植物生态学报 ›› 2015, Vol. 39 ›› Issue (2): 206-216.DOI: 10.17521/cjpe.2015.0020
所属专题: 稳定同位素生态学; 青藏高原植物生态学:群落生态学; 植物功能性状
• • 上一篇
收稿日期:
2014-09-16
接受日期:
2015-01-10
出版日期:
2015-02-01
发布日期:
2015-03-10
通讯作者:
汪诗平
作者简介:
# 共同第一作者
基金资助:
WANG Chang-Shun1,3, WANG Shi-Ping1,2,*()
Received:
2014-09-16
Accepted:
2015-01-10
Online:
2015-02-01
Published:
2015-03-10
Contact:
Shi-Ping WANG
About author:
# Co-first authors
摘要:
叶片性状反映了植物对环境的高度适应能力及其在复杂生境下的自我调控能力。叶片性状如何响应和适应气候变化是植物适应性研究的重点内容。该文系统综述了叶片大小、比叶质量、叶片氮含量、碳同位素等指标对气候变化响应的最新研究结果。不同叶片性状对气候变化的响应结果存在差异, 所指示的生态学含义也有所不同。单一叶片性状不能全面地反映植物对气候变化的响应; 不同尺度的研究(如环境的修饰或筛选作用的研究)还存在很多不确定性。高寒地区的研究工作相对缺乏。该文有助于理解植物与气候之间的相互关系、植物对气候变化的响应与适应对策, 对了解植物演化、预测植物在未来气候变化条件下的变化特征具有一定意义。
王常顺, 汪诗平. 植物叶片性状对气候变化的响应研究进展. 植物生态学报, 2015, 39(2): 206-216. DOI: 10.17521/cjpe.2015.0020
WANG Chang-Shun,WANG Shi-Ping. A review of research on responses of leaf traits to climate change. Chinese Journal of Plant Ecology, 2015, 39(2): 206-216. DOI: 10.17521/cjpe.2015.0020
1 | Aerts R, Chapin FS III (2000). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns.Advances in Ecological Research, 30, 1-67. |
2 | An YA, Wan SQ, Zhou XH, Subedar AA, Wallace LL, Luo YQ (2005). Plant nitrogen concentration, use efficiency, and contents in a tallgrass prairie ecosystem under experimental warming.Global Change Biology, 11, 1733-1744. |
3 | Aranda I, Castro L, Pardos M, Gil L, Pardos JA (2005). Effects of the interaction between drought and shade on water relations, gas exchange and morphological traits in cork oak (Quercus suber L.) seedlings.Forest Ecology and Management, 210, 117-129. |
4 | Atkins RF (2005). The LMA is a critical rescue device in airway emergencies.Anesthesia & Analgesia, 101, 1888-1889. |
5 | Atkinson LJ, Campbell CD, Zaragoza-Castells J, Hurry V, Atkin OK (2010). Impact of growth temperature on scaling relationships linking photosynthetic metabolism to leaf functional traits.Functional Ecology, 24, 1181-1191. |
6 | Bassin S, Werner RA, Sörgel K, Volk M, Buchmann N, Fuhrer J (2009). Effects of combined ozone and nitrogen deposition on the in situ properties of eleven key plant species of a subalpine pasture.Oecologia, 158, 747-756. |
7 | Boratyński A, Jasińska A, Boratyńska K, Iszkuło G, Piórkowska M (2009). Life span of needles of Pinus mugo Turra: Effect of altitude and species origin.Polish Journal of Ecology, 57, 567-572. |
8 | Boucek RE, Rehage JS (2014). Climate extremes drive changes in functional community structure.Global Change Biology, 20, 1821-1831. |
9 | Chen JG, Yang Y, Sun H (2011). Advances in the studies of responses of alpine plants to global warming.Chinese Journal of Applied and Environmental Biology, 17, 435-446.(in Chinese with English abstract) |
[陈建国, 杨扬, 孙航 (2011). 高山植物对全球气候变暖的响应研究进展. 应用与环境生物学报, 17, 435-446.] | |
10 | Cordell S, Goldstein G, Meinzer FC, Handley LL (1999). Allocation of nitrogen and carbon in leaves of Metrosideros polymorpha regulates carboxylation capacity and δ13C along an altitudinal gradient.Functional Ecology, 13, 811-818. |
11 | Cornwell WK, Ackerly DD (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California.Ecological Monographs, 79, 109-126. |
12 | Day TA, Ruhland CT, Xiong FS (2008). Warming increases aboveground plant biomass and C stocks in vascular-plant- dominated Antarctic tundra.Global Change Biology, 14, 1827-1843. |
