北京.] | |
[2] | Berg B, McClaugherty C (2014). Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. Springer-Verlag, Berlin, Germany. |
[3] |
Bitas V, Kim HS, Bennett JW, Kang S (2013). Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Molecular Plant-Microbe Interactions, 26, 835-843.
DOI PMID |
[4] | Chapin III FS, Matson PA, Mooney HA (2002). Principles of Terrestrial Ecosystem Ecology. Springer-Verlag, New York. |
[5] | Cleveland CC, Liptzin D (2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235-252. |
[6] |
Cline LC, Zak DR (2015). Soil microbial communities are shaped by plant-driven changes in resource availability during secondary succession. Ecology, 96, 3374-3385.
PMID |
[7] | Coban O, de Deyn GB, van der Ploeg M (2022). Soil microbiota as game-changers in restoration of degraded lands. Science, 375, abe0725. DOI: 10.1126/science.abe0725. |
[8] | Dennis KL, Wang Y, Blatner NR, Wang S, Saadalla A, Trudeau E, Roers A, Weaver CY, Lee JJ, Gilbert JA, Chang EB, Khazaie K (2013). Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10-producing T cells. Cancer Research, 73, 5905-5913. |
[9] | Ding F, Lian PY, Zeng DH (2011). Characteristics of plant leaf nitrogen and phosphorus stoichiometry in relation to soil nitrogen and phosphorus concentrations in Songnen Plain meadow. Chinese Journal of Ecology, 30, 77-81. |
[丁凡, 廉培勇, 曾德慧 (2011). 松嫩平原草甸三种植物叶片N、P化学计量特征及其与土壤N、P浓度的关系. 生态学杂志, 30, 77-81.] | |
[10] | Forero LE, Kulmatiski A, Grenzer J, Norton JM (2021). Plant-soil feedbacks help explain biodiversity-productivity relationships. Communications Biology, 4, 789. DOI: 10.1038/s42003-021-02329-1. |
[11] | Gao DX (2019). Response of Soil Ecoenzymatic Stoichiometry to Carbon, Nitrogen and Phosphorus in Soil-Plant System Following Returning Farmland to Forests (Abandon Land). Master degree dissertation, Northwest A&F University, Yangling, Shaanxi. |
[高德新 (2019). 典型退耕林(草)地土壤酶化学计量特征与土壤-植物碳氮磷元素的响应关系. 硕士学位论文, 西北农林科技大学, 陕西杨凌.] | |
[12] | Gao Y, He NP, Yu GR, Chen WL, Wang QF (2014). Long-term effects of different land use types on C, N, and P stoichiometry and storage in subtropical ecosystems: a case study in China. Ecological Engineering, 67, 171-181. |
[13] | Gou F, Liang W, Sun SB, Jin Z, Zhang WB, Yan JW (2021). Analysis of the desertification dynamics of sandy lands in northern China over the period 2000-2017. Geocarto International, 36, 1938-1959. |
[14] | Guo EH, Fang X, Ma L, Yang XY, Yang XT (2020). Effects of different recovery years on the ecological stoichiometry characteristics of soil carbon, nitrogen and phosphorus in riparian farmland: a case study of Wenyu River. Acta Ecologica Sinica, 40, 3785-3794. |
[郭二辉, 方晓, 马丽, 杨小燕, 杨喜田 (2020). 河岸带农田不同恢复年限对土壤碳氮磷生态化学计量特征的影响——以温榆河为例. 生态学报, 40, 3785-3794.] | |
[15] |
Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266.
DOI PMID |
[16] | Güsewell S (2005). Responses of wetland graminoids to the relative supply of nitrogen and phosphorus. Plant Ecology, 176, 35-55. |
[17] |
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI PMID |
[18] | He JS, Wang L, Flynn DFB, Wang X, Ma W, Fang J (2008). Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310. |
[19] | He JZ, Lu YH, Fu BJ (2015). Frontiers in Soil Biology. Science Press, Beijing. |
[贺纪正, 陆雅海, 傅伯杰 (2015). 土壤生物学前沿. 科学出版社, 北京.] | |
[20] | Kardol P, Wardle DA (2010). How understanding aboveground-belowground linkages can assist restoration ecology. Trends in Ecology & Evolution, 25, 670-679. |
[21] | Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450. |
[22] | Li YQ, Zhao XY, Chen YP, Luo YQ, Wang SK (2012). Effects of grazing exclusion on carbon sequestration and the associated vegetation and soil characteristics at a semi-arid desertified sandy site in Inner Mongolia, northern China. Canadian Journal of Soil Science, 92, 807-819. |
[23] | Liu C, Wang Y, Wang N, Wang GX (2012). Advances research in plant nitrogen, phosphorus and their stoichiometry in terrestrial ecosystems: a review. Chinese Journal of Plant Ecology, 36, 1205-1216. |
[刘超, 王洋, 王楠, 王根轩 (2012). 陆地生态系统植被氮磷化学计量研究进展. 植物生态学报, 36, 1205-1216.]
