植物生态学报 ›› 2015, Vol. 39 ›› Issue (8): 797-806.DOI: 10.17521/cjpe.2015.0076
贺同鑫1,2, 李艳鹏1,2, 张方月1,2, 王清奎1,3*()
收稿日期:
2015-02-10
接受日期:
2015-06-10
出版日期:
2015-08-01
发布日期:
2015-08-17
作者简介:
*作者简介:E-mail:
基金资助:
HE Tong-Xin1,2, LI Yan-Peng1,2, ZHANG Fang-Yue1,2, WANG Qing-Kui1,3,*()
Received:
2015-02-10
Accepted:
2015-06-10
Online:
2015-08-01
Published:
2015-08-17
Contact:
Qing-Kui WANG
About author:
# Co-first authors
摘要:
以湖南会同地区26年生杉木(Cunninghamia lanceolata)人工林为研究对象, 探讨剔除林下植被对土壤呼吸和微生物群落结构的影响。2012年6月将林下植被剔除后, 2012年7月-2014年7月每月测定一次土壤呼吸速率、5 cm土壤温度和含水量, 并分别于2013年7月和2014年7月测定了土壤微生物群落结构和土壤养分数据。研究结果表明: 杉木人工林土壤呼吸具有明显的季节变化规律, 且与5 cm深处的土壤温度呈极显著的正相关关系。林下植被剔除两年内土壤呼吸平均下降了32.8%, 2012年7月-2013年6月下降了42.9%, 2013年7月-2014年7月下降了22.2%。根据土壤呼吸与温度拟合的指数方程所计算出的土壤呼吸的温度敏感性Q10值在对照区为2.10, 林下植被剔除区为1.87, 说明在杉木人工林系统中林下植被剔除2年降低了土壤呼吸的温度敏感性。此外, 林下植被剔除也改变了土壤微生物群落结构。林下植被剔除1年后, 土壤细菌的浓度没有发生改变, 但真菌的浓度降低, 导致真菌与细菌的浓度比值下降。此外, 革兰氏阳性细菌(G+)的浓度及其与革兰氏阴性菌(G-)的比值升高。林下植被剔除2年后, G+浓度和G+与G-的浓度比值降低。该研究表明林下植被剔除可以降低土壤呼吸, 从而减少土壤向大气中释放碳; 同时可改变土壤微生物群落结构, 而且其效应受作用时间的影响。
贺同鑫, 李艳鹏, 张方月, 王清奎. 林下植被剔除对杉木林土壤呼吸和微生物群落结构的影响. 植物生态学报, 2015, 39(8): 797-806. DOI: 10.17521/cjpe.2015.0076
HE Tong-Xin,LI Yan-Peng,ZHANG Fang-Yue,WANG Qing-Kui. Effects of understory removal on soil respiration and microbial community composition structure in a Chinese fir plantation. Chinese Journal of Plant Ecology, 2015, 39(8): 797-806. DOI: 10.17521/cjpe.2015.0076
微生物群落 Soil microbial community | 磷酸脂肪酸标记物 Phospholipid fatty acid biomarkers | 文献 Reference |
---|---|---|
细菌 Bacteria | i14:0; i15:0; a15:0; i16:0; 16:1ω7t; i17:0; a17:0; 18:1ω7c; cy19:0 | Frostegård et al., 1993 |
真菌 Fungi | 18:1ω9; 18:2ω6,9 | Bossio et al., 1998 |
革兰氏阳性细菌 Gram-positive bacteria | i14:0; i15:0; a15:0; i16:0; i17:0; a17:0 | Waldrop & Firestone, 2004; Sampedro et al., 2006 |
革兰氏阴性细菌 Gram-negative bacteria | 16:1ω7t; 17:1ω8c; 18:1ω7c; cy17:0; cy19:0 | Sampedro et al., 2006 |
放线菌 Actinomycete | 10Me 16:0; 10Me 17:0; 10Me18:0 | Frostegård et al., 1993 |
表1 本研究中用于估算微生物生物量的脂肪酸
Table 1 Fatty acids used in the analysis of microbial community composition in the study
微生物群落 Soil microbial community | 磷酸脂肪酸标记物 Phospholipid fatty acid biomarkers | 文献 Reference |
---|---|---|
细菌 Bacteria | i14:0; i15:0; a15:0; i16:0; 16:1ω7t; i17:0; a17:0; 18:1ω7c; cy19:0 | Frostegård et al., 1993 |
真菌 Fungi | 18:1ω9; 18:2ω6,9 | Bossio et al., 1998 |
革兰氏阳性细菌 Gram-positive bacteria | i14:0; i15:0; a15:0; i16:0; i17:0; a17:0 | Waldrop & Firestone, 2004; Sampedro et al., 2006 |
