植物生态学报 ›› 2012, Vol. 36 ›› Issue (8): 754-762.DOI: 10.3724/SP.J.1258.2012.00754
收稿日期:
2011-11-18
接受日期:
2012-03-27
出版日期:
2012-11-18
发布日期:
2012-08-21
通讯作者:
沈有信
作者简介:
* E-mail: yxshen@xtbg.ac.cn
SHEN You-Xin1,*(), ZHAO Chun-Yan2
Received:
2011-11-18
Accepted:
2012-03-27
Online:
2012-11-18
Published:
2012-08-21
Contact:
SHEN You-Xin
摘要:
持久性土壤种子库(PSSB)是一种重要的植物生活史对策, 很多学者就这种对策对物种适应和进化的影响进行过推理。但种子在土壤中的长时间存留是一种风险行为, 所有的PSSB影响的推理都取决于一个假设, 即PSSB种子萌发的个体的竞争能力没有因为存留损耗而显著降低。为验证这一假设, 该文以紫茎泽兰(Eupatorium adenophorum)为研究材料, 比较了埋藏1年和3年的PSSB种子萌发的个体与同母体的当年新种子萌发的个体之间在无竞争和4种密度制约竞争条件下的株高和生物量的差异。结果显示, 无论株高还是生物量, PSSB种子萌发的个体较同母体的新种子萌发的个体均有所降低, 但在多数检测时间内的降低程度未达到显著水平, 表明紫茎泽兰PSSB种子萌发的个体相对于同母体的新种子萌发的个体的竞争能力无显著下降。
沈有信, 赵春燕. 持久性土壤种子库种子萌发的个体竞争能力会衰减吗?——以紫茎泽兰为例. 植物生态学报, 2012, 36(8): 754-762. DOI: 10.3724/SP.J.1258.2012.00754
SHEN You-Xin, ZHAO Chun-Yan. Will competitiveness of resulting plants of persistent soil seed bank decline? Example from Eupatorium adenophorum. Chinese Journal of Plant Ecology, 2012, 36(8): 754-762. DOI: 10.3724/SP.J.1258.2012.00754
图1 埋藏1年的持久性土壤种子库(PSSB)种子萌发的个体与当年新种子萌发的个体之间的竞争试验设计。
Fig. 1 Diagram showing the competition arrangement between plants resulting from one year buried persistent soil seed bank (PSSB) and fresh seeds.
处理 Treatment | 距离播种天数 Days after sowing (d) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
45 | 55 | 65 | 75 | 85 | 105 | 125 | 140 | 155 | 165 | ||
D A A × D | df F p df F p df F p | 4 140.466 0.000 1 44.336 0.000 4 125.375 0.000 | 4 70.423 0.000 1 15.829 0.000 4 0.313 0.868 | 4 8.379 0.000 1 4.102 0.045 4 11.765 0.000 | 4 30.907 0.000 1 2.894 0.092 4 2.853 0.027 | 4 28.287 0.000 1 0.415 0.521 4 1.531 0.201 | 4 18.245 0.000 1 0.045 0.833 4 6.472 0.000 | 4 6.036 0.001 1 2.107 0.153 4 3.410 0.016 | 4 101.397 0.000 1 4.262 0.044 4 0.419 0.794 | 4 1.632 0.210 1 0.318 0.580 4 0.920 0.474 | 4 2.101 0.131 1 2.622 0.126 4 4.326 0.016 |
表1 播种不同天数后紫茎泽兰的密度(D)与种子来源类型(A) (新种子和埋藏1年的持久性土壤种子库种子)对株高的影响
Table 1 Effects of density (D) and seed source type (A) (new seeds vs one year old seeds of persistent soil seed bank) on plant height of Eupatorium adenophorum at different days after sowing
处理 Treatment | 距离播种天数 Days after sowing (d) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
45 | 55 | 65 | 75 | 85 | 105 | 125 | 140 | 155 | 165 | ||
D A A × D | df F p df F p df F p | 4 140.466 0.000 1 44.336 0.000 4 125.375 0.000 | 4 70.423 0.000 1 15.829 0.000 4 0.313 0.868 | 4 8.379 0.000 1 4.102 0.045 4 11.765 0.000 | 4 30.907 0.000 1 2.894 0.092 4 2.853 0.027 | 4 28.287 0.000 1 0.415 0.521 4 1.531 0.201 | 4 18.245 0.000 1 0.045 0.833 4 6.472 0.000 | 4 6.036 0.001 1 2.107 0.153 4 3.410 0.016 | 4 101.397 0.000 1 4.262 0.044 4 0.419 0.794 | 4 1.632 0.210 1 0.318 0.580 4 0.920 0.474 | 4 2.101 0.131 1 2.622 0.126 4 4.326 0.016 |
