植物生态学报 ›› 2012, Vol. 36 ›› Issue (8): 747-753.DOI: 10.3724/SP.J.1258.2012.00747
收稿日期:
2011-11-09
接受日期:
2012-04-25
出版日期:
2012-11-09
发布日期:
2012-08-21
通讯作者:
杨允菲
作者简介:
* E-mail: yangyf@nenu.edu.cn
YANG Yun-Fei*(), BAI Yun-Peng, LI Jian-Dong
Received:
2011-11-09
Accepted:
2012-04-25
Online:
2012-11-09
Published:
2012-08-21
Contact:
YANG Yun-Fei
摘要:
黄榆(Ulmus macrocarpa)是典型的风播植物, 在科尔沁沙地可以形成单一优势种林地。通过对其林下随机取样和林缘与孤立树不同方向从树基部向外的有序取样调查, 分析了黄榆林下和林缘外不同距离的种子沉降特征、林缘和孤立树种子散布方向的差异性与规律性。结果表明, 黄榆平均种子密度以林下最大, 林缘3 m处已显著减小, 林缘外随着距离增加黄榆平均种子密度呈指数减少态势, 且越远越不均匀。林缘和孤立树不同方向在26 m内, 单位面积连续分布的种子累积数量均以顺风向频率大的东北方向最多, 以逆风向频率大的西南或西方向最少。林缘和孤立树共10个方向的垂直断面从树基部向外的单位面积种子数量频度均符合Weibull分布和对数-正态分布密度函数(χ2(α) < 0.900), 具有相同的种子散布格局。在科尔沁沙地自然条件下, 黄榆在各方向具有相同的“远距离”种子散布机制。
杨允菲, 白云鹏, 李建东. 科尔沁沙地黄榆种子散布的空间差异及规律. 植物生态学报, 2012, 36(8): 747-753. DOI: 10.3724/SP.J.1258.2012.00747
YANG Yun-Fei, BAI Yun-Peng, LI Jian-Dong. Spatial difference and regularity of seed dispersal of Ulmus macrocarpa in Horqin Sandy Land, China. Chinese Journal of Plant Ecology, 2012, 36(8): 747-753. DOI: 10.3724/SP.J.1258.2012.00747
图1 黄榆林缘不同方向平行断面(■)和垂直断面(●)取样示意图。
Fig. 1 Schematic diagram of sampling points in parallel section (■) and vertical section (●) of different directions away from Ulmus macrocarpa woodland edges.
距林缘的距离 Distance from woodland edges (m) | 样本数 n | 密度 Density (seeds·m-2) | 变异系数 CV (%) | |||
---|---|---|---|---|---|---|
Max | Min | Mean* | SD | |||
0 (林下 Understory) | 12 | 748 | 408 | 546.3a | 100.71 | 18.4 |
3 | 12 | 584 | 132 | 329.7b | 143.58 | 43.5 |
6 | 12 | 344 | 76 | 200.7c | 90.07 | 44.9 |
9 | 12 | 168 | 24 | 87.7d | 47.19 | 53.8 |
12 | 12 | 132 | 20 | 48.0e | 31.12 | 64.8 |
15 | 12 | 60 | 8 | 25.3f | 15.85 | 62.6 |
18 | 12 | 36 | 4 | 15.0fg | 9.20 | 61.3 |
21 | 12 | 28 | 0 | 10.7g | 7.88 | 73.6 |
表1 黄榆林下和林缘外不同距离平行断面种子雨密度统计描述、平均值的邓肯新复极差检验及其变异系数
Table 1 Describing statistics, means of Duncan’s new multiple range test and coefficient of variation (CV) on densities of seed rain in Ulmus macrocarpa within the understory and parallel sections of different distances away from woodland edges
距林缘的距离 Distance from woodland edges (m) | 样本数 n | 密度 Density (seeds·m-2) | 变异系数 CV (%) | |||
---|---|---|---|---|---|---|
Max | Min | Mean* | SD | |||
0 (林下 Understory) | 12 | 748 | 408 | 546.3a | 100.71 | 18.4 |
3 | 12 | 584 | 132 | 329.7b | 143.58 | 43.5 |
6 | 12 | 344 | 76 | 200.7c | 90.07 | 44.9 |
9 | 12 | 168 | 24 | 87.7d | 47.19 | 53.8 |
12 | 12 | 132 | 20 | 48.0e | 31.12 | 64.8 |
15 | 12 | 60 | 8 | 25.3f | 15.85 | 62.6 |
18 | 12 | 36 | 4 | 15.0fg | 9.20 | 61.3 |
21 | 12 | 28 | 0 | 10.7g | 7.88 | 73.6 |
图2 林缘(A)和孤立树(B)不同方向垂直断面累积单位面积黄榆种子总量(平均值±标准误差)。不同字母表示差异显著(p ≤ 0.05)。
Fig. 2 Total cumulative seeds of Ulmus macrocarpa per unit area away from woodland edge (A) and isolated tree (B) along vertical section of different directions (mean ± SE). Different letters mean significant difference (p ≤ 0.05).