革兰氏阴性细菌 Gram-negative bacteria | 16:1ω7t; 17:1ω8c; 18:1ω7c; cy17:0; cy19:0 | Sampedro et al., 2006 |
放线菌 Actinomycete | 10Me 16:0; 10Me 17:0; 10Me18:0 | Frostegård et al., 1993 |
2013 | 2014 | ||||
---|---|---|---|---|---|
对照 Control | 林下植被剔除 Understory removal | 对照 Control | 林下植被剔除 Understory removal | ||
可溶性有机碳 Dissolved organic carbon (mg·kg-1) | 406.70 ± 7.70a | 373.20 ± 21.60a | 591.00 ± 26.50a | 510.90 ± 4.00b | |
微生物生物量碳 Microbial biomass carbon (mg·kg-1) | 403.40 ± 12.30a | 274.60 ± 31.70b | 425.00 ± 5.60a | 377.90 ± 5.60b | |
NH4+-N (mg·kg-1) | 15.30 ± 0.50b | 19.50 ± 1.10a | 13.80 ± 0.50a | 13.70 ± 0.20a | |
NO3–-N (mg·kg-1) | 7.70 ± 0.30a | 2.60 ± 0.50b | 2.80 ± 0.20a | 2.50 ± 0.30a | |
有效磷 Available phosphorus (mg·kg-1) | 1.40 ± 0.10a | 0.80 ± 0.20b | 2.40 ± 0.10a | 1.80 ± 0.10b | |
pH值 pH value | 3.60 ± 0.02a | 3.60 ± 0.02a | 3.60 ± 0.02a | 3.60 ± 0.01a | |
根系生物量 Root biomass (Mg·hm-2) | 0.40 ± 0.03b | 0.80 ± 0.01a | |||
根中碳含量 Root C content (%) | 45.90 ± 0.40a | 46.70 ± 0.01a | |||
根中氮含量 Root N content (%) | 0.60 ± 0.03a | 0.40 ± 0.02b |
表2 2013和2014年林下植被剔除对土壤理化性质和根系生物量的影响(平均值±标准误差, n = 3)
Table 2 Effects of understory removal on soil physicochemical properties and root biomass in 2013 and 2014 (mean ± SE, n = 3)
2013 | 2014 | ||||
---|---|---|---|---|---|
对照 Control | 林下植被剔除 Understory removal | 对照 Control | 林下植被剔除 Understory removal | ||
可溶性有机碳 Dissolved organic carbon (mg·kg-1) | 406.70 ± 7.70a | 373.20 ± 21.60a | 591.00 ± 26.50a | 510.90 ± 4.00b | |
微生物生物量碳 Microbial biomass carbon (mg·kg-1) | 403.40 ± 12.30a | 274.60 ± 31.70b | 425.00 ± 5.60a | 377.90 ± 5.60b | |
NH4+-N (mg·kg-1) | 15.30 ± 0.50b | 19.50 ± 1.10a | 13.80 ± 0.50a | 13.70 ± 0.20a | |
NO3–-N (mg·kg-1) | 7.70 ± 0.30a | 2.60 ± 0.50b | 2.80 ± 0.20a | 2.50 ± 0.30a | |
有效磷 Available phosphorus (mg·kg-1) | 1.40 ± 0.10a | 0.80 ± 0.20b | 2.40 ± 0.10a | 1.80 ± 0.10b | |
pH值 pH value | 3.60 ± 0.02a | 3.60 ± 0.02a | 3.60 ± 0.02a | 3.60 ± 0.01a | |
根系生物量 Root biomass (Mg·hm-2) | 0.40 ± 0.03b | 0.80 ± 0.01a | |||
根中碳含量 Root C content (%) | 45.90 ± 0.40a | 46.70 ± 0.01a | |||
根中氮含量 Root N content (%) | 0.60 ± 0.03a | 0.40 ± 0.02b |
图1 2012年7月到2014年7月对照(CK)区和林下植被剔除(UR)区土壤呼吸速率动态(平均值±标准误差, n = 3)。由于天气和仪器的原因, 导致2013年2月和5月的数据丢失。
Fig. 1 Dynamics of soil respiration rate in the control (CK) and understory removal (UR) treatments from July 2012 to July 2014 (mean ± SE, n = 3). The data of February and May of 2013 were missing because of the weather and the instrument problems.
