植物生态学报 ›› 2005, Vol. 29 ›› Issue (2): 296-303.DOI: 10.17521/cjpe.2005.0038
杨景成1,2(), 黄建辉1, 唐建维3, 潘庆民1, 韩兴国*(
)
收稿日期:
2003-11-21
接受日期:
2004-07-21
出版日期:
2005-11-21
发布日期:
2005-03-10
通讯作者:
韩兴国
作者简介:
E-mail:yjc1971@163.com
YANG Jing-Cheng1,2(), HUANG Jian-Hui1, TANG Jian-Wei3, PAN Qing-Min1, HAN Xing-Guo*(
)
Received:
2003-11-21
Accepted:
2004-07-21
Online:
2005-11-21
Published:
2005-03-10
Contact:
HAN Xing-Guo
About author:
*E-mail:xghan@ns.ibcas.ac.cnSupported by:
摘要:
由于温室气体的大量排放引起的全球气候变暖等环境问题日益严重, 近年来人们开始考虑通过植被和土壤的碳固存, 以缓解大气中CO2 浓度的升高速度, 减缓温室效应的影响。有研究表明, 热带原始森林的保护和人工林的建立能有效地固存大气中的碳。但是, 在建立热带种植园和人工林以固存大气CO2 的可行性及其碳的固存潜力大小等方面还存在较大争议。云南省西双版纳自治州是我国重要的热带地区之一, 目前橡胶 (Heveabrasiliensis) 园的面积为 1.3× 10 5hm2, 约占该地区林地面积的 14 %。在本研究中, 选择 11块在弃耕后的农田上建立的橡胶园 (定植年限为3至 38年 ), 初步探讨了橡胶园建立后植被和土壤中碳的固存规律。两个生物量模型 (唐建维等的模型和Brown模型 ) 的模拟结果显示, 橡胶园建立后植被中生物量的平均增长速率分别为 10.2× 10 3 和 9.4× 10 3 kg·hm-2 ·a-1, 4 0和10 0cm表层土壤碳的平均固存速率分别为 0.6 1× 10 3 和 0.72× 10 3 kgC·hm-2 ·a-1, 植被和 10 0cm表层土壤中碳的平均固存速率为 5.82× 10 3 和 5.4 2× 10 3 kgC·hm-2 ·a-1, 而定植 4 0年后植被和 10 0cm表层土壤碳的固存潜力为 2 32.8× 10 3 和 2 16.8× 10 3 kgC·hm-2 。对两个模型的比较结果显示, 唐建维等的模型生物量计算结果明显高于Brown模型, 尤其是在对中幼龄橡胶园生物量估算时更是如此。
杨景成, 黄建辉, 唐建维, 潘庆民, 韩兴国. 西双版纳农田弃耕后橡胶园的建立对碳的固存作用 (英文). 植物生态学报, 2005, 29(2): 296-303. DOI: 10.17521/cjpe.2005.0038
YANG Jing-Cheng, HUANG Jian-Hui, TANG Jian-Wei, PAN Qing-Min, HAN Xing-Guo. CARBON SEQUESTRATION IN RUBBER TREE PLANTATIONS ESTABLISHED ON FORMER ARABLE LANDS IN XISHUANGBANNA, SW CHINA. Chinese Journal of Plant Ecology, 2005, 29(2): 296-303. DOI: 10.17521/cjpe.2005.0038
Site | Age (a) | Location | Altitude (m) | Aspect | Slope | Soil type | Biomass (103 kg·hm-2) | Soil C stocks (×103 kg C·hm-2) (cm) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Biomass_1 | Biomass_2 | 0-20 | 0-40 | 0-100 | ||||||||
Guanlei | 3 | 21°42′N, 101°15′E | 895 | Northeast | 5° | Latosols | 6.8 | 3.1 | 43.8 | 73.7 | 133.4 | |
Menglun | 3 | 21°55′N, 101°15′E | 750 | South | 5° | Latosols | 7.4 | 3.6 | 46.8 | 86.2 | 179.0 | |
Daka | 4 | 21°53′N, 101°14′E | 750 | Southeast | 15° | Latosols | 9.6 | 5.8 | 55.8 | 92.6 | 147.7 | |
Jinghong | 6 | 21°43′N, 100°44′E | 530 | South | 5° | Latosols | 24.5 | 16.1 | 45.5 | 91.5 | 176.9 | |
Guanlei | 7 | 21°42′N, 101°15′E | 870 | Northeast | 10° | Latosols | 34.2 | 24.5 | 42.3 | 84.2 | 154.9 | |
Menglun | 11 | 21°54′N, 101°16′E | 600 | East | 5° | Latosols | 63.8 | 48.8 | 46.1 | 84.9 | 170.8 | |
Chengzi | 16 | 21°55′N, 101°14′E | 580 | East | 20° | Latosols | 124.8 | 95.0 | 34.4 | 63.4 | 126.4 | |
Menglun | 16 | 21°53′N, 101°19′E | 650 | West | 10° | Latosols | 140.5 | 106.1 | 37.2 | 62.1 | 112.5 | |
Mengla | 21 | 21°33′N, 101°34′E | 710 | Northeast | 15° | Latosols | 222.6 | 165.1 | 51.8 | 96.9 | 202.5 | |
Mengxing | 28 | 21°55′N, 101°17′E | 550 | West | 15° | Latosols | 267.3 | 232.2 | 35.2 | 60.0 | 111.4 | |
Jinghong | 38 | 21°51′N, 100°22′E | 800 | Southeast | 10° | Latosols | 340.0 | 326.5 | 37.9 | 73.5 | 142.5 |
Table 1 Site characteristics of eleven rubber tree plantations with different ages (from 3 to 38 years) in Xishuangbanna, Southwest China
Site | Age (a) | Location | Altitude (m) | Aspect | Slope | Soil type | Biomass (103 kg·hm-2) | Soil C stocks (×103 kg C·hm-2) (cm) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Biomass_1 | Biomass_2 | 0-20 | 0-40 | 0-100 | ||||||||
Guanlei | 3 | 21°42′N, 101°15′E | 895 | Northeast | 5° | Latosols | 6.8 | 3.1 | 43.8 | 73.7 | 133.4 | |
Menglun | 3 | 21°55′N, 101°15′E | 750 | South | 5° | Latosols | 7.4 | 3.6 | 46.8 | 86.2 | 179.0 | |
Daka | 4 | 21°53′N, 101°14′E | 750 | Southeast | 15° | Latosols | 9.6 | 5.8 | 55.8 | 92.6 | 147.7 | |