处理 Treatment | 距离播种天数 Days after sowing (d) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
32 | 57 | 71 | 86 | 101 | 116 | 130 | 145 | 160 | 175 | ||
D A A × D | df F p df F p df F p | 4 4.580 0.002 1 0.667 0.415 4 0.901 0.465 | 4 7.695 0.000 1 3.367 0.069 4 0.969 0.427 | 4 32.120 0.000 1 4.305 0.040 4 0.327 0.859 | 4 77.719 0.000 1 4.567 0.035 4 0.357 0.839 | 4 45.207 0.000 1 3.539 0.064 4 0.290 0.884 | 4 45.046 0.000 1 4.524 0.037 4 0.468 0.759 | 4 36.001 0.000 1 3.749 0.059 4 0.324 0.861 | 4 37.387 0.000 1 3.803 0.058 4 0.369 0.830 | 4 24.170 0.000 1 0.377 0.547 4 0.512 0.728 | 4 26.046 0.000 1 0.106 0.748 4 0.317 0.863 |
表2 播种不同天数后紫茎泽兰的密度(D)与种子来源类型(A) (新种子和埋藏3年的持久性土壤种子库种子)对株高的影响
Table 2 Effects of density (D) and seed source type (A) (new seeds vs three years old seeds of persistent soil seed bank) on plant height of Eupatorium adenophorum at different days after sowing
处理 Treatment | 距离播种天数 Days after sowing (d) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
32 | 57 | 71 | 86 | 101 | 116 | 130 | 145 | 160 | 175 | ||
D A A × D | df F p df F p df F p | 4 4.580 0.002 1 0.667 0.415 4 0.901 0.465 | 4 7.695 0.000 1 3.367 0.069 4 0.969 0.427 | 4 32.120 0.000 1 4.305 0.040 4 0.327 0.859 | 4 77.719 0.000 1 4.567 0.035 4 0.357 0.839 | 4 45.207 0.000 1 3.539 0.064 4 0.290 0.884 | 4 45.046 0.000 1 4.524 0.037 4 0.468 0.759 | 4 36.001 0.000 1 3.749 0.059 4 0.324 0.861 | 4 37.387 0.000 1 3.803 0.058 4 0.369 0.830 | 4 24.170 0.000 1 0.377 0.547 4 0.512 0.728 | 4 26.046 0.000 1 0.106 0.748 4 0.317 0.863 |
图2 不同种植密度下埋藏1年的持久性土壤种子库(PSSB)种子萌发的个体与新种子萌发的个体株高比较(平均值±标准误差)。A, 对照。B, 0.25株·cm-2。C, 1株·cm-2。D, 4株·cm-2。E, 8株·cm-2。
Fig. 2 Comparisons of plant height of plants resulting from one year old seeds of persistent soil seed bank (PSSB) and resulting from fresh seeds at different planting densities (mean ± SE). A, Control. B, 0.25 plants·cm-2. C, 1 plant·cm-2. D, 4 plants·cm-2. E, 8 plants·cm-2.
图3 不同种植密度下埋藏3年的持久性土壤种子库(PSSB)种子萌发的个体与新种子萌发的个体的株高比较(平均值±标准误差)。A, 对照。B, 0.10株·cm-2。C, 0.17株·cm-2。D, 0.60株·cm-2。E, 2.17株·cm-2。
Fig. 3 Comparisons of plant height of plants resulting from three years old seeds of persistent soil seed bank (PSSB) and resulting from fresh seeds at different planting densities (mean ± SE). A, Control. B, 0.10 plants·cm-2. C, 0.17 plants·cm-2. D, 0.60 plants·cm-2. E, 2.17 plants·cm-2.