种子源 Seed source | 方向 Direction | Weibull分布 Weibull distribution | 对数-正态分布 Logarithm-normal distribution | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
α | β | μ | χ2 | χ2(α) | μ | σ2 | χ2 | χ2(α) | |||
林缘 Woodland edge | 北 N (n = 23) | 1.100 1 | 4.030 5 | 0.898 3 | 3.864 6 | <0.995 | 1.159 5 | 0.853 2 | 1.817 8 | <0.995 | |
东北 NE (n = 25) | 1.079 0 | 5.074 9 | 1.113 5 | 2.956 4 | <0.995 | 1.339 4 | 0.801 0 | 3.556 0 | <0.995 | ||
南 S (n = 24) | 1.212 9 | 4.944 7 | 1.131 5 | 1.567 2 | <0.995 | 1.348 2 | 0.791 2 | 5.484 1 | <0.995 | ||
西 W (n = 24) | 1.082 5 | 5.238 0 | 1.134 9 | 3.663 2 | <0.995 | 1.362 6 | 0.875 4 | 5.363 9 | <0.995 | ||
平均 Mean (n = 25) | 1.112 2 | 4.875 5 | 1.085 5 | 1.464 2 | <0.995 | 1.314 5 | 0.832 0 | 2.130 2 | <0.995 | ||
孤立树 Isolated tree | 北 N (n = 22) | 1.198 7 | 4.814 2 | 1.112 1 | 4.834 2 | <0.995 | 1.327 5 | 0.773 1 | 2.749 0 | <0.995 | |
东北 NE (n = 26) | 1.224 0 | 6.061 1 | 1.340 8 | 2.129 5 | <0.995 | 1.522 4 | 0.805 7 | 3.453 2 | <0.995 | ||
西 E (n = 24) | 1.144 3 | 6.507 9 | 1.372 3 | 4.247 2 | <0.995 | 1.557 8 | 0.875 6 | 3.947 2 | <0.995 | ||
东南 SE (n = 25) | 1.194 0 | 6.479 3 | 1.389 5 | 3.822 5 | <0.995 | 1.570 1 | 0.842 3 | 5.201 1 | <0.995 | ||
南 S (n = 23) | 1.338 9 | 7.413 0 | 1.551 4 | 5.437 5 | <0.995 | 1.708 6 | 0.828 3 | 13.201 0 | <0.900 | ||
西南 SW (n = 22) | 1.197 8 | 6.490 0 | 1.394 3 | 7.733 6 | <0.990 | 1.569 9 | 0.836 7 | 4.973 3 | <0.995 | ||
平均 Mean (n = 26) | 1.209 1 | 6.332 0 | 1.371 6 | 1.087 4 | <0.995 | 1.552 3 | 0.832 5 | 3.707 9 | <0.995 |
表2 林缘和孤立树不同方向垂直断面黄榆种子散布频度的两种分布参数与χ2检验
Table 2 Parameters and χ2 test of two distribution types on seed dispersal frequency of Ulmus macrocarpa away from woodland edge and isolated tree along vertical section of different directions
种子源 Seed source | 方向 Direction | Weibull分布 Weibull distribution | 对数-正态分布 Logarithm-normal distribution | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
α | β | μ | χ2 | χ2(α) | μ | σ2 | χ2 | χ2(α) | |||
林缘 Woodland edge | 北 N (n = 23) | 1.100 1 | 4.030 5 | 0.898 3 | 3.864 6 | <0.995 | 1.159 5 | 0.853 2 | 1.817 8 | <0.995 | |
东北 NE (n = 25) | 1.079 0 | 5.074 9 | 1.113 5 | 2.956 4 | <0.995 | 1.339 4 | 0.801 0 | 3.556 0 | <0.995 | ||
