植物生态学报 ›› 2013, Vol. 37 ›› Issue (7): 611-619.DOI: 10.3724/SP.J.1258.2013.00063
杨晓东1,2,阎恩荣1,2,*(),张志浩1,2,孙宝伟1,2,黄海侠1,2,Ali ARSHAD1,2,马文济1,2,史青茹1,2
收稿日期:
2013-03-18
接受日期:
2013-05-22
出版日期:
2013-03-18
发布日期:
2013-07-05
通讯作者:
阎恩荣
基金资助:
YANG Xiao-Dong1,2,YAN En-Rong1,2,*(),ZHANG Zhi-Hao1,2,SUN Bao-Wei1,2,HUANG Hai-Xia1,2,Ali ARSHAD1,2,MA Wen-Ji1,2,SHI Qing-Ru1,2
Received:
2013-03-18
Accepted:
2013-05-22
Online:
2013-03-18
Published:
2013-07-05
Contact:
YAN En-Rong
摘要:
树木构型是木本植物为响应光照变化在其空间建造结构上的配置模式和形态体现。研究演替不同阶段共有种构型的变化可以剔除植物谱系的影响, 反映植物构型特征与光资源供给性的关系。该研究在浙江宁波天童、南山和北仑3个次生演替序列上选择了5个演替共有种, 分4个群落高度层级, 对照分析了树高、冠幅深度和面积、枝条伸展方向、基径、叶片盖度和聚集度构型性状随演替的变化, 并分析了与冠幅曝光指数的线性关系。结果表明: 1)随着演替进行, 冠幅厚度和面积、叶片盖度、叶片聚集度和基径逐步增加, 但在个别相邻演替阶段增加不显著; 2)随着演替进行, 植物的垂直枝比例降低, 水平枝比例增加; 3)演替过程中植物冠幅曝光指数在各层级内都呈现出减小趋势; 4)构型性状和植物冠幅曝光指数间存在显著的线性回归关系(p < 0.001)。总之, 随着常绿阔叶林演替进行, 演替共有种构型的变化反映了物种功能类群由阳性先锋植物向耐阴植物的转化, 其中, 植物对光资源的适应是导致构型变化的主要原因。
杨晓东,阎恩荣,张志浩,孙宝伟,黄海侠,Ali ARSHAD,马文济,史青茹. 浙江天童常绿阔叶林演替阶段共有种的树木构型. 植物生态学报, 2013, 37(7): 611-619. DOI: 10.3724/SP.J.1258.2013.00063
YANG Xiao-Dong,YAN En-Rong,ZHANG Zhi-Hao,SUN Bao-Wei,HUANG Hai-Xia,Ali ARSHAD,MA Wen-Ji,SHI Qing-Ru. Tree architecture of overlapping species among successional stages in evergreen broad-leaved forests in Tiantong region, Zhejiang Province, China. Chinese Journal of Plant Ecology, 2013, 37(7): 611-619. DOI: 10.3724/SP.J.1258.2013.00063
图1 北仑演替序列上共有种构型随着演替的变化。各线段上不同字母表示演替阶段间具有显著差异, S1、S2和S3分别为演替前、中和后期。
Fig. 1 Variation in tree architectures of overlapping species among successional stages in Beilun site. Different letters in each line indicate significant differences among successional stages. S1, S2 and S3 represent early, middle and later successional stage, respectively.
图2 南山演替序列上共有种构型随着演替的变化。各线段上不同字母表示演替阶段间具有显著差异, S1、S2和S3分别为演替的前、中和后期。
Fig. 2 Variation in tree architectures of overlapping species among successional stages in Nanshan site. Different letters in each line indicate significant differences among successional stages. S1, S2 and S3 represent early, middle and later successional stage, respectively.
图3 天童演替序列上共有种构型随着演替的变化。各线段上不同字母表示演替阶段间的植物构型具有显著差异, S1、S2和S3分别为演替的前、中和后期。
Fig. 3 Variation in tree architectures of overlapping species among successional stages in Tiantong site. Different letters in each line indicate significant differences among successional stages. S1, S2 and S3 represent early, middle and later successional stage, respectively.
