植物生态学报 ›› 2015, Vol. 39 ›› Issue (1): 32-42.DOI: 10.17521/cjpe.2015.0004
所属专题: 植物功能性状
收稿日期:
2014-08-04
接受日期:
2014-12-09
出版日期:
2015-01-10
发布日期:
2015-01-22
通讯作者:
杨浩
作者简介:
# 共同第一作者
基金资助:
Received:
2014-08-04
Accepted:
2014-12-09
Online:
2015-01-10
Published:
2015-01-22
Contact:
Hao YANG
About author:
# Co-first authors
摘要:
植物功能性状被广泛地用于研究植物对环境变化的响应。糙隐子草(Cleistogenes squarrosa)是内蒙古草原重要的C4物种, 其功能性状是如何对水氮环境的变化做出响应的, 还不十分清楚。该文采用盆栽实验的方法, 进行氮添加(0, 10.5, 35.0和56.0 g·m-2·a-1)和降水(自然降水和70%平均月降水量)处理, 研究糙隐子草整株性状、叶形态性状和叶生理性状对氮添加和干旱的响应。结果表明, 氮添加显著影响了糙隐子草的整株性状, 氮、水处理及它们的交互作用显著影响了糙隐子草的叶形态性状和叶生理性状。各功能性状对氮添加的响应格局在自然降水和干旱处理下是不同的。根深、茎生物量和茎叶比在干旱条件下低和中氮添加处理中较高, 而在自然降水下无明显变化; 比叶面积在干旱条件下随氮添加量的增加而增加, 而在自然降水下无增加趋势; 自然降水下, 高氮添加显著刺激了光合速率和蒸腾速率, 增加了水分利用效率, 而在干旱条件下氮添加对它们没有显著影响; 叶片单位面积的氮含量在自然降水下随氮添加量的增加有增加趋势, 而在干旱条件下显著降低。在自然降水下, 氮添加主要影响糙隐子草的叶形态和生理性状, 而在干旱条件下, 氮添加主要影响糙隐子草的整株性状和形态性状。总之, 糙隐子草的功能性状对氮添加表现出明显的响应, 响应格局在不同的水分条件下不同, 反映了其对氮水环境变化的弹性适应。
杨浩, 罗亚晨. 糙隐子草功能性状对氮添加和干旱的响应. 植物生态学报, 2015, 39(1): 32-42. DOI: 10.17521/cjpe.2015.0004
YANG Hao,LUO Ya-Chen. Responses of the functional traits in Cleistogenes squarrosa to nitrogen addition and drought. Chinese Journal of Plant Ecology, 2015, 39(1): 32-42. DOI: 10.17521/cjpe.2015.0004
整株性状 Whole-plant traits | 叶形态性状 Leaf morphological traits | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
高度 Height (cm) | 根系深度 Root depth (cm) | 茎生物量 Stem biomass (mg·tiller-1) | 叶生物量 Leaf biomass (mg·tiller-1) | 茎叶比 Stem: leaf ratio (tiller-1) | 叶面积 Leaf area (cm2·leaf-1) | 叶干质量 Leaf dry mass (mg·leaf-1) | 比叶面积 Specific leaf area (cm2·g-1·leaf-1) | ||||||||||
F | p | F | p | F | p | F | p | F | p | F | p | F | p | F | p | ||
氮添加 N addition | 4.930 | 0.010* | 15.340 | 0.000** | 16.940 | 0.000** | 6.080 | 0.004** | 12.040 | 0.000** | 2.940 | 0.059 | 0.000 | 0.986 | 3.540 | 0.035* | |
水处理 Water treatment | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 2.870 | 0.106 | 3.680 | 0.031* | 5.480 | 0.030* | |
氮添加×水处理 N addition × Water treatment | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 5.950 | 0.005** | 8.030 | 0.001** | 5.310 | 0.008** |
表1 氮添加、水处理和氮水交互作用对糙隐子草整株性状和叶形态性状的影响
Table 1 Results of two-way ANOVAs for the effects of N addition, water treatments and their interaction on whole-plant traits and leaf morphological traits in Cleistogenes squarrosa
整株性状 Whole-plant traits | 叶形态性状 Leaf morphological traits | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
高度 Height (cm) | 根系深度 Root depth (cm) | 茎生物量 Stem biomass (mg·tiller-1) | 叶生物量 Leaf biomass (mg·tiller-1) | 茎叶比 Stem: leaf ratio (tiller-1) | 叶面积 Leaf area (cm2·leaf-1) | 叶干质量 Leaf dry mass (mg·leaf-1) | 比叶面积 Specific leaf area (cm2·g-1·leaf-1) | ||||||||||
F | p | F | p | F | p | F | p | F | p | F | p | F | p | F | p | ||
氮添加 N addition | 4.930 | 0.010* | 15.340 | 0.000** | 16.940 | 0.000** | 6.080 | 0.004** | 12.040 | 0.000** | 2.940 | 0.059 | 0.000 | 0.986 | 3.540 | 0.035* | |