图2 2012年7月到2014年7月对照(CK)区和林下植被剔除(UR)区的土壤温度和含水量的年动态(平均值±标准误差, n = 3)。由于天气和仪器的原因, 导致2013年2月和5月的数据丢失。
Fig. 2 Dynamics of soil temperature and moisture in the control (CK) and understory removal (UR) treatments from July 2012 to July 2014 (mean ± SE, n = 3). The data of February and May of 2013 were missing because of the weather and the instrument problems.
Q10 | Rs = aebTW c | n | ||||
---|---|---|---|---|---|---|
a | b | c | r | |||
对照 Control | 2.10 | 0.27 | 0.078 | 0.11 | 0.94** | 24 |
林下植被剔除 Understory removal | 1.87 | 1.44 | 0.061 | -0.39 | 0.84** | 24 |
表3 土壤呼吸速率与土壤温度和含水量的关系
Table 3 Relationships of soil respiration rate with soil temperature and moisture
Q10 | Rs = aebTW c | n | ||||
---|---|---|---|---|---|---|
a | b | c | r | |||
对照 Control | 2.10 | 0.27 | 0.078 | 0.11 | 0.94** | 24 |
林下植被剔除 Understory removal | 1.87 | 1.44 | 0.061 | -0.39 | 0.84** | 24 |
2013 | 2014 | ||||
---|---|---|---|---|---|
对照 Control | 林下植被剔除 Understory removal | 对照 Control | 林下植被剔除 Understory removal | ||
总磷脂脂肪酸浓度 Concentration of total phospholipid fatty acids (nmol·g-1) | 36.2 ± 0.7a | 35.2 ± 1.0a | 61.7 ± 2.9a | 55.5 ± 2.4a | |
细菌浓度 Concentration of bacteria (nmol·g-1) | 22.6 ± 1.0a | 24.6 ± 1.8a | 38.5 ± 1.5a | 34.9 ± 1.5a | |
真菌浓度 Concentration of fungi (nmol·g-1) | 7.4 ± 0.2a | 6.0 ± 0.0b | 14.1 ± 1.0 a | 12.1 ± 0.6a | |
真菌:细菌浓度比值 Ratio of fungi to bacteria concentration | 0.33 ± 0.02a | 0.25 ± 0.02b | 0.37 ± 0.01a | 0.35 ± 0.00a | |
革兰氏阳性细菌浓度 Concentration of Gram-positive bacteria (nmol·g-1) | 7.5 ± 0.3b | 9.3 ± 0.3a | 16.6 ± 0.5a | 15.0 ± 0.3b | |
革兰氏阴性细菌浓度 Concentration of Gram-negative bacteria (nmol·g-1) | 7.7 ± 0.5a | 8.2 ± 0.1a | 10.1 ± 0.5a | 10.7 ± 0.6a | |
革兰氏阳性细菌:革兰氏阴性细菌浓度 Ratio of Gram-positive bacteria to Gram-negative bacteria concentration | 0.97 ± 0.05b | 1.1 ± 0.03a | 1.8 ± 0.05a | 1.4 ± 0.06b | |
放线菌浓度 Concentration of actinomycete (nmol·g-1) | 3.9 ± 0.2a | 3.7 ± 0.3a | 5.4 ± 0.2a | 5.3 ± 0.1a |
表4 2013和2014年林下植被剔除对土壤微生物群落结构的影响(平均值±标准误差, n = 3)
Table 4 Effects of understory removal on soil microbial community composition in 2013 and 2014 (mean ± SE, n=3)
2013 | 2014 | ||||
---|---|---|---|---|---|
对照 Control | 林下植被剔除 Understory removal | 对照 Control | 林下植被剔除 Understory removal | ||
总磷脂脂肪酸浓度 Concentration of total phospholipid fatty acids (nmol·g-1) | 36.2 ± 0.7a | 35.2 ± 1.0a | 61.7 ± 2.9a | 55.5 ± 2.4a | |
细菌浓度 Concentration of bacteria (nmol·g-1) | 22.6 ± 1.0a | 24.6 ± 1.8a | 38.5 ± 1.5a | 34.9 ± 1.5a | |
真菌浓度 Concentration of fungi (nmol·g-1) | 7.4 ± 0.2a | 6.0 ± 0.0b | 14.1 ± 1.0 a | 12.1 ± 0.6a | |
真菌:细菌浓度比值 Ratio of fungi to bacteria concentration | 0.33 ± 0.02a | 0.25 ± 0.02b | 0.37 ± 0.01a | 0.35 ± 0.00a | |