演替阶段 Succession stage | 小灌木层 Shrublet layer (tree height < 2 m) | 灌木层 Shrub layer (2 m < tree height < 4 m) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
物种 Species | 个体数 Individual number | 枝条伸展方向的比例 Proportion of branch stretch direction (%) | 叶片聚集类型的比例 Proportion of leaf convergence type (%) | 物种 Species | 个体数 Individual number | 枝条伸展方向的比例 Proportion of branch stretch direction (%) | 叶片聚集类型的比例 Proportion of leaf convergence type (%) | ||||||||
α < 30° | α > 60° | 60° > α > 30° | 分散 Dispersed | 聚集 Clumped | α < 30° | α > 60° | 60° > α > 30° | 分散 Dispersed | 聚集 Clumped | ||||||
BS1 | 檵木 Loropetalum chinensis | 6 | 66.0 | 33.0 | 0.0 | 33.0 | 66.0 | 连蕊茶 Camellia fraterna | - | - | - | - | - | - | |
BS2 | - | 20.0 | 80.0 | 0.0 | 50.0 | 50.0 | 4 | 0.0 | 33.0 | 66.0 | 100.0 | 0.0 | |||
BS3 | 4 | - | - | - | - | - | 4 | 40.0 | 60.0 | 0.0 | 100.0 | 0.0 | |||
NS1 | 连蕊茶 Camellia fraterna | 13 | 20.0 | 80.0 | 0.0 | 44.9 | 46.1 | 7 | 28.6 | 71.4 | 0.0 | 57.1 | 42.9 | ||
NS2 | 3 | - | - | - | - | - | 8 | 0.0 | 100.0 | 0.0 | 73.3 | 26.7 | |||
NS3 | 13 | 7.7 | 84.6 | 7.7 | 80.0 | 20.0 | 28 | 10.4 | 87.6 | 2.0 | 76.9 | 23.1 | |||
TS1 | 窄基红褐柃 Eurya rubiginosa | 5 | 60.0 | 20.0 | 20.0 | 0.0 | 100.0 | - | - | - | - | - | - | ||
TS2 | 27 | 0.0 | 39.0 | 61.0 | 8.7 | 91.3 | 6 | 7.1 | 92.9 | 0.0 | 33.3 | 66.7 | |||
TS3 | 5 | 0.0 | 75.0 | 25.0 | 60.0 | 40.0 | 24 | 0.0 | 100.0 | 0.0 | 57.1 | 42.9 |
表1 小灌木和灌木层枝条伸展方向和叶片聚集类型的比例随演替变化的格局
Table 1 Pattern of proportion in each of branch stretch direction and leaf convergence types in both shrublet and shrub layers through forest succession
演替阶段 Succession stage | 小灌木层 Shrublet layer (tree height < 2 m) | 灌木层 Shrub layer (2 m < tree height < 4 m) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
物种 Species | 个体数 Individual number | 枝条伸展方向的比例 Proportion of branch stretch direction (%) | 叶片聚集类型的比例 Proportion of leaf convergence type (%) | 物种 Species | 个体数 Individual number | 枝条伸展方向的比例 Proportion of branch stretch direction (%) | 叶片聚集类型的比例 Proportion of leaf convergence type (%) | ||||||||
α < 30° | α > 60° | 60° > α > 30° | 分散 Dispersed | 聚集 Clumped | α < 30° | α > 60° | 60° > α > 30° | 分散 Dispersed | 聚集 Clumped | ||||||
BS1 | 檵木 Loropetalum chinensis | 6 | 66.0 | 33.0 | 0.0 | 33.0 | 66.0 | 连蕊茶 Camellia fraterna | - | - | - | - | - | - | |
BS2 | - | 20.0 | 80.0 | 0.0 | 50.0 | 50.0 | 4 | 0.0 | 33.0 | 66.0 | 100.0 | 0.0 | |||
BS3 | 4 | - | - | - | - | - | 4 | 40.0 | 60.0 | 0.0 | 100.0 | 0.0 | |||
NS1 | 连蕊茶 Camellia fraterna | 13 | 20.0 | 80.0 | 0.0 | 44.9 | 46.1 | 7 | 28.6 | 71.4 | 0.0 | 57.1 | 42.9 | ||