Jinghong | 6 | 21°43′N, 100°44′E | 530 | South | 5° | Latosols | 24.5 | 16.1 | 45.5 | 91.5 | 176.9 | |
Guanlei | 7 | 21°42′N, 101°15′E | 870 | Northeast | 10° | Latosols | 34.2 | 24.5 | 42.3 | 84.2 | 154.9 | |
Menglun | 11 | 21°54′N, 101°16′E | 600 | East | 5° | Latosols | 63.8 | 48.8 | 46.1 | 84.9 | 170.8 | |
Chengzi | 16 | 21°55′N, 101°14′E | 580 | East | 20° | Latosols | 124.8 | 95.0 | 34.4 | 63.4 | 126.4 | |
Menglun | 16 | 21°53′N, 101°19′E | 650 | West | 10° | Latosols | 140.5 | 106.1 | 37.2 | 62.1 | 112.5 | |
Mengla | 21 | 21°33′N, 101°34′E | 710 | Northeast | 15° | Latosols | 222.6 | 165.1 | 51.8 | 96.9 | 202.5 | |
Mengxing | 28 | 21°55′N, 101°17′E | 550 | West | 15° | Latosols | 267.3 | 232.2 | 35.2 | 60.0 | 111.4 | |
Jinghong | 38 | 21°51′N, 100°22′E | 800 | Southeast | 10° | Latosols | 340.0 | 326.5 | 37.9 | 73.5 | 142.5 |
Fig.1 Relationship of biomass and age of rubber tree plantations in Xishuangbanna, Southwest China The lines denoted regression by sigmoidal curve. Biomass data in curve a, and b were calculated according to allometric biomass growth equations of Tang et al.(2003) and Brown (1997)
Fig.2 Linear relationship between biomass and age of rubber tree plantations in Xishuangbanna, Southwest China Biomass data in a and b were calculated according to allometric biomass growth equations of Tang et al.(2003) and Brown (1997)
[1] | Allen RB, Platt KH, Wiser SK (1995). Biodiversity in New Zealand plantations. New Zeal and Forestry, 39 (4),26-29. |
[2] |
Breuer G (1979). Can forest policy contribute to solving the CO 2 problems ? Environment International, 2,449-451.
DOI URL |
[3] | Brown S (1997). Estimating Biomass and Biomass Change of Tropical Forest:a Primer. FAO, Forest paper, Rome, 134. |
[4] | Culley JLB (2000). Density and compressibility.In:Carter MR ed. Soil Sampling and Methods of Analysis. CRC Press Boca Raca, Florida,529-540. |
[5] | Garten Jr CT (2002). Soil carbon storage beneath recently established tree plantations in Tennessee and South Carolina, USA.Biology and Bioenergy, 23,93-102. |
[6] | Houghton TG (1995). Carbon sequestration in an aggrading forest ecosystem in the Southeastern USA. Soil Science Society of Ameri can Journal, 59,1459-1467. |
[7] | Houghton RA (1999). The annual net flux of carbon to the atmosphere from changes in land use.1850-1990. Tellus, 51B,298-313. |
[8] | IPCC (1991). Climate Change———IPPC Response Strategies. Island Press, Washington, DC,272. |
[9] | Johnsen KH, Wear JD, Oren R, Teskey RO, Sanchez F, Will R, Butnor J, Markewitz D, Richter D, Rials T, Allen HL, Seiler J, Ellsworth D, Maier C, Katul G, Dougherty PM (2001). Meeting global policy commitments:carbon sequestration and southern pine forests. Journal of Forestry, 99 (4),14-21. |
[10] | Lugo AE, Parrotta JA, Brown S (1993). Loss in species caused by tropical deforestation and their recovery through management. Ambio, 22,106-109. |
[11] | Meng Y (孟盈), Xue JY (薛敬意), Sha LQ (沙丽清), Tang JW (唐建维) (2001). Variations of soilNH 4-N, NO 3-Nand Nmineralization under different forests in Xishuangbanna, southwest China. Acta Phytoecologica Sinica (植物生态学报), 25,99-104. (in Chinese with English abstract) |
[12] | Nelson DW, Sommers LE (1982). Total carbon, organic carbon, and organic matter.In:Pages AL, Miller RH, Keeney DR eds.Methods of Soil Analysis Part 2.Chemical and Microbiological Properties.Agronomy No.9 2nd edn. Madision, Wisconson USA,565-573. |
[13] |
Schroeder P (1993). Agroforestrysy stems:integrated land use to store and conserve carbon. Climate Research, 3,53-50.