南 S (n = 24) | 1.212 9 | 4.944 7 | 1.131 5 | 1.567 2 | <0.995 | 1.348 2 | 0.791 2 | 5.484 1 | <0.995 | ||
西 W (n = 24) | 1.082 5 | 5.238 0 | 1.134 9 | 3.663 2 | <0.995 | 1.362 6 | 0.875 4 | 5.363 9 | <0.995 | ||
平均 Mean (n = 25) | 1.112 2 | 4.875 5 | 1.085 5 | 1.464 2 | <0.995 | 1.314 5 | 0.832 0 | 2.130 2 | <0.995 | ||
孤立树 Isolated tree | 北 N (n = 22) | 1.198 7 | 4.814 2 | 1.112 1 | 4.834 2 | <0.995 | 1.327 5 | 0.773 1 | 2.749 0 | <0.995 | |
东北 NE (n = 26) | 1.224 0 | 6.061 1 | 1.340 8 | 2.129 5 | <0.995 | 1.522 4 | 0.805 7 | 3.453 2 | <0.995 | ||
西 E (n = 24) | 1.144 3 | 6.507 9 | 1.372 3 | 4.247 2 | <0.995 | 1.557 8 | 0.875 6 | 3.947 2 | <0.995 | ||
东南 SE (n = 25) | 1.194 0 | 6.479 3 | 1.389 5 | 3.822 5 | <0.995 | 1.570 1 | 0.842 3 | 5.201 1 | <0.995 | ||
南 S (n = 23) | 1.338 9 | 7.413 0 | 1.551 4 | 5.437 5 | <0.995 | 1.708 6 | 0.828 3 | 13.201 0 | <0.900 | ||
西南 SW (n = 22) | 1.197 8 | 6.490 0 | 1.394 3 | 7.733 6 | <0.990 | 1.569 9 | 0.836 7 | 4.973 3 | <0.995 | ||
平均 Mean (n = 26) | 1.209 1 | 6.332 0 | 1.371 6 | 1.087 4 | <0.995 | 1.552 3 | 0.832 5 | 3.707 9 | <0.995 |
图3 林缘(A)和孤立树(B)不同方向垂直断面黄榆种子散布的平均观测值频率(柱)及Weibull分布拟合曲线。
Fig. 3 Frequency of observed average values (column) of seed dispersal of Ulmus macrocarpa and the expected curves of Weibull distribution away from woodland edge (A) and isolated tree (B) along vertical section of different directions.
图4 林缘(A)和孤立树(B)不同方向垂直断面黄榆平均种子密度观测值与Weibull分布理论频度还原期望值的相关性。
Fig. 4 Correlation between observed values of seed average density of Ulmus macrocarpa and the restored expected values through theoretical frequency of Weibull distribution away from woodland edge (A) and isolated tree (B) along vertical section of different directions.
[1] | Bai YG, Romo JT (1997). Seed production, seed rain, and the seedbank of fringed sagebrush. Journal of Range Management, 50, 151-155. |
[2] |
Drake DR (1998). Relationships among the seed rain, seed bank and vegetation of a Hawaiian forest. Journal of Vegetation Science, 9, 103-112.
DOI URL |
[3] |
Dow BD, Ashley MV (1996). Microsatellite analysis of seed dispersal and parentage of saplings in bur oak Quercus macrocarpa. Molecular Ecology, 5, 615-627.