DOI |
|
[24] | Liu XM, Zhao HL, Xu B (1992). Destruction causes of Korqin sandyland and approaches to its restoration. Chinese Journal of Ecology, 11(5), 38-41. |
[刘新民, 赵哈林, 徐斌 (1992). 科尔沁沙地破坏起因及恢复途径. 生态学杂志, 11(5), 38-41.] | |
[25] |
Liu Y, Li XJ, Duan YX, Wang B, Wang WF, Liu ZQ, Feng T (2022). Effects of vegetation restoration on soil stoichiometry in the eastern Hobq Desert. Arid Zone Research, 39, 924-932.
DOI |
[刘源, 李晓晶, 段玉玺, 王博, 王伟峰, 刘宗奇, 冯涛 (2022). 库布齐沙漠东部植被恢复对土壤生态化学计量的影响. 干旱区研究, 39, 924-932.]
DOI |
|
[26] | Lu RK (2000). Methods of Agricultural Chemical Analysis of Soil. China Agricultural Science and Technology Press, Beijing. |
[鲁如坤 (2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[27] | Luo YQ, Zhao XY, Wang T, Li YQ (2017). Characteristics of the plant-root system and its relationships with soil organic carbon and total nitrogen in a degraded sandy grassland. Acta Prataculturae Sinica, 26(8), 200-206. |
[罗永清, 赵学勇, 王涛, 李玉强 (2017). 沙地植物根系特征及其与土壤有机碳和总氮的关系. 草业学报, 26(8), 200-206.]
DOI |
|
[28] | Lyu P, Zuo XA, Sun SS, Zhang J, Zhao SL, Cheng QP, Hu Y (2019). Changes of carbon and nitrogen stoichiometry in the restoration process of degraded vegetation in Horqin Sandy Land. Arid Land Geography, 42, 606-614. |
[吕朋, 左小安, 孙珊珊, 张晶, 赵生龙, 程清平, 胡亚 (2019). 科尔沁沙地退化植被恢复过程中碳氮化学计量特征的变化. 干旱区地理, 42, 606-614.] | |
[29] | Moore TR, Trofymow JA, Prescott CE, Fyles J, Titus BD (2006). Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests. Ecosystems, 9, 46-62. |
[30] | Na RS, Du HB, Na L, Shan Y, He HS, Wu ZF, Zong SW, Yang Y, Huang LR (2019). Spatiotemporal changes in the Aeolian desertification of Hulunbuir Grassland and its driving factors in China during 1980-2015. Catena, 182, 104123. DOI: 10.1016/j.catena.2019.104123. |
[31] | Ning ZY, Zhao XY, Li YL, Wang LL, Lian J, Yang HL, Li YQ (2021). Plant community C:N:P stoichiometry is mediated by soil nutrients and plant functional groups during grassland desertification. Ecological Engineering, 162, 106179. DOI: 10.1016/j.ecoleng.2021.106179. |
[32] | Niu CJ, Lou AR, Sun RY, Li QF (2023). Basic Ecology. 4th ed. Higher Education Press, Beijing. |
[牛翠娟, 娄安如, 孙儒泳, 李庆芬 (2023). 基础生态学. 4版. 高等教育出版社, 北京.] | |
[33] | Orozco-Aceves M, Standish RJ, Tibbett M (2015). Soil conditioning and plant-soil feedbacks in a modified forest ecosystem are soil-context dependent. Plant and Soil, 390, 183-194. |
[34] | Ouyang SN, Tian YQ, Liu QY, Zhang L, Wang RX, Xu XL (2016). Nitrogen competition between three dominant plant species and microbes in a temperate grassland. Plant and Soil, 408, 121-132. |
[35] |
Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Carol Adair E, Brandt LA, Hart SC, Fasth B (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315, 361-364.