13 | de Frenne P, Graae BJ, Kolb A, Shevtsova A, Baeten L, Brunet J, Chabrerie O, Cousins SAO, Decocq G, Dhondt R, Die- kmann M, Gruwez R, Heinken T, Hermy M, Öester M, Saguez R, Stanton S, Tack W, Vanhellemont M, Verheyen K (2011). An intraspecific application of the leaf-height- seed ecology strategy scheme to forest herbs along a latitudinal gradient.Ecography, 34, 132-140. |
14 | Diefendorf AF, Mueller KE, Wing SL, Koch PL, Freeman KH (2010). Global patterns in leaf 13C discrimination and implications for studies of past and future climate.Proceedings of the National Academy of Sciences of the United States of America, 107, 5738-5743. |
15 | Dong TF, Feng YL, Lei YB, Zhang LK (2012). Comparison on leaf functional traits of main dominant woody species in wet and dry habitats.Chinese Journal of Ecology, 31, 1043-1049.(in Chinese with English abstract) |
[董廷发, 冯玉龙, 类延宝, 张丽坤 (2012). 干旱和湿润生境中主要优势树种叶片功能性状的比较. 生态学杂志, 31, 1043-1049.] | |
16 | Dunbar-Co S, Sporck MJ, Sack L (2009). Leaf trait diversification and design in seven rare taxa of the Hawaiian Plantago radiation.International Journal of Plant Sciences, 170, 61-75. |
17 | Engler R, Randin CF, Thuiller W, Dullinger S, Zimmermann NE, Araújo MB, Pearman PB, le Lay G, Piedallu C, Albert CH, Choler P, Coldea G, De Lamo X, Dirnböck T, Gégout JC, Gómez-García D, Grytnes JA, Heegaard E, Høistad F, Noguées-Bravo D, Normand S, Puşcaş M, Sebastià MT, Stanisci A, Theurillat JP, Trivedi MR, Vittoz P, Guisan A (2011). 21st century climate change threatens mountain flora unequally across Europe.Global Change Biology, 17, 2330-2341. |
18 | Farquhar GD, Ehleringer JR, Hubick KT (1989). Carbon isotope discrimination and photosynthesis.Annual Review of Plant Physiology and Plant Molecular Biology, 40, 503-537. |
19 | Feng QH, Cheng RM, Shi ZM, Liu SR, Liu XL, He F, Cao HM (2011). Response of foliar δ13C of Quercus spinosa to altitudinal gradients.Acta Ecologica Sinica, 31, 3629-3637.(in Chinese with English abstract) |
[冯秋红, 程瑞梅, 史作民, 刘世荣, 刘兴良, 何飞, 曹慧明 (2011). 巴郎山刺叶高山栎叶片δ13C对海拔高度的响应. 生态学报, 31, 3629-3637.] | |
20 | Feng QH, Cheng RM, Shi ZM, Liu SR, Wang WX, Liu XL, He F (2013). Response of leaf functional traits and the relationships among them to altitude of Salix dissa in Balang Mountain.Acta Ecologica Sinica, 33, 2712-2718.(in Chinese with English abstract) |
[冯秋红, 程瑞梅, 史作民, 刘世荣, 王卫霞, 刘兴良, 何飞 (2013). 巴郎山异型柳叶片功能性状及性状间关系对海拔的响应. 生态学报, 33, 2712-2718.] | |
21 | Fonseca CR, Overton JM, Collins B, Westoby M (2000). Shifts in trait-combinations along rainfall and phosphorus gradients.Journal of Ecology, 88, 964-977. |
22 | Garnier E, Cordonnier P, Guillerm JL, Sonié L (1997). Specific leaf area and leaf nitrogen concentration in annual and perennial grass species growing in mediterranean old-fields.Oecologia, 111, 490-498. |
23 | Geng Y, Wang ZH, Liang CZ, Fang JY, Baumann F, Kühn P, Scholten T, He JS (2012). Effect of geographical range size on plant functional traits and the relationships between plant, soil and climate in Chinese grasslands.Global Ecology and Biogeography, 21, 416-427. |
24 | Givnish TJ, Burkhardt EL, Happel RE, Weintraub JD (1984). Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats.The American Naturalist, 124, 479-497. |
25 | Grime JP (2001). Plant functional types, communities and ecosystems. In: Press MC, Huntly WJ, Levin S eds. Ecology: Achievement and Challenge: 41st Symposium of the British Ecological Society. Blackwell Science, Oxford, UK. 161-181. |