水处理 Water treatment | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 2.870 | 0.106 | 3.680 | 0.031* | 5.480 | 0.030* | |
氮添加×水处理 N addition × Water treatment | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 5.950 | 0.005** | 8.030 | 0.001** | 5.310 | 0.008** |
图2 施肥和干旱对糙隐子草整株性状的影响(平均值±标准误差, n = 4)。不同的字母表示处理间有显著的差异(LSD检验, p < 0.05)。
Fig. 2 Effects of N addition and drought on whole-plant traits in Cleistogenes squarrosa (mean ± SE, n = 4). Difference letters indicate significant differences among treatments (LSD test, p < 0.05).
叶生理形状 Leaf photosynthetic traits | 叶片氮含量 Leaf nitrogen content | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
光合速率 Pn (μmol CO2·m-2·s-1) | 蒸腾速率 Tr (mmol H2O·m-2·s-1) | 气孔导度 Gs (mol H2O·m-2·s-1) | 胞间CO2浓度 Ci (μmol CO2·mol-1) | 水分利用效率 WUE (μmol CO2·mol-1 H2O) | 气孔限制 Ls | 单位质量叶片 氮含量 Nmass (%) | 单位面积叶片 氮含量 Narea (g·m-2) | ||||||||||
F | p | F | p | F | p | F | p | F | p | F | p | F | p | F | p | ||
氮添加 N addition | 3.91 | 0.024* | 1.86 | 0.169 | 1.39 | 0.274 | 11.28 | 0.000** | 2.44 | 0.095 | 11.49 | 0.000** | 6.71 | 0.003** | 1.34 | 0.290 | |
水处理 Water treatment | 9.19 | 0.007** | 12.89 | 0.002** | 10.85 | 0.004** | 6.29 | 0.021* | 0.44 | 0.513 | 6.50 | 0.019* | 7.55 | 0.012* | 15.05 | 0.001** | |
氮添加×水处理 N addition × Water treatment | 7.82 | 0.001** | 2.70 | 0.073 | 4.14 | 0.020* | 10.03 | 0.000** | 3.71 | 0.029* | 9.91 | 0.000** | 0.45 | 0.720 | 5.16 | 0.008** |
表2 氮添加、水处理和氮水交互作用对糙隐子草叶生理性状和叶氮含量的影响
Table 2 Results of two-way ANOVAs for the effects of N addition, water treatments and their interaction on leaf photosynthetic traits and leaf nitrogen content in Cleistogenes squarrosa
叶生理形状 Leaf photosynthetic traits | 叶片氮含量 Leaf nitrogen content | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
光合速率 Pn (μmol CO2·m-2·s-1) | 蒸腾速率 Tr (mmol H2O·m-2·s-1) | 气孔导度 Gs (mol H2O·m-2·s-1) | 胞间CO2浓度 Ci (μmol CO2·mol-1) | 水分利用效率 WUE (μmol CO2·mol-1 H2O) | 气孔限制 Ls | 单位质量叶片 氮含量 Nmass (%) | 单位面积叶片 氮含量 Narea (g·m-2) | ||||||||||
F | p | F | p | F | p | F | p | F | p | F | p | F | p | F | p | ||
氮添加 N addition | 3.91 | 0.024* | 1.86 | 0.169 | 1.39 | 0.274 | 11.28 | 0.000** | 2.44 | 0.095 | 11.49 | 0.000** | 6.71 | 0.003** | 1.34 | 0.290 | |
水处理 Water treatment | 9.19 | 0.007** | 12.89 | 0.002** | 10.85 | 0.004** | 6.29 | 0.021* | 0.44 | 0.513 | 6.50 | 0.019* | 7.55 | 0.012* | 15.05 | 0.001** | |
氮添加×水处理 N addition × Water treatment | 7.82 | 0.001** | 2.70 | 0.073 | 4.14 | 0.020* | 10.03 | 0.000** | 3.71 | 0.029* | 9.91 | 0.000** | 0.45 | 0.720 | 5.16 | 0.008** |
图3 施肥和干旱对糙隐子草叶片形态性状的影响(平均值±标准误差, n = 4)。不同的字母表示处理间有显著的差异(LSD检验, p < 0.05)。
Fig. 3 Effects of N addition and drought on leaf morphological traits in Cleistogenes squarrosa (mean ± SE, n = 4). Difference letters indicate significant differences among treatments (LSD test, p < 0.05).