DOI PMID |
[36] |
Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2007). Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytologist, 173, 600-610.
DOI PMID |
[37] | Persson J, Fink P, Goto A, Hood JM, Jonas J, Kato S (2010). To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos, 119, 741-751. |
[38] |
Pocock MJO, Evans DM, Memmott J (2012). The robustness and restoration of a network of ecological networks. Science, 335, 973-977.
DOI PMID |
[39] | Pugnaire FI, Morillo JA, Peñuelas J, Reich PB, Bardgett RD, Gaxiola A, Wardle DA, van der Putten WH (2019). Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Science Advances, 5, eaaz1834. DOI: 10.1126/sciadv.aaz1834. |
[40] | Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Gregory Caporaso J, Knight R, Fierer N (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 4, 1340-1351. |
[41] | Sardans J, Peñuelas J (2013a). Plant-soil interactions in Mediterranean forest and shrublands: impacts of climatic change. Plant and Soil, 365, 1-33. |
[42] | Sardans J, Peñuelas J (2013b). Tree growth changes with climate and forest type are associated with relative allocation of nutrients, especially phosphorus, to leaves and wood. Global Ecology and Biogeography, 22, 494-507. |
[43] | Schlesinger WH, Pilmanis AM (1998). Plant-soil Interactions in deserts//van Breemen N. Plant-induced Soil Changes: Processes and Feedbacks. Developments in Biogeochemistry: Vol. 4. Springer, Dordrecht. |
[44] |
Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG (1990). Biological feedbacks in global desertification. Science, 247, 1043-1048.
DOI PMID |
[45] | Steinweg JM, Dukes JS, Wallenstein MD (2012). Modeling the effects of temperature and moisture on soil enzyme activity: linking laboratory assays to continuous field data. Soil Biology & Biochemistry, 55, 85-92. |
[46] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, USA. |
[47] | Sun Y, Ding GD, Wu B, Guo JB, Liu YH (2007). Research on the cause and prevention of desertification of Hunlunbeier sand land. Research of Soil and Water Conservation, 14(6), 122-124. |
[孙毅, 丁国栋, 吴斌, 郭建斌, 刘艳辉 (2007). 呼伦贝尔沙地沙化成因及防治研究. 水土保持研究, 14(6), 122-124.] | |
[48] | Sun Y, Hasi E, Liu M, Du H, Guan C, Tao B (2016). Airflow and sediment movement within an inland blowout in Hulun Buir sandy grassland, Inner Mongolia, China. Aeolian Research, 22, 13-22. |
[49] | Sun YF, Zhang YQ, Feng W, Qin SG, Liu Z, Bai YX, Yan R, Fa KY (2017). Effects of xeric shrubs on soil microbial communities in a desert in northern China. Plant and Soil, 414, 281-294. |
[50] | Tian H, Chen G, Zhang C, Melillo JM, Hall CAS (2010). Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data. Biogeochemistry, 98, 139-151. |
[51] | Wang JL, Zhong ZM, Wang ZH, Yu CQ, Shen ZX, Zhang XZ, Hu XX, Dacizhuoga (2014). Soil C/P distribution characteristics of alpine steppe ecosystems in the Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 23(2), 9-19. |
[王建林, 钟志明, 王忠红, 余成群, 沈振西, 张宪洲, 胡兴祥, 大次卓嘎 (2014). 青藏高原高寒草原生态系统土壤碳磷比的分布特征. 草业学报, 23(2), 9-19.]
DOI |
|
[52] | Wang M, Gong Y, Lafleur P, Wu Y (2021). Patterns and drivers of carbon, nitrogen and phosphorus stoichiometry in Southern China’s grasslands. Science of the Total Environment, 785, 147201. DOI: 10.1016/j.scitotenv.2021.147201. |
[53] |
Wang SQ, Zhou CH, Li KR, Zhu SL, Huang FH (2000). Analysis on spatial distribution characteristics of soil organic carbon reservoir in China. Acta Geographica Sinica, 55, 533-544.