26 | Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China.New Phytologist, 168, 377-385. |
27 | He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen: Phosphorus stoichiometry across Chinese grassland biomes.Oecologia, 155, 301-310. |
28 | He JS, Wang XP, Flynn DFB, Wang L, Schmid B, Fang JY (2009). Taxonomic, phylogenetic, and environmental trade-offs between leaf productivity and persistence.Ecology, 90, 2779-2791. |
29 | He JS, Wang XP, Schmid B, Flynn DFB, Li XF, Reich PB, Fang JY (2010). Taxonomic identity, phylogeny, climate and soil fertility as drivers of leaf traits across Chinese grassland biomes.Journal of Plant Research, 123, 551-561. |
30 | He JS, Wang ZH, Wang XP, Schmid B, Zuo WY, Zhou M, Zheng CY, Wang MF, Fang JY (2006). A test of the generality of leaf trait relationships on the Tibetan Plateau.New Phytologist, 170, 835-848. |
31 | Heberling JM, Fridley JD (2012). Biogeographic constraints on the world-wide leaf economics spectrum.Global Ecology and Biogeography, 21, 1137-1146. |
32 | Hobbie SE, Miley TA, Weiss MS (2002). Carbon and nitrogen cycling in soils from acidic and nonacidic tundra with different glacial histories in northern Alaska.Ecosystems, 5, 761-774. |
33 | Hollister RD, Webber PJ, Tweedie CE (2005). The response of Alaskan arctic tundra to experimental warming: Differences between short- and long-term responses.Global Change Biology, 11, 525-536. |
34 | Hölscher D, Schmitt S, Kupfer K (2002). Growth and leaf traits of four broad-leaved tree species along a hillside gradient.Forstwissenschaftliches Centralblatt, 121, 229-239. |
35 | Hudson JMG, Henry GHR, Cornwell WK (2011). Taller and larger: Shifts in Arctic tundra leaf traits after 16 years of experimental warming.Global Change Biology, 17, 1013-1021. |
36 | IPCC (Intergovernmental Panel on Climate Change) (2013). Working group I contribution to the IPCC fifth assessment report climate change 2013: The physical science basis. In: Thomas FS, Dahe Q, Gian-Kasper P, Melinda MBT, Simon KA, Judith B eds. Observations: Atmosphere and Surface. Cambridge University Press, Cambridge, UK. |
37 | Jentsch A, Kreyling J, Beierkuhnlein C (2007). A new generation of climate change experiments: Events, not trends.Frontiers in Ecology and the Environment, 5, 365-374. |
38 | Kim E, Donohue K (2013). Local adaptation and plasticity of Erysimum capitatum to altitude: Its implications for responses to climate change.Journal of Ecology, 101, 796-805. |
39 | Kogami H, Hanba YT, Kibe T, Terashima I, Masuzawa T (2001). CO2 transfer conductance, leaf structure and carbon isotope composition of Polygonum cuspidatum leaves from low and high altitudes.Plant, Cell & Environment, 24, 529-538. |
40 | Korner C (1999). Physiological Plant Ecology. 2nd edn. Springer-Verlag, New York. 297-311. |
41 | Lambers H, Poorter H (1992). Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences.Advances in Ecological Research, 23, 187-261. |
42 | Lilley JM, Bolger TP, Peoples MB, Gifford RM (2001). Nutritive value and the nitrogen dynamics of Trifolium subterraneum and Phalaris aquatica under warmer, high CO2 conditions.New Phytologist, 150, 385-395. |
43 | Lobell DB, Schlenker W, Costa-Roberts J (2011). Climate trends and global crop production since 1980.Science, 333, 616-620. |