DOI URL |
[4] | Fang KT (方开泰), Xu JL (许建伦) (1986). Statistical Distribution (统计分布). Science Press, Beijing. 152-164. (in Chinese) |
[5] | Godoy JA, Jordano P (2001). Seed dispersal by animals: exact identification of source trees with endocarp DNA microsatellites. Molecular Ecology, 10, 2275-2283. |
[6] | Han YZ (韩有志), Wang ZQ (王政权) (2002). Spatial pattern of Manchurian ash seed dispersal in secondary hardwood forests. Acta Phytoecologica Sinica (植物生态学报), 26, 51-57. (in Chinese with English abstract) |
[7] | Han DY (韩大勇), Bai YP (白云鹏), Zhao YJ (赵玉晶), Dong YH (董艳红), Li JD (李建东) ( 2008). Community structure of the Ulmus macrocarpa var. mongolica forest in the sandy land of Songnen grassland. Journal of Northeast Normal University (Natural Science Edition) (东北师大学报(自然科学版)), 40, 107-111. (in Chinese with English abstract) |
[8] | Harper JL (1977). Population Biology of Plants. Academic Press, London. 12-15. |
[9] | He TH (何田华), Rao GY (饶广远), You RL (尤瑞麟), Zhang DM (张大明) (1999). The spatial distribution pattern and seed dispersal mechanism for the population of Ophiopogon xylorrhizus, an endangered plant. Acta Phytoecologica Sinica (植物生态学报), 23, 181-186. (in Chinese with English abstract) |
[10] | He TH, Krauss SL, Lamont BB, Miller BP, Enright NJ (2004). Long-distance seed dispersal in a metapopulation of Banksia hookeriana inferred from a population allocation analysis of amplified fragment length polymorphism data. Molecular Ecology, 13, 1099-1109. |
[11] | Howe HF, Smallwood J (1982). Ecology of seed dispersal. Annual Review of Ecology and Systematics, 13, 201-228. |
[12] | Levine JM, Murrell DJ (2003). The community-level consequences of seed dispersal patterns. Annual Review of Ecology, Evolution, and Systematics, 34, 549-574. |
[13] | Michael E (1985). Seed Ecology. Chapman and Hall, New York. 57-116. |
[14] | Moles AT, Drake DR (1999). Potential contributions of the seed rain and seed bank to regeneration of native forest under plantation pine in New Zealand. New Zealand Journal of Botany, 37, 83-93. |
[15] | Nathan R, Muller-Landau HC (2000). Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology and Evolution, 15, 278-285. |
[16] | Nathan R (2003). Seeking the secrets of dispersal. Trends in Ecology and Evolution, 18, 275-276. |
[17] | Nathan R (2006). Long-distance dispersal of plants. Science, 313, 786-788. |
[18] | Okubo A, Levin SA (1989). A theoretical framework for data analysis of wind dispersal of seeds and pollen. Ecology, 70, 329-338. |
[19] | Peart DR (1989). Species interactions in a successional grassland. I. Seed rain and seedlings recruitment. Journal of Ecology, 77, 236-251. |
[20] | Sagnarda F, Pichota C, Dreyfusa P, Jordano P, Fady B (2007). Modelling seed dispersal to predict seedling recruitment: recolonization dynamics in a plantation forest. Ecological Modelling, 203, 464-474. |
[21] | Schnabel A, Nason JD, Hamrick JL (1998). Understanding the population genetic structure of Gleditsia triacanthos L.: seed dispersal and variation in female reproductive success. Molecular Ecology, 7, 819-832. |
[22] | Schupp EW, Jordano P, Gomez JM (2010). Seed dispersal effectiveness revisited: a conceptual review. New Phytologist, 188, 333-353. |
[23] | Silvertown JW (1982). Introduction to Plant Population. Lomgman, New York. 20-22. |