DOI URL |
[14] | Sedjo RA (1989). Forests.a tool to moderate global warming? Environment, 31 (1),14-20. |
[15] | Sha LQ (沙丽清), Deng JW (邓继武), Xie KJ (谢克金), Meng Y (孟盈) (1998). Study on the change of soil nutrient before and after burning of secondary forest in Xishuangbanna. Acta Phytoecologica Sinica (植物生态学报), 22,513-517. (in Chinese with English abstract) |
[16] | ShaL Q (沙丽清), Zheng Z (郑征), Feng ZL (冯志立), Liu YH (刘玉洪), Liu WJ (刘文杰), Meng Y (孟盈), Li MR (李明锐) (2002). Biogeochemical cycling of nitrogen at a tropical seasonal rain forest in Xishuangbanna, SW China. Acta Phytoecologica Sinica (植物生态学报), 26,689-694. (in Chinese with English abstract) |
[17] | Shi JP (施济普), Zhang GM (张光明), Bai KJ (白坤甲), Tang JW (唐建维) (2002). The effects of human disturbance on biomass and plant diversity of Musa accuminata community. Journal of Wuhan Botanical Research (武汉植物学研究), 20,119-123. (in Chinese with English abstract) |
[18] | Solomon S, Srinivasan J (1996). Radiative forcing of climate change.In:Watson RT, Zinyowera MC, Moss RH eds. Climate Change 1995. Cambridge University Press, Cambridge, UK,108-118. |
[19] | Tang CG (唐承贵), Tang CH (唐成辉), Wang ZQ (王战强), Zhang ZH (张植怀) (1998a). Xishuangbanna Forestry Chorography (西双版纳傣族自治州林业志). The Nationalities Publishing Houseof Yunnan, Kunming,26-31. (in Chinese) |
[20] | Tang JW (唐建维), Zhang JH (张建侯), Song QS (宋启示), Cao M (曹敏), Feng ZL (冯志立), Dang CL (党承林), Wu ZL (吴兆录) (1998b). A preliminary study on the biomass of secondary tropical forest in Xishuangbanna. Acta Phytoecologica Sinica (植物生态学报), 22,489-498. (in Chinese with English abstract) |
[21] | Tang JW (唐建维), Zhang JH (张建侯), Song QS (宋启示), Huang ZY (黄自云), Li ZN (李自能), Wang LF (王利繁), Zeng R (曾荣) (2003). Biomass and net primary productivity of artificial tropical rainforest in Xishuangbanna. Chinese Journal of Applied Ecology (应用生态学报), 14,1-6. (in Chinese with English abstract) |
[22] | Vitousek PM (1991). Can planted forests counteract increasing atmospheric Cdioxide? Journal of Environmental Quality, 20,348-354. |
[23] |
Winjum JK, Schroeder PE (1997). Forest plantations of the world:their extent, ecological attributes, and Cstorage. Agricultural and Forest Meterology, 84,153-167.
DOI URL |
[24] | Xishuangbanna Bureau of Forestry (西双版纳林业局) (2001). Land Use Statistics data of 2000 of Xishuangbanna Autonomous Prefecture (2000年西双版纳州土地利用情况统计) (in Chinese) |
[25] | Zhang P (张萍), Feng ZL (冯志立) (1997). Biological nutrient cycling of secondary forests in Xishuangbanna. Acta Pedologica Sinica (土壤学报), 34,418-426. (in Chinese with English abstract) |
[26] | Zheng Z (郑征), Feng ZL (冯志立), Cao M (曹敏), Liu HM (刘宏茂), Liu LH (刘伦辉) (2000). Biomass and net primary production of primary wet seasonal rainforest in Xishuangbanna. Acta Phytoecologica Sinica (植物生态学报), 24,197-203. (in Chinese with English abstract) |
[27] | Zilberman D, Sunding D (2001). Climate change policy and the agricultural sector.In:Lal R, Kimble JM, Follett RF, Stewart BA eds. Assess ment Methods for Soil Carbon. Lewis Publishing, Boca Raton, FL,629-643. |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[3] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[4] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[5] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[6] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[7] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[8] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[9] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[10] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[11] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[12] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[13] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[14] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[15] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19