44 | Long WX, Zang RG, Schamp BS, Ding Y (2011). Within- and among-species variation in specific leaf area drive community assembly in a tropical cloud forest.Oecologia, 167, 1103-1113. |
45 | Lopez-Iglesias B, Villar R, Poorter L (2014). Functional traits predict drought performance and distribution of Mediterranean woody species.Acta Oecologica, 56, 10-18. |
46 | Luo L, Shen GZ, Xie ZJ, Yu J (2011). Leaf functional traits of four typical forests along the altitudinal gradients in Mt. Shennongjia.Acta Ecologica Sinica, 31, 6420-6428.(in Chinese with English abstract) |
[罗璐, 申国珍, 谢宗强, 喻杰 (2011). 神农架海拔梯度上4种典型森林的乔木叶片功能性状特征. 生态学报, 31, 6420-6428.] | |
47 | Luo TX, Zhang L, Zhu HZ, Daly C, Li MC, Luo J (2009). Correlations between net primary productivity and foliar carbon isotope ratio across a Tibetan ecosystem transect.Ecography, 32, 526-538. |
48 | Luomala EM, Laitinen K, Kellomäki S, Vapaavuori E (2003). Variable photosynthetic acclimation in consecutive cohorts of Scots pine needles during 3 years of growth at elevated CO2 and elevated temperature.Plant, Cell & Environment, 26, 645-660. |
49 | Lusk CH, Falster DS, Jara-Vergara CK, Jimenez-Castillo M, Saldana-Mendoza A (2008). Ontogenetic variation in light requirements of juvenile rainforest evergreens.Functional Ecology, 22, 454-459. |
50 | McCulloh KA, Sperry JS (2005). Patterns in hydraulic architecture and their implications for transport efficiency.Tree Physiology, 25, 257-267. |
51 | McDonald PG, Fonseca CR, Overton JMC, Westoby M (2003). Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades?Functional Ecology, 17, 50-57. |
52 | Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009). Greenhouse-gas emission targets for limiting global warming to 2 °C.Nature, 458, 1158-1196. |
53 | Milla R, Reich PB (2007). The scaling of leaf area and mass: The cost of light interception increases with leaf size.Proceedings of the Royal Society B, 274, 2109-2114. |
54 | Moles AT, Westoby M (2000). Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos, 90, 517-524. |
55 | Navarro T, El Oualidi J, Taleb MS, Pascual V, Cabezudo B, Milla R (2010). Leaf patterns, leaf size and ecologically related traits in high Mediterranean mountain on the Moroccan high atlas.Plant Ecology, 210, 275-290. |
56 | Oleksyn J, Reich PB, Zytkowiak R, Karolewski P, Tjoelker MG (2002). Needle nutrients in geographically diverse Pinus sylvestris L. populations.Annals of Forest Science, 59, 1-18. |
57 | Oleksyn J, Reich PB, Zytkowiak R, Karolewski P, Tjoelker MG (2003). Nutrient conservation increases with latitude of origin in European Pinus sylvestris populations.Oecologia, 136, 220-235. |
58 | Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility.Global Ecology and Biogeography, 18, 137-149. |
59 | Pakeman RJ (2013). Intra-specific leaf trait variation: Management and fertility matter more than the climate at continental scales.Folia Geobotanica, 48, 355-371. |
60 | Palmroth S, Holm Bach L, Nordin A, Palmqvist K (2014). Nitrogen-addition effects on leaf traits and photosynthetic carbon gain of boreal forest understory shrubs.Oecologia, 175, 457-470. |