NS2 | 3 | - | - | - | - | - | 8 | 0.0 | 100.0 | 0.0 | 73.3 | 26.7 | |||
NS3 | 13 | 7.7 | 84.6 | 7.7 | 80.0 | 20.0 | 28 | 10.4 | 87.6 | 2.0 | 76.9 | 23.1 | |||
TS1 | 窄基红褐柃 Eurya rubiginosa | 5 | 60.0 | 20.0 | 20.0 | 0.0 | 100.0 | - | - | - | - | - | - | ||
TS2 | 27 | 0.0 | 39.0 | 61.0 | 8.7 | 91.3 | 6 | 7.1 | 92.9 | 0.0 | 33.3 | 66.7 | |||
TS3 | 5 | 0.0 | 75.0 | 25.0 | 60.0 | 40.0 | 24 | 0.0 | 100.0 | 0.0 | 57.1 | 42.9 |
演替阶段 Succession stage | 亚乔木层 Subtree layer (4 m < tree height < 8 m) | 乔木层 Tree layer (tree height > 8 m) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
物种 Species | 个体数 Individual number | 枝条伸展方向的比例 Proportion of branch stretch direction (%) | 叶片聚集类型的比例 Proportion of leaf convergence type (%) | 物种 Species | 个体数 Individual number | 枝条伸展方向的比例 Proportion of branch stretch direction (%) | 叶片聚集类型的比例 Proportion of leaf convergence type (%) | ||||||||
α < 30° | α > 60° | 60° > α > 30° | 分散 Dispersed | 聚集 Clumped | α < 30° | α > 60° | 60° > α > 30° | 分散 Dispersed | 聚集 Clumped | ||||||
BS1 | 木荷 Schima superba | 4 | 100.0 | 0.0 | 0.0 | 0.0 | 100.0 | 木荷 Schima superba | - | - | - | - | - | - | |
BS2 | 4 | 100.0 | 0.0 | 0.0 | 33.3 | 66.6 | 18 | 100.0 | 0.0 | 0.0 | 17.6 | 82.4 | |||
BS3 | 3 | 50.0 | 50.0 | 0.0 | 100.0 | 0.0 | 4 | 100.0 | 0.0 | 0.0 | 50.0 | 50.0 | |||
NS1 | 栲 Castanopsis fargesii | 6 | 100.0 | 0.0 | 0.0 | 16.7 | 83.3 | 木荷 Schima superba | - | 100.0 | 0.0 | 0.0 | 0.0 | 100.0 | |
NS2 | - | - | - | - | - | - | 13 | 30.0 | 60.0 | 10.0 | 61.5 | 38.5 | |||
NS3 | 5 | 33.3 | 50.0 | 17.7 | 100.0 | 0.0 | 10 | 23.1 | 69.2 | 7.7 | 60.0 | 40.0 | |||
TS1 | 木荷 Schima superba | - | 14.3 | 57.1 | 28.6 | 100.0 | 0.0 | 木荷 Schima superba | - | - | - | - | - | - | |
TS2 | 7 | - | - | - | - | - | 26 | 18.5 | 40.7 | 40.8 | 0.0 | 100.0 | |||
TS3 | 3 | 0.0 | 0.0 | 100.0 | 100.0 | 0.0 | 3 | 0.0 | 0.0 | 100.0 | 100.0 | 0.0 |
表2 亚乔木和乔木层枝条伸展方向和叶片聚集类型的比例随演替变化的格局
Table 2 Pattern of proportion in each of branch stretch direction and leaf convergence type in both subtree and tree layers through forest succession
演替阶段 Succession stage | 亚乔木层 Subtree layer (4 m < tree height < 8 m) | 乔木层 Tree layer (tree height > 8 m) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
物种 Species | 个体数 Individual number | 枝条伸展方向的比例 Proportion of branch stretch direction (%) | 叶片聚集类型的比例 Proportion of leaf convergence type (%) | 物种 Species | 个体数 Individual number | 枝条伸展方向的比例 Proportion of branch stretch direction (%) | 叶片聚集类型的比例 Proportion of leaf convergence type (%) | ||||||||
α < 30° | α > 60° | 60° > α > 30° | 分散 Dispersed | 聚集 Clumped | α < 30° | α > 60° | 60° > α > 30° | 分散 Dispersed | 聚集 Clumped | ||||||