DOI |
[王绍强, 周成虎, 李克让, 朱松丽, 黄方红 (2000). 中国土壤有机碳库及空间分布特征分析. 地理学报, 55, 533-544.]
DOI |
|
[54] |
Wang T, Wu W, Xue X, Sun QW, Zhang WM, Han ZW (2004). Spatial-temporal changes of sandy desertified land during last 5 decades in northern China. Acta Geographica Sinica, 59, 203-212.
DOI |
[王涛, 吴薇, 薛娴, 孙庆伟, 张为民, 韩致文 (2004). 近50年来中国北方沙漠化土地的时空变化. 地理学报, 59, 203-212.] | |
[55] |
Wilschut RA, Hume BCC, Mamonova E, van Kleunen M (2023). Plant-soil feedback effects on conspecific and heterospecific successors of annual and perennial Central European grassland plants are correlated. Nature Plants, 9, 1057-1066.
DOI PMID |
[56] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[57] | Yamamuro M, Kamiya H (2014). Elemental (C, N, P) and isotopic (δ13C, δ15N) signature of primary producers and their contribution to the organic matter in coastal lagoon sediment. Landscape and Ecological Engineering, 10, 65-75. |
[58] | Yan JH, Li K, Peng XJ, Huang ZL, Liu SZ, Zhang QM (2015). The mechanism for exclusion of Pinus massoniana during the succession in subtropical forest ecosystems: light competition or stoichiometric homoeostasis? Scientific Reports, 5, 10994. DOI: 10.1038/srep10994. |
[59] | Yao B, Wang XY, Li YQ, Lian J, Li YQ, Luo YY, Li YL (2023). Soil extracellular enzyme activity reflects the change of nitrogen to phosphorus limitation of microorganisms during vegetation restoration in semi-arid sandy land of northern China. Frontiers in Environmental Science, 11, 1298027. DOI: 10.3389/fenvs.2023.1298027. |
[60] | Yu J, Yin Q, Niu JM, Yan ZJ, Wang H, Wang YQ, Chen DM (2022). Consistent effects of vegetation patch type on soil microbial communities across three successional stages in a desert ecosystem. Land Degradation & Development, 33, 1552-1563. |
[61] |
Yu Q, Chen Q, Elser JJ, He N, Wu H, Zhang G, Wu J, Bai Y, Han X (2010). Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecology Letters, 13, 1390-1399.
DOI PMID |
[62] | Zan GS, Wang CP, Li F, Liu Z, Sun T (2023). Key data results and trend analysis of the sixth national survey on desertification and sandification. Forest Resources Management, (1), 1-7. |
[昝国盛, 王翠萍, 李锋, 刘政, 孙涛 (2023). 第六次全国荒漠化和沙化调查主要结果及分析. 林业资源管理, (1), 1-7.] | |
[63] | Zeng QC, Li X, Dong YH, Li YY, Cheng M, An SS (2015). Ecological stoichiometry characteristics and physical- chemical properties of soils at different latitudes on the Loess Plateau. Journal of Natural Resources, 30, 870-879. |
[曾全超, 李鑫, 董扬红, 李娅芸, 程曼, 安韶山 (2015). 陕北黄土高原土壤性质及其生态化学计量的纬度变化特征. 自然资源学报, 30, 870-879.]