61 | Peppe DJ, Royer DL, Cariglino B, Oliver SY, Newman S, Leight E, Enikolopov G, Fernandez-Burgos M, Herrera F, Adams JM, Correa E, Currano ED, Erickson JM, Hinojosa LF, Hoganson JW, Iglesias A, Jaramillo CA, Johnson KR, Jordan GJ, Kraft NJB, Lovelock EC, Lusk CH, Niinemets U, Penuelas J, Rapson G, Wing SL, Wright IJ (2011). Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications.New Phytologist, 190, 724-739. |
62 | Pierce S, Brusa G, Sartori M, Cerabolini BEL (2012). Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies.Annals of Botany, 109, 1047-1053. |
63 | Pontes LDS, Soussana JF, Louault F, Andueza D, Carrère P (2007). Leaf traits affect the above-ground productivity and quality of pasture grasses.Functional Ecology, 21, 844-853. |
64 | Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009). Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis.New Phytologist, 182, 565-588. |
65 | Poorter L, Bongers F (2006). Leaf traits are good predictors of plant performance across 53 rain forest species.Ecology, 87, 1733-1743. |
66 | Ramírez-Valiente JA, Sánchez-Gómez D, Aranda I, Valladares F (2010). Phenotypic plasticity and local adaptation in leaf ecophysiological traits of 13 contrasting cork oak populations under different water availabilities.Tree Physiology, 30, 618-627. |
67 | Read QD, Moorhead LC, Swenson NG, Bailey JK, Sanders NJ (2014). Convergent effects of elevation on functional leaf traits within and among species.Functional Ecology, 28, 37-45. |
68 | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006. |
69 | Reich PB, Walters MB, Ellsworth DS (1992). Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems.Ecological Monographs, 62, 365-392. |
70 | Reich PB, Walters MB, Ellsworth DS, Vose JM, Volin JC, Gresham C, Bowman WD (1998). Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: A test across biomes and functional groups.Oecologia, 114, 471-482. |
71 | Roche P, Díaz-Burlinson N, Gachet S (2004). Congruency analysis of species ranking based on leaf traits: Which traits are the more reliable? Plant Ecology, 174, 37-48. |
72 | Rose L, Rubarth MC, Hertel D, Leuschner C (2013). Management alters interspecific leaf trait relationships and trait-based species rankings in permanent meadows.Journal of Vegetation Science, 24, 239-250. |
73 | Royer DL, Meyerson LA, Robertson KM, Adams JM (2009). Phenotypic plasticity of leaf shape along a temperature gradient in Acer rubrum.PLoS ONE, 4, e7653. |
74 | Royer DL, Miller IM, Peppe DJ, Hickey LJ (2010). Leaf economic traits from fossils support a weedy habit for early angiosperms.American Journal of Botany, 97, 438-445. |
75 | Ryser P (1996). The importance of tissue density for growth and life span of leaves and roots: A comparison of five ecologically contrasting grasses.Functional Ecology, 10, 717-723. |
76 | Scheepens JF, Frei ES, Stöcklin J (2010). Genotypic and environmental variation in specific leaf area in a widespread alpine plant after transplantation to different altitudes.Oecologia, 164, 141-150. |
77 | Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture.Plant Physiology, 156, 832-843. |
78 | Shipley B, Lechowicz MJ, Wright I, Reich PB (2006). Fundamental trade-offs generating the worldwide leaf economics spectrum.Ecology, 87, 535-541. |
79 | Song LN, Zhu JJ, Li MC, Yan T, Zhang JX (2012). Needles stable Carbon isotope composition and traits of Pinus sylvestris var. mongolica insparse wood grassland in South edge of Keerqin Sandy Land under the conditions of differentprecipitation.Chinese Journal of Applied Ecology, 23, 1435-1440.(in Chinese with English abstract) |