BS1 | 木荷 Schima superba | 4 | 100.0 | 0.0 | 0.0 | 0.0 | 100.0 | 木荷 Schima superba | - | - | - | - | - | - | |
BS2 | 4 | 100.0 | 0.0 | 0.0 | 33.3 | 66.6 | 18 | 100.0 | 0.0 | 0.0 | 17.6 | 82.4 | |||
BS3 | 3 | 50.0 | 50.0 | 0.0 | 100.0 | 0.0 | 4 | 100.0 | 0.0 | 0.0 | 50.0 | 50.0 | |||
NS1 | 栲 Castanopsis fargesii | 6 | 100.0 | 0.0 | 0.0 | 16.7 | 83.3 | 木荷 Schima superba | - | 100.0 | 0.0 | 0.0 | 0.0 | 100.0 | |
NS2 | - | - | - | - | - | - | 13 | 30.0 | 60.0 | 10.0 | 61.5 | 38.5 | |||
NS3 | 5 | 33.3 | 50.0 | 17.7 | 100.0 | 0.0 | 10 | 23.1 | 69.2 | 7.7 | 60.0 | 40.0 | |||
TS1 | 木荷 Schima superba | - | 14.3 | 57.1 | 28.6 | 100.0 | 0.0 | 木荷 Schima superba | - | - | - | - | - | - | |
TS2 | 7 | - | - | - | - | - | 26 | 18.5 | 40.7 | 40.8 | 0.0 | 100.0 | |||
TS3 | 3 | 0.0 | 0.0 | 100.0 | 100.0 | 0.0 | 3 | 0.0 | 0.0 | 100.0 | 100.0 | 0.0 |
演替阶段 Succession stage | 小灌木层 Shrublet layer (tree height < 2 m) | 灌木层 Shrub layer (2 m < tree height < 4 m) | 亚乔木层 Subtree layer (4 m < tree height < 8 m) | 乔木层 Tree layer (tree height > 8 m) |
---|---|---|---|---|
前期 Early | 2.02 ± 0.76A | 2.64 ± 0.85A | 4.75 ± 0.41A | - |
中期 Middle | 1.90 ± 0.62A | 2.56 ± 0.86A | 4.67 ± 0.58A | 4.86 ± 0.42A |
后期 Later | 1.81 ± 0.62A | 2.51 ± 0.95A | 4.69 ± 0.46A | 4.84 ± 0.35A |
表3 各演替阶段群落4个垂直层的冠层曝光度指数(平均值±标准误差)
Table 3 Crown exposure index in four vertical layers among successional communities (mean ± SE)
演替阶段 Succession stage | 小灌木层 Shrublet layer (tree height < 2 m) | 灌木层 Shrub layer (2 m < tree height < 4 m) | 亚乔木层 Subtree layer (4 m < tree height < 8 m) | 乔木层 Tree layer (tree height > 8 m) |
---|---|---|---|---|
前期 Early | 2.02 ± 0.76A | 2.64 ± 0.85A | 4.75 ± 0.41A | - |
中期 Middle | 1.90 ± 0.62A | 2.56 ± 0.86A | 4.67 ± 0.58A | 4.86 ± 0.42A |
后期 Later | 1.81 ± 0.62A | 2.51 ± 0.95A | 4.69 ± 0.46A | 4.84 ± 0.35A |
图4 冠幅曝光指数和植物构型间的线性回归。
Fig. 4 Linear regression of crown exposure (CEI) against tree height, crown depth and area, leaf coverage, and stem basal diameter.
[1] |
Anten NPR, Schieving F (2010). The role of wood mass density and mechanical constraints in the economy of tree architecture. The American Naturalist, 175, 250-260.
URL PMID |
[2] | Ashton PS (1958). Light intensity measurements in rain forest near Santarem, Brazil. Journal of Ecology, 45, 65-70. |
[3] | Bazzaz FA, Pickett STA (1980). Physiological ecology of tropical succession: a comparative review. Annual Review of Ecology and Systematics, 11, 287-310. |
[4] |
Clark JS (2010). Individuals and the variation needed for high species diversity in forest trees. Science, 327, 1129-1132.