图4 施肥和干旱对糙隐子草叶片光合性状的影响(平均值±标准误差, n = 4)。Ci, 胞间CO2浓度; Gs, 气孔导度; Ls, 气孔限制值; Pn, 光合速率; Tr, 蒸腾速率; WUE, 水分利用效率。不同的字母表示处理间有显著的差异(LSD test, p < 0.05)。
Fig. 4 Effects of N addition and drought on leaf photosynthetic traits in Cleistogenes squarrosa (mean ± SE, n = 4). Ci, intercellular CO2 concentration; Gs, stomatal conductance; Ls, stomatal limitation; Pn, net photosynthetic rate; Tr, transpiration rate; WUE, water use efficiency. Difference letters indicate significant differences among treatments (LSD test, p < 0.05).
图5 施肥和干旱对糙隐子草叶片单位质量氮含量和单位面积氮含量的影响(平均值±标准误差, n = 4)。不同的字母表示处理间有显著的差异(LSD test, p < 0.05)。
Fig. 5 Effects of N addition and drought on leaf nitrogen content based on leaf mass (Nmass) and leaf nitrogen content based on leaf area (Narea) in Cleistogenes squarrosa (mean ± SE, n = 4). Difference letters indicate significant differences among treatments (LSD test, p < 0.05).
图6 性状间关系的聚类分析图。Ci, 胞间CO2浓度; Gs, 气孔导度; Ls, 气孔限制值; Narea, 单位面积叶片氮含量; Nmass, 单位质量叶片氮含量; Pn, 光合速率; Tr, 蒸腾速率; WUE, 水分利用效率。
Fig. 6 The cluster dendrogram of plant traits. Ci, intercellular CO2 concentration; Gs, stomatal conductance; Ls, stomatal limitation; Narea, leaf nitrogen content based on leaf area; Nmass, leaf nitrogen content based on leaf mass; Pn, net photosynthetic rate; Tr, transpiration rate; WUE, water use efficiency.