DOI |
|
[64] | Zhang LX, Bai YF, Han XG (2004). Differential responses of N:P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol. Bibliography of Chinese Systematic Botany, 46, 259-270. |
[65] | Zhang SB, Zhang JL, Ferry Slik JW, Cao KF (2012). Leaf element concentrations of terrestrial plants across China are influenced by taxonomy and the environment. Global Ecology and Biogeography, 21, 809-818. |
[66] | Zhang YW, Deng L, Yan WM, Shangguan ZP (2016). Interaction of soil water storage dynamics and long-term natural vegetation succession on the Loess Plateau, China. Catena, 137, 52-60. |
[67] | Zhao HL, Zhou RL, Zhao XY, Zhang TH (2008). Ground discriminance on positive and negative processes of land desertification in Horqin Sand Land. Journal of Desert Research, 28, 8-15. |
[赵哈林, 周瑞莲, 赵学勇, 张铜会 (2008). 科尔沁沙地沙漠化正、逆过程的地面判别方法. 中国沙漠, 28, 8-15.] | |
[68] | Zhao HL, Zhou RL, Zhao XY, Zhang TH, Wang J (2012). Desertification mechanisms and process of soil chemical and physical properties in Hulunbeir sandy grassland, Inner Mongolia. Acta Prataculturae Sinica, 21(2), 1-7. |
[赵哈林, 周瑞莲, 赵学勇, 张铜会, 王进 (2012). 呼伦贝尔沙质草地土壤理化特性的沙漠化演变规律及机制. 草业学报, 21(2), 1-7.] | |
[69] | Zhao XY, Zhang CM, Zuo XA, Huang G, Huang YX, Luo YY, Wang SQ, Qu H (2009). Challenges to land restoration of desertified land in the Horqin sandy land. Chinese Journal of Applied Ecology, 20, 33-38. |
[赵学勇, 张春民, 左小安, 黄刚, 黄迎新, 罗亚勇, 王少昆, 曲浩 (2009). 科尔沁沙地沙漠化土地恢复面临的挑战. 应用生态学报, 20, 33-38.] | |
[70] | Zhou RL, Li YQ, Zhao HL, Drake S (2008). Desertification effects on C and N content of sandy soils under grassland in Horqin, northern China. Geoderma, 145, 370-375. |
[71] | Zhu QL, Xing XY, Zhang H, An SS (2013). Soil ecological stoichiometry under different vegetation area on loess hilly-gully region. Acta Ecologica Sinica, 33, 4674-4682. |
[朱秋莲, 邢肖毅, 张宏, 安韶山 (2013). 黄土丘陵沟壑区不同植被区土壤生态化学计量特征. 生态学报, 33, 4674-4682.] | |
[72] |
Zuo XA, Wang SK, Lv P, Zhou X, Zhao XY, Zhang TH, Zhang J (2016). Plant functional diversity enhances associations of soil fungal diversity with vegetation and soil in the restoration of semiarid sandy grassland. Ecology and Evolution, 6, 318-328.
DOI PMID |
[1] | 李冬梅 孙龙 韩宇 胡同欣 杨光 蔡慧颖. 计划火烧对红松人工林生物多样性与生态系统多功能性关系的影响[J]. 植物生态学报, 2025, 49(3): 0-0. |
[2] | 马录花, 孟宪超, 王贵强, 马子峰, 李以康, 李月梅, 周华坤, 张法伟, 林丽. 藓类结皮接种对三江源高寒草甸土壤性状和微生物的影响[J]. 植物生态学报, 2025, 49(1): 173-188. |
[3] | 王燕, 张全智, 王传宽, 郭万桂, 蔺佳玮. 恢复方式对东北东部森林土壤碳氮磷计量特征的影响[J]. 植物生态学报, 2024, 48(7): 943-954. |
[4] | 龙吉兰, 蒋铮, 刘定琴, 缪宇轩, 周灵燕, 冯颖, 裴佳宁, 刘瑞强, 周旭辉, 伏玉玲. 干旱下植物根系分泌物及其介导的根际激发效应研究进展[J]. 植物生态学报, 2024, 48(7): 817-827. |
[5] | 刘瑶, 钟全林, 徐朝斌, 程栋梁, 郑跃芳, 邹宇星, 张雪, 郑新杰, 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(6): 744-759. |
[6] | 张文瑾, 佘维维, 秦树高, 乔艳桂, 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[7] | 杨佳婷, 潘应骥, 常春玲, 刘艳杰. 本地植物与土壤微生物互作对植物入侵影响的研究进展[J]. 植物生态学报, 2024, 48(12): 1547-1560. |
[8] | 王梁, 赵学超, 杨少博, 王清奎. 杉木叶和细根诱导的土壤有机碳分解激发效应及其对氮添加的响应[J]. 植物生态学报, 2024, 48(11): 1434-1444. |
[9] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[10] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[11] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[12] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[13] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[14] | 林少颖, 曾瑜, 杨文文, 陈斌, 阮敏敏, 尹晓雷, 阳祥, 王维奇. 添加秸秆及其生物炭对茉莉植株与土壤碳氮磷生态化学计量特征的影响[J]. 植物生态学报, 2023, 47(4): 530-545. |
[15] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19