URL PMID |
[5] |
Davies SJ, Ashton PS (1999). Phenology and fecundity in 11 sympatric pioneer species of Macaranga (Euphorbiaceae) in Borneo. American Journal of Botany, 86, 1786-1795.
URL PMID |
[6] | England JR, Attiwill PM (2006). Changes in leaf morphology and anatomy with tree age and height in the broadleaved evergreen species, Eucalyptus regnans F. Muell. Trees, 20, 79-90. |
[7] |
Enquist BJ, West GB, Charnov EL, Brown JH (1999). Allometric scaling of production and life-history variation in vascular plants. Nature, 401, 907-911.
DOI URL |
[8] | Givnish TJ (1988). Adaptation to sun and shade: a whole-plant perspective. Australian Journal of Plant Physiology, 15, 63-92. |
[9] | Horn HS (1971). The Adaptive Geometry of Trees. Princeton University Press, Princeton. |
[10] |
Iida Y, Kohyama TS, Kobo T, Kassim AR, Poorter L, Sterck F, Potts MD (2011). Tree architecture and life-history strategies across 200 co-occurring tropical tree species. Functional Ecology, 25, 1260-1268.
DOI URL |
[11] |
Liu CC, Liu YG, Guo K (2011). Ecophysiological adaptations to drought stress of seedlings of four plant species with different growth forms in karst habitats. Chinese Journal of Plant Ecology, 35, 1070-1082. (in Chinese with English abstract)
DOI URL |
[ 刘长成, 刘玉国, 郭柯 (2011). 四种不同生活型植物幼苗对喀斯特生境干旱的生理生态适应. 植物生态学报, 35, 1070-1082.]
DOI URL |
|
[12] |
King DA (1996). Allometry and life history of tropical trees. Journal of Tropical Ecology, 12, 25-44.
DOI URL |
[13] |
King DA, Davies SJ, Nur Supardi MN, Tan S (2005). Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia. Functional Ecology, 19, 445-453.
DOI URL |
[14] |
Kohyama T (1993). Size-structured tree populations in gap-dynamic forest―the forest architecture hypothesis for the stable coexistence of species. Journal of Ecology, 81, 131-143.
DOI URL |
[15] |
Kohyama T, Suzuki E, Partomihardjo T, Yamada T, Kubo T (2003). Tree species differentiation in growth, recruitment and allometry in relation to maximum height in a Bornean mixed dipterocarp forest. Journal of Ecology, 91, 797-806.
DOI URL |
[16] |
Koch GW, Sillett SC, Jennings GM, Davis SD (2004). The limits to tree height. Nature, 428, 851-854.
DOI URL PMID |
[17] |
McCulloh KA, Johnson DM, Meinzer FC, Voelker SL, Lachenbruch H, Domec JC (2012). Hydraulic architecture of two species differing in wood density: opposing strategies in co-occurring tropical pioneer trees. Plant, Cell & Environment, 35, 116-125.
URL PMID |
[18] |
McCulloh KA, Meinzer FC, Sperry JS, Lachenbruch B, Voelker SL, Woodruff DR, Domec JC (2011). Comparative hydraulic architecture of tropical tree species representing a range of successional stages and wood density. Oecologia, 167, 27-37.
URL PMID |
[19] | Muller-Landau HC (2004). Interspecific and inter-site variation in wood specific gravity of tropical trees. Biotropica, 36, 20-32. |
[20] |
Niklas KJ, Spatz HC (2004). Growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass. Proceedings of the National Academy of Sciences of the United States of America, 101, 15661-15663.
DOI URL PMID |
[21] |
Olson ME, Aguirre-Hernández R, Rosell JA (2009). Universal foliage-stem scaling across environments and species in dicot trees: plasticity, biomechanics and Corner’s rules. Ecology Letters, 12, 210-219.
DOI URL PMID |
[22] |
Poorter L, Bongers F, Sterck FJ, Wöll H (2003). Architecture of 53 rain forest tree species differing in adult stature and shade tolerance. Ecology, 84, 602-608.