1 | Adler PB, Milchunas DG, Lauenroth WK, Sala OE, Burke IC (2004). Functional traits of graminoids in semi-arid steppes: A test of grazing histories. Journal of Applied Ecology, 41, 653-663. |
2 | Adler PB, Milchunas DG, Sala OE, Burke IC, Lauenroth WK (2005). Plant traits and ecosystem grazing effects: Comparison of U.S. Sagebrush steppe and Patagonian steppe. Ecological Applications, 15, 774-792. |
3 | Auyeung DSN, Suseela V, Dukes JS (2013). Warming and drought reduce temperature sensitivity of nitrogen transformations. Global Change Biology, 19, 662-676. |
4 | Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184. |
5 | Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89, 2140-2153. |
6 | Chen SP, Bai YF, Han XG (2002). Variation of water-use efficiency of Leymus chinensis and Cleistogenes squarrosa in different plant communities in Xilin River Basin, Nei Mongol. Acta Botanica Sinica, 44, 1484-1490. |
7 | Chen SP, Bai YF, Lin GH, Liang Y, Han XG (2005). Effects of grazing on photosynthetic characteristics of major steppe species in the Xilin River Basin, Inner Mongolia, China. Photosynthetica, 43, 559-565. |
8 | Cui XY, Chen ZZ, Du ZC (2001). Study on light- and water-use characteristics of main plants in semiarid steppe. Acta Prataculturae Sinica, 10(2), 14-21. |
(in Chinese with English abstract) [崔骁勇, 陈佐忠, 杜占池 (2001). 半干旱草原主要植物光能和水分利用特征的研究. 草业学报, 10(2), 14-21.] | |
9 | Díaz S, Lavorel S, McIntyre S, Falczuk V, Casanoves F, Milchunas DG, Skarpe C, Rusch G, Sternberg M, Noy-Meir I, Landsberg J, Zhang W, Clark H, Campbell BD (2007). Plant trait responses to grazing — A global synthesis. Global Change Biology, 13, 313-341. |
10 | Huang JY, Zhu XG, Yuan ZY, Song SH, Li X, Li LH (2008). Changes in nitrogen resorption traits of six temperate grassland species along a multi-level N addition gradient. Plant and Soil, 306, 149-158. |
11 | Inner Mongolia-Ningxia Complex Expert Team of the Chinese Academy of Sciences (1985). Vegetation of Inner Mongolia. Science Press, Beijing. |
(in Chinese) [中国科学院内蒙古宁夏综合考察队 (1985). 内蒙古植被. 科学出版社, 北京.] | |
12 | Lavorel S, Grigulis K, Lamarque P, Colace MP, Garden D, Girel J, Pellet G, Douzet R (2011). Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology, 99, 135-147. |
13 | Lü CQ, Tian HQ (2007). Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data. Journal of Geophysical Research: Atmospheres, 112, D22S05, doi: 10.1029/2006JD007990. |
14 | Milchunas DG, Lauenroth WK (1993). Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs, 63, 327-366. |
15 | Milla R, Reich PB (2007). The scaling of leaf area and mass: the cost of light interception increases with leaf size. Proceedings of the Royal Society B: Biological Sciences, 274, 2109-2115. |
16 | Paul KI, Polglase PJ, O’Connell AM, Carlyle JC, Smethurst PJ, Khanna PK (2003). Defining the relation between soil water content and net nitrogen mineralization. European Journal of Soil Science, 54, 39-48. |
17 | Poorter L, Rozendaal DA (2008). Leaf size and leaf display of thirty-eight tropical tree species. Oecologia, 158, 35-46. |
18 | Qin J, Bao YJ, Li ZH, Hu ZC, Zhou LN, Sun Z (2014). Gradient response of Cleistogenes squarrosa root system to nitrogen addition. Journal of Dalian Nationalities University, 16, 24-28. |
(in Chinese with English abstract) [秦洁, 鲍雅静, 李政海, 胡志超, 周丽娜, 孙振 (2014). 糙隐子草根系特征对氮素添加梯度的响应. 大连民族学院学报, 16, 24-28.] | |
19 | Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730-13734. |