革兰氏阳性细菌浓度 Concentration of Gram-positive bacteria (nmol·g-1) | 7.5 ± 0.3b | 9.3 ± 0.3a | 16.6 ± 0.5a | 15.0 ± 0.3b | |
革兰氏阴性细菌浓度 Concentration of Gram-negative bacteria (nmol·g-1) | 7.7 ± 0.5a | 8.2 ± 0.1a | 10.1 ± 0.5a | 10.7 ± 0.6a | |
革兰氏阳性细菌:革兰氏阴性细菌浓度 Ratio of Gram-positive bacteria to Gram-negative bacteria concentration | 0.97 ± 0.05b | 1.1 ± 0.03a | 1.8 ± 0.05a | 1.4 ± 0.06b | |
放线菌浓度 Concentration of actinomycete (nmol·g-1) | 3.9 ± 0.2a | 3.7 ± 0.3a | 5.4 ± 0.2a | 5.3 ± 0.1a |
NH4+-N | NO3–-N | 有效磷 Available phosphorus | 可溶性碳 Dissolved organic carbon | 微生物量碳 Microbial biomass carbon | pH值 pH value | |
---|---|---|---|---|---|---|
总磷脂脂肪酸浓度 Concentration of total phospholipid fatty acids | -0.67* | -0.49 | 0.85** | 0.96** | 0.52 | -0.26 |
细菌浓度 Concentration of bacteria | -0.61* | -0.56 | 0.77** | 0.94** | 0.39 | -0.26 |
真菌浓度 Concentration of fungi | -0.72** | -0.39 | 0.88** | 0.96** | 0.62* | -0.28 |
真菌:细菌浓度比值 Ratio of fungi to bacteria concentration | -0.78** | 0.06 | 0.83** | 0.73** | 0.85** | -0.25 |
革兰氏阳性细菌浓度 Concentration of Gram-positive bacteria | -0.59* | -0.65* | 0.80** | 0.92** | 0.38 | -0.18 |
革兰氏阴性细菌浓度 Concentration of Gram-negative bacteria | -0.49 | -0.57 | 0.61* | 0.77** | 0.32 | -0.03 |
革兰氏阳性细菌:革兰氏阴性细菌浓度 Ratio of Gram-positive bacteria to Gram-negative bacteria concentration concentration ration | -0.52 | -0.60* | 0.79** | 0.88** | 0.37 | -0.26 |
放线菌浓度 Concentration of actinomycete | -0.63* | -0.47 | 0.86** | 0.87** | 0.63* | -0.20 |
表5 土壤微生物群落结构和土壤理化性质相关关系
Table 5 Relationships between soil microbial community composition and soil physicochemical properties
NH4+-N | NO3–-N | 有效磷 Available phosphorus | 可溶性碳 Dissolved organic carbon | 微生物量碳 Microbial biomass carbon | pH值 pH value | |
---|---|---|---|---|---|---|
总磷脂脂肪酸浓度 Concentration of total phospholipid fatty acids | -0.67* | -0.49 | 0.85** | 0.96** | 0.52 | -0.26 |
细菌浓度 Concentration of bacteria | -0.61* | -0.56 | 0.77** | 0.94** | 0.39 | -0.26 |
真菌浓度 Concentration of fungi | -0.72** | -0.39 | 0.88** | 0.96** | 0.62* | -0.28 |
真菌:细菌浓度比值 Ratio of fungi to bacteria concentration | -0.78** | 0.06 | 0.83** | 0.73** | 0.85** | -0.25 |
革兰氏阳性细菌浓度 Concentration of Gram-positive bacteria | -0.59* | -0.65* | 0.80** | 0.92** | 0.38 | -0.18 |
革兰氏阴性细菌浓度 Concentration of Gram-negative bacteria | -0.49 | -0.57 | 0.61* | 0.77** | 0.32 | -0.03 |
革兰氏阳性细菌:革兰氏阴性细菌浓度 Ratio of Gram-positive bacteria to Gram-negative bacteria concentration concentration ration | -0.52 | -0.60* | 0.79** | 0.88** | 0.37 | -0.26 |
放线菌浓度 Concentration of actinomycete | -0.63* | -0.47 | 0.86** | 0.87** | 0.63* | -0.20 |
1 | Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK (2005). A temporal approach to linking aboveground and belowground ecology.Trends in Ecology & Evolution, 20, 634-641. |