DOI URL |
[23] |
Poorter L, Bongers L, Bongers F (2006). Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecology, 87, 1289-1301.
URL PMID |
[24] |
Poorter L, McDonald I, Alarcón A, Fichtler E, Licona JC, Peña-Claros M, Sterck F, Villegas Z, Sass-Klaassen U (2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist, 185, 481-492.
DOI URL PMID |
[25] |
Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra- Manriquez G, Harms KE, Licona JC, Martínez-Ramos M, Mazer SJ, Muller-Landau HC, Peña-Claros M, Webb CO, Wright IJ (2008). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89, 1908-1920.
DOI URL PMID |
[26] |
Price CA, Enquist BJ (2007). Scaling mass and morphology in leaves: an extension of the WBE model. Ecology, 88, 1132-1141.
DOI URL PMID |
[27] | Ryan MG, Yoder BJ (1997). Hydraulic limits to tree height and tree growth. BioScience, 47, 235-242. |
[28] |
Savage VM, Bentley LP, Enquist BJ, Sperry JS, Smith DD, Reich PB, von Allmen EI (2010). Hydraulic trade-offs and space filling enable better predictions of vascular structure and function in plants. Proceedings of the National Academy of Sciences of the United States of America, 107, 22722-22727.
URL PMID |
[29] | Shukla RP, Ramakrishnan PS (1986). Architecture and growth strategies of tropical trees in relation to successional status. Journal of Ecology, 74, 33-46. |
[30] | Song YC, Wang XR (1995). Vegetation and Flora of Tiantong National Forest Park in Zhejiang Province. Shanghai Scientific and Technical Document Publishing House, Shanghai. 1-16. |
[ 宋永昌, 王祥荣 (1995). 浙江天童国家森林公园的植被和区系. 上海科学技术文献出版社, 上海. 1-16.] | |
[31] |
Steppe K, Cochard H, Lacointe A, Améglio T (2012). Could rapid diameter changes be facilitated by a variable hydraulic conductance? Plant, Cell & Environment, 35, 150-157.
DOI URL PMID |
[32] |
Sterck FJ, Bongers F, Newbery DM (2001). Tree architecture in a Bornean lowland rain forest: intraspecific and interspecific patterns. Plant Ecology, 153, 279-292.
DOI URL |
[33] |
Thomas SC (1996). Asymptotic height as a predictor of growth and allometric characteristics in Malaysian rain forest trees. American Journal of Botany, 83, 556-566.
DOI URL |
[34] | Wang BY, Feng YL (2005). Effects of growth light intensities on photosynthesis in seedlings of two tropical rain forest species. Acta Ecologica Sinica, 25, 23-30. (in Chinese with English abstract) |
[ 王博轶, 冯玉龙 (2005). 生长环境光强对两种热带雨林树种幼苗光合作用的影响. 生态学报, 25, 23-30.] | |
[35] | Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159. |
[36] | Woodruff DR, Bond BJ, Meinzer FC (2004). Does turgor limit growth in tall trees? Plant, Cell & Environment, 27, 229-236. |
[37] | Wright SJ, Jaramillo MA, Pavon J, Condit R, Hubbell SP, Foster RB (2005). Reproductive size thresholds in tropical trees: variation among individuals, species and forests. Journal of Tropical Ecology, 21, 307-315. |
[38] |
Wright SJ, Kitajima K, Kraft NJ, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling JW, Davies SJ, Díaz S, Engelbrecht BMJ, Harms KE, Hubbell SP, Marks CO, Ruiz-Jaen MC, Salvador CM, Zanne AE (2010). Functional traits and the growth-mortality trade-off in tropical trees. Ecology, 91, 3664-3674.
DOI URL PMID |
[39] | Yan ER, Wang XH, Guo M, Zhong Q, Zhou W, Li YF (2009). Temporal patterns of net soil N mineralization and nitrification through secondary succession in the subtropical forests of eastern China. Plant and Soil, 320, 181-194. |
[40] |
Yan ER, Wang XH, Huang JJ (2006). Shifts in plant nutrient use strategies under secondary forest succession. Plant and Soil, 289, 187-197.