[24] | Silva MG, Tabarelli M (2001). Seed dispersal, plant recruitment and spatial distribution of Bactris acanthocarpa Martius (Arecaceae) in a remnant of Atlantic forest in northeast Brazil. Acta Oecologica, 22, 259-268. |
[25] | Xiao ZS, Zhang ZB, Wang YS (2005). Effects of seed size on dispersal distance in five rodent-dispersed fagaceous species. Acta Oecologica, 28, 221-229. |
[26] | Xing F (邢福), Wang YH (王艳红), Guo JX (郭继勋) (2004). Spatial distribution patterns and dispersal mechanisms of the seed population of Stellera chamaejasme on degraded grasslands in Inner Mongolia, China. Acta Ecologica Sinica (生态学报), 24, 143-148. (in Chinese with English abstract) |
[27] | Yang YF (杨允菲) (1990). The study on seed dispersal of Puccinellia tenuiflora on alkalization meadow in the Songnen Plain of China. Acta Ecologica Sinica (生态学报), 10, 288-290. (in Chinese with English abstract) |
[28] | Yang YF (杨允菲), Bai YP (白云鹏), Li JD (李建东), Li L (李丽) (2010). Spatial patterns of the seed dispersal in Hemiptelea davidii woodland in Keerqin sandy land, China. Chinese Journal of Applied Ecology (应用生态学报), 21, 1967-1973. (in Chinese with English abstract) |
[29] | Yang YF (杨允菲), Zhu L (祝玲) (1994). Pattern of a seed dispersal of Hordeum brevisubulatum on alkalized meadow in the Songnen Plain of China. Acta Botanica Sinica (植物学报), 36, 636-644. (in Chinese with English abstract) |
[30] | Yang YF (杨允菲), Zhu L (祝玲) (1995). Analysis on the mechanism of seed dispersal of Puccinellia chinampoensis on alkalized meadow in Songnen Plain of China. Acta Botanica Sinica (植物学报), 37, 222-230. (in Chinese with English abstract) |
[31] | Yu SL (于顺利), Lang NJ (郎南军), Peng MJ (彭明俊), Zhao L (赵琳), Guo YQ (郭永清), Zheng K (郑科), Zhang LX (张立新), Wen SL (温绍龙), Li H (李辉) (2007). Research advances in seed rain. Chinese Journal of Ecology (生态学杂志), 26, 1646-1652. (in Chinese with English abstract) |
[32] | Zhang YB (张玉波), Li JW (李景文), Zhang H (张昊), Zou DL (邹大林), Wu FP (武逢平), Cheng CL (程春龙), Li JQ (李俊清), Li SY (李帅英) (2005). Spatiotemporal patterns of seed dispersal in Populus euphratica. Acta Ecologica Sinica (生态学报), 25, 1994-2000. (in Chinese with English abstract) |
[1] | 丁凯, 张毓婷, 张俊红, 柴雄, 周世水, 童再康. 不同密度杉木林对林下植被和土壤微生物群落结构的影响[J]. 植物生态学报, 2021, 45(1): 62-73. |
[2] | 扈明媛, 袁野, 戴晓琴, 付晓莉, 寇亮, 王辉民. 亚热带人工林乔灌草根际土壤氮矿化特征[J]. 植物生态学报, 2020, 44(12): 1285-1295. |
[3] | 施晶晶,赵鸣飞,王宇航,薛峰,康慕谊,江源. 黄土高原腹地人工林下草本层群落构建机制[J]. 植物生态学报, 2019, 43(9): 834-842. |
[4] | 莫雪丽, 戴晓琴, 王辉民, 付晓莉, 寇亮. 中亚热带典型人工林常见乔灌木根际效应——以江西泰和千烟洲为例[J]. 植物生态学报, 2018, 42(7): 723-733. |
[5] | 俞筱押, 李玉辉, 杨光荣. 石林地质公园不同群落类型植物果实组成与种子散布特征[J]. 植物生态学报, 2018, 42(6): 663-671. |
[6] | 岳楷, 杨万勤, 彭艳, 黄春萍, 张川, 吴福忠. 高寒森林溪流对凋落叶分解过程中木质素降解的影响[J]. 植物生态学报, 2016, 40(9): 893-901. |
[7] | 范春楠, 韩士杰, 郭忠玲, 郑金萍, 程岩. 吉林省森林植被固碳现状与速率[J]. 植物生态学报, 2016, 40(4): 341-353. |
[8] | 贺同鑫, 李艳鹏, 张方月, 王清奎. 林下植被剔除对杉木林土壤呼吸和微生物群落结构的影响[J]. 植物生态学报, 2015, 39(8): 797-806. |
[9] | 余敏,周志勇,康峰峰,欧阳帅,米湘成,孙建新. 山西灵空山小蛇沟林下草本层植物群落梯度分析及环境解释[J]. 植物生态学报, 2013, 37(5): 373-383. |
[10] | 杨健,孔健健,刘波. 林火干扰对北方针叶林林下植被的影响[J]. 植物生态学报, 2013, 37(5): 474-480. |
[11] | 吴亚丛, 李正才, 程彩芳, 刘荣杰, 王斌, 格日乐图. 林下植被抚育对樟人工林生态系统碳储量的影响[J]. 植物生态学报, 2013, 37(2): 142-149. |
[12] | 于顺利, 方伟伟. 种子地理学研究的新进展[J]. 植物生态学报, 2012, 36(8): 918-922. |
[13] | 郭俊杰, 赵志刚, 欧景莉, 沙二, 林开勤, 曾杰, 徐大平. 广西靖西西南桦天然林种子雨的时空动态[J]. 植物生态学报, 2012, 36(8): 729-738. |
[14] | 李海防, 夏汉平, 傅声雷, 张杏锋. 剔除林下灌草和添加翅荚决明对尾叶桉林土壤温室气体排放的影响[J]. 植物生态学报, 2009, 33(6): 1015-1022. |
[15] | 孟令曾, 高秀霞, 陈进. 小果野芭蕉种子散布和不同时空尺度上种子被捕食格局[J]. 植物生态学报, 2008, 32(1): 133-142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19