2 | Bossio DA, Scow KM, Gunapala N, Graham KJ (1998). Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles.Microbial Ecology, 36, 1-12. |
3 | Chen CY, Liao LP, Wang SL (2000). Chinese Fir Plantation Ecology. Science Press, Beijing.(in Chinese with English abstract) |
[陈楚莹, 廖利平, 汪思龙 (2000). 杉木人工林生态学. 科学出版社, 北京.] | |
4 | Chen DM, Zhang Y, Lin YB, Zhu WX, Fu SL (2009). Changes in belowground carbon in Acacia crassicarpa and Eucalyptus urophylla plantations after tree girdling.Plant and Soil, 326, 123-135. |
5 | Chen DM, Zhang CL, Wu JP, Zhou LX, Lin YB, Fu SL (2011). Subtropical plantations are large carbon sinks: Evidence from two monoculture plantations in South China.Agricultural and Forest Meteorology, 151, 1214-1225. |
6 | Chen GS, Yang YS, Lü PP, Zhang YP, Qing XL (2008). Regional patterns of soil respiration in China’s forests.China Acta Ecologica Sinica, 28, 1748-1761.(in Chinese with English abstract) |
[陈光水, 杨玉盛, 吕萍萍, 张亿萍, 钱小兰 (2008). 中国森林土壤呼吸模式. 生态学报, 28, 1748-1761.] | |
7 | Cleveland CC, Townsend AR (2006). Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere.Proceedings of the National Academy of Sciences of the United States of America, 103, 10316-10321. |
8 | Cox F, Barsoum N, Lilleskov EA, Bidartondo MI (2010). Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients.Ecology Letters, 13, 1103-1113. |
9 | Fan YX, Yang YS, Guo JF, Yang ZJ, Chen GS, Xie JS, Zhong XJ, Xu LL (2014). Changes in soil respiration and its temperature sensitivity at different successional stages of evergreen broadleaved forests in mid-subtropical China.Chinese Journal of Plant Ecology, 38, 1155-1165.(in Chinese with English abstract) |
[范跃新, 杨玉盛, 郭剑芬, 杨智杰, 陈光水, 谢锦升, 钟小剑, 徐玲琳 (2014). 中亚热带常绿阔叶林不同演替阶段土壤呼吸及其温度敏感性的变化. 植物生态学报, 38, 1155-1165.] | |
10 | Frostegård Å, Bååth E (1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil.Biology and Fertility of Soils, 22, 59-65. |
11 | Frostegård ÅA, Bååth E, Tunlido A (1993). Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis.Soil Biology & Biochemisitry, 25, 723-730. |
12 | Grace J, Rayment M (2000). Respiration in the balance.Nature, 404, 819-820. |
13 | Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007). How strongly can forest management influence soil carbon sequestration?Geoderma, 137, 253-268. |
14 | Janssens IA, Dielema W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze ED, Tang J, Law BE (2010). Reduction of forest soil respiration in response to nitrogen deposition.Nature Geoscience, 3, 315-322. |
15 | Jia GM, Cao J, Wang CY, Wang G (2005). Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, northwest China.Forest Ecology and Management, 217, 117-125. |