DOI URL |
[41] | Yan ER, Wang XH, Zhou W (2008). N:P stoichiometry in secondary succession in evergreen broad-leaved forest, Tiantong, East China. Journal of Plant Ecology (Chinese Version), 32, 13-22. (in Chinese with English abstract) |
[ 阎恩荣, 王希华, 周武 (2008). 天童常绿阔叶林演替系列植物群落的N:P化学计量特征. 植物生态学报, 32, 13-22.] | |
[42] |
Zan QJ, Li MG, Wang BS, Zhou XY (2000). Dynamics of community structure in successional process of needle and broad-leaved mixed forest in Heishiding of Guangdong. Chinese Journal of Applied Ecology, 11, 1-4. (in Chinese with English abstract)
URL PMID |
[ 昝启杰, 李鸣光, 王伯荪, 周先叶 (2000). 黑石顶针阔叶混交林演替过程中群落结构动态. 应用生态学报, 11, 1-4.]
URL PMID |
[1] | 杨安娜, 李曾燕, 牟凌, 杨柏钰, 赛碧乐, 张立, 张增可, 王万胜, 杜运才, 由文辉, 阎恩荣. 上海大金山岛不同植被类型土壤细菌群落的变异[J]. 植物生态学报, 2024, 48(3): 377-389. |
[2] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[3] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[4] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[5] | 朱华. 云南常绿阔叶林的植被地理研究[J]. 植物生态学报, 2021, 45(3): 224-241. |
[6] | 贺强. 生物互作与全球变化下的生态系统动态: 从理论到应用[J]. 植物生态学报, 2021, 45(10): 1075-1093. |
[7] | 李帅锋, 郎学东, 黄小波, 王艳红, 刘万德, 徐崇华, 苏建荣. 云南普洱30 hm2季风常绿阔叶林动态监测样地群丛数量分类[J]. 植物生态学报, 2020, 44(3): 236-247. |
[8] | 王艳红, 李帅锋, 郎学东, 黄小波, 刘万德, 徐崇华, 苏建荣. 地形异质性对云南普洱季风常绿阔叶林物种多样性的影响[J]. 植物生态学报, 2020, 44(10): 1015-1027. |
[9] | 莫丹, 王振孟, 左有璐, 向双. 亚热带常绿阔叶林木本植物幼树阶段抽枝展叶的权衡关系[J]. 植物生态学报, 2020, 44(10): 995-1006. |
[10] | 王雪, 陈光水, 闫晓俊, 陈廷廷, 姜琦, 陈宇辉, 范爱连, 贾林巧, 熊德成, 黄锦学. 亚热带常绿阔叶林89种木本植物一级根直径的变异[J]. 植物生态学报, 2019, 43(11): 969-978. |
[11] | 樊海东, 陈海燕, 吴雁南, 刘建峰, 徐德宇, 曹嘉瑜, 袁泉, 谭斌, 刘晓彤, 徐佳, 王国敏, 韩文娟, 刘立斌, 倪健. 金华北山南坡主要植被类型的群落特征[J]. 植物生态学报, 2019, 43(10): 921-928. |
[12] | 辜翔, 张仕吉, 刘兆丹, 李雷达, 陈金磊, 王留芳, 方晰. 中亚热带植被恢复对土壤有机碳含量、碳密度的影响[J]. 植物生态学报, 2018, 42(5): 595-608. |
[13] | 邹顺, 周国逸, 张倩媚, 徐姗, 熊鑫, 夏艳菊, 刘世忠, 孟泽, 褚国伟. 1992-2015年鼎湖山季风常绿阔叶林群落结构动态[J]. 植物生态学报, 2018, 42(4): 442-452. |
[14] | 温韩东, 林露湘, 杨洁, 胡跃华, 曹敏, 刘玉洪, 鲁志云, 谢有能. 云南哀牢山中山湿性常绿阔叶林20 hm2动态样地的物种组成与群落结构[J]. 植物生态学报, 2018, 42(4): 419-429. |
[15] | 赵延涛, 许洺山, 张志浩, 周刘丽, 张晴晴, 宋彦君, 阎恩荣. 浙江天童常绿阔叶林不同演替阶段木本植物的水力结构特征[J]. 植物生态学报, 2016, 40(2): 116-126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19