[宋立宁, 朱教君, 李明财, 闫涛, 张金鑫 (2012). 不同降水条件下科尔沁沙地南缘疏林草地樟子松针叶δ13C和叶性状特征. 应用生态学报, 23, 1435-1440.] | |
80 | Song LL, Fan JW, Wu SH (2011). Research advances on changes of leaf traits along an altitude gradient.Progress in Geography, 30, 1431-1439.(in Chinese with English abstract) |
[宋璐璐, 樊江文, 吴绍洪 (2011). 植物叶片性状沿海拔梯度变化研究进展. 地理科学进展, 30, 1431-1439.] | |
81 | Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005). Functional- and abundance-based mechanisms explain diversity loss due to N fertilization.Proceedings of the National Academy of Sciences of the United States of America, 102, 4387-4392. |
82 | Tjoelker MG, Oleksyn J, Reich PB (1999). Acclimation of respiration to temperature and CO2 in seedlings of boreal tree species in relation to plant size and relative growth rate.Global Change Biology, 5, 679-691. |
83 | Valladares F, Sánchez-Gómez D (2006). Ecophysiological traits associated with drought in Mediterranean tree seedlings: Individual responses versus interspecific trends in eleven species.Plant Biology, 8, 688-697. |
84 | Villar R, Merino J (2001). Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems.New Phytologist, 151, 213-226. |
85 | Vitasse Y, Lenz A, Kollas C, Randin CF, Hoch G, Körner C (2014). Genetic vs. non-genetic responses of leaf morphology and growth to elevation in temperate tree species.Functional Ecology, 28, 243-252. |
86 | von Caemmerer S, Ludwig M, Millgate A, Farquhar GD, Price D, Badger M, Furbank RT (1997). Carbon isotope discrimination during C4 photosynthesis: Insights from transgenic plants.Australian Journal of Plant Physiology, 24, 487-494. |
87 | Wang GH (2007). Leaf trait co-variation, response and effect in a chronosequence.Journal of Vegetation Science, 18, 563-570. |
88 | Weih M (2001). Evidence for increased sensitivity to nutrient and water stress in a fast-growing hybrid willow compared with a natural willow clone.Tree Physiology, 21, 1141-1148. |
89 | Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: Some leading dimensions of variation between species.Annual Review of Ecology and Systematics, 33, 125-159. |
90 | Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby M (2005). Modulation of leaf economic traits and trait relationships by climate.Global Ecology and Biogeography, 14, 411-421. |
91 | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum.Nature, 428, 821-827. |
92 | Xu ZF, Hu TX, Wang KY, Zhang YB, Xian JR (2009). Short-term responses of phenology, shoot growth and leaf traits of four alpine shrubs in a timberline ecotone to simulated global warming, eastern Tibetan Plateau, China.Plant Species Biology, 24, 27-34. |
93 | Yang B, Wang JC, Zhang YB (2010). Effect of long-term warming on growth and biomass allocation of Abies faxoniana seedlings.Acta Ecologica Sinica, 30, 5994-6000.(in Chinese with English abstract) |
[杨兵, 王进闯, 张远彬 (2010). 长期模拟增温对岷江冷杉幼苗生长与生物量分配的影响. 生态学报, 30, 5994-6000.] | |
94 | Yang LD, Yang Y, Wang GX, Guo JY, Yang Y (2011). Short- term effects of warming on growth and stoichiometrical characteristics ofAbies fabiri (Mast.) Craib seedling in Gongga Mountain.Acta Ecologica Sinica, 31, 3668-3676.(in Chinese with English abstract) |
[羊留冬, 杨燕, 王根绪, 郭剑英, 杨阳 (2011). 短期增温对贡嘎山峨眉冷杉幼苗生长及其CNP化学计量学特征的影响. 生态学报, 31, 3668-3676.] | |