16 | Jia SX, Wang ZQ, Mei L, Sun Y, Quan XK, Shi JW, Yu SQ, Sun HL, Gu JC (2007). Effect of nitrogen fertilization on soil respiration in Larix gmelinii and Fraxinus mandshurica plantation in China. Journal of Plant Ecology (Chinese Version), 31, 372-379.(in Chinese with English abstract) |
[贾淑霞, 王政权, 梅莉, 孙玥, 全先奎, 史建伟, 于水强, 孙海龙, 谷加存 (2007). 施肥对落叶松和水曲柳人工林土壤呼吸的影响. 植物生态学报, 33, 372-379.] | |
17 | Kretzschmar A, Pregitzer JN (1993). Decomposition of 14C-labelled plant material in soil: The influence of substrate location, soil compaction and earthworm numbers.Soil Biology & Biochemistry, 25, 803-809. |
18 | Li YL, Wang SL, Yan SK (2011). Short-term effects of understory vegetation removal on nutrient cycling in litter layer of Chinese fir plantation.Chinese Journal of Applied Ecology, 22, 2560-2566.(in Chinese with English abstract) |
[李媛良, 汪思龙, 颜绍馗 (2011). 杉木人工林剔除林下植被对凋落层养分循环的短期影响. 应用生态学报, 22, 2560-2566.] | |
19 | Li YQ, Xu M, Zou XM (2006). Effects of nutrient additions on ecosystem carbon cycle in a Puerto Rican tropical wet forest.Global Change Biology, 12, 284-293. |
20 | Liu GS, Jiang NH, Zhang LD, Liu ZL (1996). Soil physical and chemical analysis and description of soil profiles. In: Sun HL, Liu GS eds. Standard Methods for Observation and Analysis in Chinese Ecosystem Research Network: Soil Physical and Chemical Analysis & Description of Soil Profiles. Standards Press of China, Beijing. 5-40.(in Chinese) |
[刘光崧, 蒋能慧, 张连第, 刘兆礼 (1996). 中国生态系统研究网络观测与分析标准方法: 土壤理化分析与刨面描述. 中国标准出版社, 北京. 5-40.] | |
21 | Liu L, Gundersen P, Zhang T, Mo, JM (2012). Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China.Soil Biology & Biochemistry, 44, 31-38. |
22 | Luo YQ, Wan SQ, Hui DF, Wallace LL (2001). Acclimatization of soil respiration to warming in a tall grass prairie.Nature, 413, 622-625. |
23 | Marshall CB, Mclaren JR, Turkington R (2011). Soil microbial communities resistant to changes in plant functional group composition.Soil Biology & Biochemistry, 43, 78-85. |
24 | Sampedro L, Jeannotte R, Whalen JK (2006). Trophic transfer of fatty acids from gut microbiota to the earthworm Lumbricus terrestris L.Soil Biology & Biochemistry, 38, 2188-2198. |
25 | Scott-Denton LE, Rosenstiel TN, Monson RK (2006). Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration.Global Change Biology, 12, 205-216. |
26 | Tang XL, Liu SG, Zhou GY, Zhang DQ, Zhou CY (2006). Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China.Global Change Biology, 12, 546-560. |
27 | Treseder KK (2008). Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies.Ecology Letters, 11, 1111-1120. |