20 | Reich PB, Wright IJ, Lusk CH (2007). Predicting leaf physiology from simple plant and climate attributes: A global GLOPNET analysis. Ecological Applications, 17, 1982-1988. |
21 | Shipley B (2002). Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: Relationship with daily irradiance. Functional Ecology, 16, 682-689. |
22 | Shipley B (2006). Net assimilation rate, specific leaf area and leaf mass ratio: Which is most closely correlated with relative growth rate? A meta-analysis. Functional Ecology, 20, 565-574. |
23 | Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional!Oikos, 116, 882-892. |
24 | Wan HW, Yang Y, Bai SQ, Xu YH, Bai YF (2008). Variations in leaf functional traits of six species along a nitrogen addition gradient in Leymus chinensis steppe in Inner Mongolia. Journal of Plant Ecology (Chinese Version), 32, 611-621. |
(in Chinese with English abstract) [万宏伟, 杨阳, 白世勤, 徐云虎, 白永飞 (2008). 羊草草原群落6种植物叶片功能特性对氮素添加的响应 植物生态学报, 32, 611-621.] | |
25 | Wang SP, Wang YF (2001). Study on over-compensation growth of Cleistogenes squarrosa population in Inner Mongolia steppe. Acta Batanica Sinica, 43, 413-418. |
(in Chinese with English abstract) [汪诗平, 王艳芬 (2001). 不同放牧率下糙隐子草种群补偿性生长的研究 植物学报, 43, 413-418.] | |
26 | Wang SP, Wang YF, Chen ZZ (2003). Effect of climate change and grazing on populations of Cleistogenes squarrosa in Inner Mongolia steppe. Acta Phytoecologica Sinica, 23, 337-343. |
(in Chinese with English abstract). [汪诗平, 王艳芬, 陈佐忠 (2003). 气候变化和放牧活动对糙隐子草种群的影响 植物生态学报, 23, 337-343.] | |
27 | Wang XT, Wang W, Liang CZ, Bao JJ (2014). Cleistogenes squarrosa population at different restorative succession stages in Inner Mongolia of China: A point pattern analysis. Chinese Journal of Applied Ecology, 24, 1793-1800. |
(in Chinese with English abstract) [王鑫厅, 王炜, 梁存柱, 包俊江 (2014). 不同恢复演替阶段糙隐子草种群的点格局分析. 应用生态学报, 24, 1793-1800.] | |
28 | Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159. |
29 | Zheng SX, Lan ZC, Li WH, Shao RX, Shan YM, Wan HW, Taube F, Bai YF (2011). Differential responses of plant functional trait to grazing between two contrasting dominant C3 and C4 species in a typical steppe of Inner Mongolia, China. Plant and Soil, 340, 141-155. |
[1] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[2] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[3] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[4] | 冯旭飞, 雷长英, 张玉洁, 向导, 杨明凤, 张旺锋, 张亚黎. 棉花花铃期叶片氮分配对光合氮利用效率的影响[J]. 植物生态学报, 2023, 47(11): 1600-1610. |
[5] | 林雍, 陈智, 杨萌, 陈世苹, 高艳红, 刘冉, 郝彦宾, 辛晓平, 周莉, 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[6] | 任金培, 李俊鹏, 王卫锋, 代永欣, 王林. 八个树种叶水力性状对水分条件的响应及其驱动因素[J]. 植物生态学报, 2021, 45(9): 942-951. |
[7] | 宋慧清, 倪鸣源, 朱师丹. 乔木与木质藤本的水力与光合性状的差异: 以热带森林崖豆藤属和买麻藤属为例[J]. 植物生态学报, 2020, 44(3): 192-204. |
[8] | 赵丹丹, 马红媛, 李阳, 魏继平, 王志春. 水分和养分添加对羊草功能性状和地上生物量的影响[J]. 植物生态学报, 2019, 43(6): 501-511. |
[9] | 朱启林, 向蕊, 汤利, 龙光强. 间作对氮调控玉米光合速率和光合氮利用效率的影响[J]. 植物生态学报, 2018, 42(6): 672-680. |
[10] | 王甜, 徐姗, 赵梦颖, 李贺, 寇丹, 方精云, 胡会峰. 内蒙古不同类型草原土壤团聚体含量的分配及其稳定性[J]. 植物生态学报, 2017, 41(11): 1168-1176. |
[11] | 李志民, 王传宽, 罗丹丹. 兴安落叶松叶水力与光合性状的变异性和相关性[J]. 植物生态学报, 2017, 41(11): 1140-1148. |
[12] | 赵文赛, 孙永林, 刘西平. 干旱-复水-再干旱处理对玉米光合能力和生长的影响[J]. 植物生态学报, 2016, 40(6): 594-603. |
[13] | 司晓林, 王文银, 高小刚, 徐当会. 氮硅添加对高寒草甸垂穗披碱草叶片全氮含量及净光合速率的影响[J]. 植物生态学报, 2016, 40(12): 1238-1244. |
[14] | 唐海萍, 薛海丽, 房飞. 叶片和群落尺度净光合速率关系的探讨[J]. 植物生态学报, 2015, 39(9): 924-931. |
[15] | 王常顺, 汪诗平. 植物叶片性状对气候变化的响应研究进展[J]. 植物生态学报, 2015, 39(2): 206-216. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19