95 | Yang Y, Wang GX, Klanderud K, Yang LD (2011). Responses in leaf functional traits and resource allocation of a dominant alpine sedge (Kobresia pygmaea) to climate warming in the Qinghai-Tibetan Plateau permafrost region.Plant and Soil, 349, 377-387. |
96 | Yates MJ, Verboom GA, Rebelo AG, Cramer MD (2010). Ecophysiological significance of leaf size variation in Proteaceae from the Cape Floristic Region.Functional Ecology, 24, 485-492. |
97 | Zhang L, Luo TX (2004). Advances in ecological studies on leaf lifespan and associated leaf traits.Acta Phytoec- ologica Sinica, 28, 844-852.(in Chinese with English abstract) |
[张林, 罗天翔 (2004). 植物叶寿命及其相关叶性状的生态学研究进展. 植物生态学报, 28, 844-852.] | |
98 | Zhang L, Luo TX, Liu XS, Wang Y (2012). Altitudinal variation in leaf construction cost and energy content of Bergenia purpurascens.Acta Oecologica, 43, 72-79. |
99 | Zhang P, Wang G, Zhang T, Chen NL (2010). Responses of foliar δ13C in Sabina przewalskii and Picea crassifolia to altitude and its mechanism in the Qilian Mountains, China.Chinese Journal of Plant Ecology, 34, 125-133.(in Chinese with English abstract) |
[张鹏, 王刚, 张涛, 陈年来 (2010). 祁连山两种优势乔木叶片δ13C的海拔响应及其机理. 植物生态学报, 34, 125-133.] | |
100 | Zhou YC, Fan JW, Zhong HP, Zhang WY (2013). Relation- ships between altitudinal gradient and plant carbon isotope composition of grassland communities on the Qinghai- Tibet Plateau, China.Science China: Earth Sciences, 56, 311-320. |
[周咏春, 樊江文, 钟华平, 张文彦 (2013). 青藏高原草地群落植物碳同位素组成与海拔梯度的关系. 中国科学: 地球科学, 43, 120-130.] | |
101 | Zhu JT, Li XY, Zhang XM, Zeng FJ, Yang SG (2010). Leaf functional traits of Ceratoides latens in northern slope of Kunlun mountain and its regional difference with the altitude.Journal of Desert Research, 30, 1325-1330.(in Chinese with English abstract) |
[朱军涛, 李向义, 张希明, 曾凡江, 杨尚功 (2010). 昆仑山北坡驼绒藜叶片功能性状及其海拔差异性. 中国沙漠, 30, 1325-1330.] | |
102 | Zhu Y, Siegwolf RTW, Durka W, Körner C (2010). Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients.Oecologia, 162, 853-863. |
[1] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[2] | 韩璐, 杨菲, 吴应明, 牛云明, 曾祎明, 陈立欣. 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应[J]. 植物生态学报, 2021, 45(12): 1350-1364. |
[3] | 荀彦涵, 邸雪颖, 金光泽. 典型阔叶红松林主要树种叶性状的垂直变异及经济策略[J]. 植物生态学报, 2020, 44(7): 730-741. |
[4] | 葛体达, 王东东, 祝贞科, 魏亮, 魏晓梦, 吴金水. 碳同位素示踪技术及其在陆地生态系统碳循环研究中的应用与展望[J]. 植物生态学报, 2020, 44(4): 360-372. |
[5] | 李志民, 王传宽, 罗丹丹. 兴安落叶松叶水力与光合性状的变异性和相关性[J]. 植物生态学报, 2017, 41(11): 1140-1148. |
[6] | 刘明秀, 梁国鲁. 植物比叶质量研究进展[J]. 植物生态学报, 2016, 40(8): 847-860. |
[7] | 熊鑫, 张慧玲, 吴建平, 褚国伟, 周国逸, 张德强. 鼎湖山森林演替序列植物-土壤碳氮同位素特征[J]. 植物生态学报, 2016, 40(6): 533-542. |
[8] | 杨浩, 罗亚晨. 糙隐子草功能性状对氮添加和干旱的响应[J]. 植物生态学报, 2015, 39(1): 32-42. |
[9] | 张林, 阎恩荣, 魏海霞, 刘新圣, 沈维. 藏东南色季拉山林线过渡带7种灌木植物的叶氮回收潜力[J]. 植物生态学报, 2014, 38(12): 1325-1332. |
[10] | 胡梦瑶, 张林, 罗天祥, 沈维. 西藏紫花针茅叶功能性状沿降水梯度的变化[J]. 植物生态学报, 2012, 36(2): 136-143. |
[11] | 商志远, 王建, 崔明星, 陈振举. 樟子松树轮δ 13C的年内变化特征及其对气候要素的响应[J]. 植物生态学报, 2012, 36(12): 1256-1267. |
[12] | 李善家, 张有福, 陈拓. 西北油松叶片δ13C特征与环境因子和叶片矿质元素的关系[J]. 植物生态学报, 2011, 35(6): 596-604. |
[13] | 樊廷录, 马明生, 王淑英, 李尚中, 赵刚. 不同基因型冬小麦旗叶的稳定碳同位素比值及其与产量和水分利用效率的关系[J]. 植物生态学报, 2011, 35(2): 203-213. |
[14] | 王玉涛, 李吉跃, 刘平, 陈崇, 何春霞. 不同生活型绿化植物叶片碳同位素组成的季节特征[J]. 植物生态学报, 2010, 34(2): 151-159. |
[15] | 龚吉蕊, 黄永梅, 葛之葳, 段庆伟, 尤鑫, 安然, 张新时. 4种杂交杨对土壤水分变化的生态学响应[J]. 植物生态学报, 2009, 33(2): 387-396. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19