28 | Waldrop MP, Firestone MK (2004). Microbial community utilization of recalcitrant and simple carbon compounds: Impact of oak-woodland plant communities.Oecologia, 138, 275-284. |
29 | Wang QK, He TX, Wang SL, Liu L (2013). Carbon input manipulation affects soil respiration and microbial community composition in a subtropical coniferous forest. Agricultural and Forest Meteorology, 178-179, 152-160. |
30 | Wang QK, Wang SL, He TX, Liu L, Wu JB (2014). Response of organic carbon mineralization and microbial community to leaf litter and nutrient additions in subtropical forest soils.Soil Biology & Biochemistry, 71, 13-20. |
31 | Wang XL, Zhao J, Wu JP, Chen H, Lin YB, Zhou LX, Fu SL (2011). Impacts of understory species removal and/or addition on soil respiration in a mixed forest plantation with native species in southern China.Forest Ecology and Management, 261, 1053-1060. |
32 | Wardle DA (2006). The influence of biotic interactions on soil biodiversity.Ecology Letters, 9, 870-886. |
33 | Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van Der Putten WH, Wall DH (2004). Ecological linkages between aboveground and belowground biota.Science, 304, 1629-1633. |
34 | Wardle DA, Zackrisson O (2005). Effects of species and functional group loss on island ecosystem properties.Nature, 435, 806-810. |
35 | Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990). Measurement of soil microbial biomass C by fumigation-extraction: An automated procedure.Soil Biology & Biochemistry, 22, 1167-1169. |
36 | Wu JP, Liu ZF, Chen DM, Huang GM, Zhou LX, Fu SL (2011a). Understory plants can make substantial contribu- tions to soil respiration: Evidence from two subtropical plantations.Soil Biology & Biochemistry, 43, 2355-2357. |
37 | Wu JP, Liu ZF, Huang GM, Chen DM, Zhang WX, Shao YH, Wan SZ, Fu SL (2014). Response of soil respiration and ecosystem carbon budget to vegetation removal in Eucalyptus plantations with contrasting ages.Scientific Reports, 4, doi: 10.1038/srep 06262. |
38 | Wu JP, Liu ZF, Wang XL, Sun YX, Zhou LX, Lin YB, Fu SL (2011b). Effects of understory removal and tree girdling on soil microbial community composition and litter decomposition in two Eucalyptus plantations in South China.Functional Ecology, 25, 921-931. |
39 | Wu YC, Li ZC, Cheng CF, Liu RJ, Wang B, Geri LT (2013). Effects of understory removal on forest carbon storage in Cinnamomum camphora plantation ecosystem.Chinese Journal of Plant Ecology, 37, 142-149.(in Chinese with English abstract) |
[吴亚丛, 李正才, 程彩芳, 刘荣杰, 王斌, 格日乐图 (2013). 林下植被抚育对樟人工林生态系统碳储量的影响. 植物生态学报, 37, 142-149.] | |
40 | Wu ZL (1984). Chinese-fir. China Forestry Publishing House, Beijing.(in Chinese with English abstract) |
[吴中伦 (1984). 杉木. 中国林业出版社, 北京.] | |
41 | Xiong YM, Xia HP, Li ZA, Cai XA, Fu SL (2008). Impacts of litter and understory removal on soil properties in a subtropical Acacia mangium plantation in China.Plant and Soil, 304, 179-188. |
42 | Xu M, Qi Y (2001). Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan forest.Global Biogeochemical Cycles, 15, 687-696. |
43 | Yarwood SA, Myrold DD, Högberg MN (2009). Termination of belowground C allocation by trees alters soil fungal and bacterial communities in a boreal forest.FEMS Microbiology Ecology, 70, 151-162. |
44 | Yildiz O, Cromack K Jr, Radosevich SR, Martinez-Ghersa MA, Baham JE (2011). Comparison of 5th-and 14th-year Douglas-fir and understory vegetation responses to selective vegetation removal.Forest Ecology and Management, 262, 586-597. |
45 | Yuste C, Nagy M, Janssens IA, Carrara A, Ceulemans R (2005). Soil respiration in a mixed temperate forest and its contribution to total ecosystem respiration.Tree Physiology, 25, 609-619. |
46 | Zhao J, Wan SZ, Fu SL, Wang XL, Wang M, Liang CF, Chen YQ, Zhu XL (2013). Effects of understory removal and nitrogen fertilization on soil microbial communities in Eucalyptus plantations.Forest Ecology and Management, 310, 80-86. |
[1] | 夏璟钰 张扬建 郑周涛 赵广 赵然 朱艺旋 高洁 沈若楠 李文宇 郑家禾 张雨雪 朱军涛 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度 敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[3] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤呼吸与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
[4] | 王晶苑 魏杰 温学发. 土壤CO2通量梯度观测技术和方法的理论、假设与应用进展[J]. 植物生态学报, 2022, 46(12): 1523-1536. |
[5] | 赵河聚, 岳艳鹏, 贾晓红, 成龙, 吴波, 李元寿, 周虹, 赵雪彬. 模拟增温对高寒沙区生物土壤结皮-土壤系统呼吸的影响[J]. 植物生态学报, 2020, 44(9): 916-925. |
[6] | 罗林, 黄艳, 梁进, 汪恩涛, 胡君, 贺合亮, 赵春章. 西南亚高山针叶林主要树种互作及增温对根区土壤微生物群落的影响[J]. 植物生态学报, 2020, 44(8): 875-884. |
[7] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[8] | 沈芳芳, 李燕燕, 刘文飞, 段洪浪, 樊后保, 胡良, 孟庆银. 长期氮沉降对杉木人工林叶、枝氮磷养分再吸收的影响[J]. 植物生态学报, 2018, 42(9): 926-937. |
[9] | 王军, 王冠钦, 李飞, 彭云峰, 杨贵彪, 郁建春, 周国英, 杨元合. 短期增温对紫花针茅草原土壤微生物群落的影响[J]. 植物生态学报, 2018, 42(1): 116-125. |
[10] | 杨开军, 杨万勤, 谭羽, 贺若阳, 庄丽燕, 李志杰, 谭波, 徐振锋. 川西亚高山云杉林冬季土壤呼吸对雪被去除的短期响应[J]. 植物生态学报, 2017, 41(9): 964-971. |
[11] | 葛晓改, 周本智, 肖文发, 王小明, 曹永慧, 叶明. 生物质炭添加对毛竹林土壤呼吸动态和温度敏感性的影响[J]. 植物生态学报, 2017, 41(11): 1177-1189. |
[12] | 张蔷, 李家湘, 谢宗强. 氮添加对亚热带山地杜鹃灌丛土壤呼吸的影响[J]. 植物生态学报, 2017, 41(1): 95-104. |
[13] | 张建华, 唐志尧, 沈海花, 方精云. 氮添加对北京东灵山地区灌丛土壤呼吸的影响[J]. 植物生态学报, 2017, 41(1): 81-94. |
[14] | 李晓杰, 刘小飞, 熊德成, 林伟盛, 林廷武, 施友文, 谢锦升, 杨玉盛. 中亚热带杉木人工林和米槠次生林凋落物添加与去除对土壤呼吸的影响[J]. 植物生态学报, 2016, 40(5): 447-457. |
[15] | 邱曦, 吕茂奎, 黄锦学, 李伟, 赵本嘉, 张浩, 王恩熙, 谢锦升. 不同培养温度下严重侵蚀红壤的有机碳矿化特征[J]. 植物生态学报, 2016, 40(3): 236-245. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19