处理 Treatment | 距离播种天数 Days after sowing (d) | ||||
---|---|---|---|---|---|
85 | 115 | 145 | 175 | ||
D A A × D | df F p df F p df F p | 4 2.047 0.126 1 0.383 0.543 4 0.025 0.999 | 4 3.386 0.029 1 25.317 0.000 4 0.937 0.463 | 3 15.829 0.000 1 5.046 0.036 3 3.586 0.023 | 4 12.077 0.000 1 0.338 0.567 4 0.343 0.846 |
表3 播种不同天数后紫茎泽兰的密度(D)与种子来源类型(A) (新种子和埋藏1年的持久性土壤种子库种子)对生物量的影响
Table 3 Effects of density (D) and seed source type (A) (new seeds vs one year old seeds of persistent soil seed bank) on biomass of Eupatorium adenophorum at different days after sowing
处理 Treatment | 距离播种天数 Days after sowing (d) | ||||
---|---|---|---|---|---|
85 | 115 | 145 | 175 | ||
D A A × D | df F p df F p df F p | 4 2.047 0.126 1 0.383 0.543 4 0.025 0.999 | 4 3.386 0.029 1 25.317 0.000 4 0.937 0.463 | 3 15.829 0.000 1 5.046 0.036 3 3.586 0.023 | 4 12.077 0.000 1 0.338 0.567 4 0.343 0.846 |
处理 Treatment | 距离播种天数 Days after sowing (d) | |||||
---|---|---|---|---|---|---|
58 | 86 | 117 | 145 | 175 | ||
D A A × D | df F p df F p df F p | 4 12.552 0.000 1 3.232 0.088 4 0.366 0.829 | 4 36.873 0.000 1 0.022 0.883 4 0.562 0.693 | 3 47.930 0.000 1 0.029 0.868 3 0.025 0.995 | 4 376.202 0.000 1 5.897 0.027 4 0.546 0.658 | 4 62.320 0.000 1 0.201 0.659 4 0.117 0.975 |
表4 播种不同天数后紫茎泽兰的密度(D)与种子来源类型(A) (新种子和埋藏3年的持久性土壤种子库种子)对生物量的影响
Table 4 Effects of density (D) and seed source type (A) (new seeds vs three years old seeds of persistent soil seed bank) on biomass of Eupatorium adenophorum at different days after sowing
处理 Treatment | 距离播种天数 Days after sowing (d) | |||||
---|---|---|---|---|---|---|
58 | 86 | 117 | 145 | 175 | ||
D A A × D | df F p df F p df F p | 4 12.552 0.000 1 3.232 0.088 4 0.366 0.829 | 4 36.873 0.000 1 0.022 0.883 4 0.562 0.693 | 3 47.930 0.000 1 0.029 0.868 3 0.025 0.995 | 4 376.202 0.000 1 5.897 0.027 4 0.546 0.658 | 4 62.320 0.000 1 0.201 0.659 4 0.117 0.975 |
图4 不同种植密度下埋藏1年的持久性土壤种子库(PSSB)种子萌发的个体与新种子萌发的个体的生物量比较(平均值±标准误差)。A, 对照。B, 0.25株·cm-2。C, 1株·cm-2。D, 4株·cm-2。E, 8株·cm-2。
Fig. 4 Comparisons of individual biomass of plants resulting from one year old seeds of persistent soil seed bank (PSSB) and resulting from fresh seeds at different planting densities (mean ± SE). A, Control. B, 0.25 plants·cm-2. C, 1 plant·cm-2. D, 4 plants·cm-2. E, 8 plants·cm-2.
图5 不同种植密度下埋藏3年的持久性土壤种子库(PSSB)种子萌发的个体与新种子萌发的个体的生物量比较(平均值±标准误差)。A, 对照。B, 0.10株·cm-2。C, 0.17株·cm-2。D, 0.60株·cm-2。E, 2.17株·cm-2。
Fig. 5 Comparisons of individual biomass of plants resulting from three years old seeds of persistent soil seed bank (PSSB) and resulting from fresh seeds at different planting densities (mean ± SE). A, Control. B, 0.10 plants·cm-2. C, 0.17 plants·cm-2. D, 0.60 plants·cm-2. E, 2.17 plants·cm-2.
[1] | Baskin CC, Baskin JM (1998). Seeds: Ecology, Biogeo- graphy, and Evolution of Dormancy and Germination. Academic Press, San Diego. |
[2] | Berjak P, Villiers TA (1972a). Ageing in plant embryos. IV. Loss of regulatory control in aged embryos. The New Phytologist, 71, 1069-1074. |
[3] | Berjak P, Villiers TA (1972b). Ageing in plant embryos. V. Lysis of the cytoplasm in non-viable embryos. The New Phytologist, 71, 1075-1079. |
[4] | Berjak P, Villiers TA (1972c). Ageing in plant embryos. II. Age-induced damage and its repair during early germination. The New Phytologist, 71, 135-144. |
[5] | Cohen D (1966). Optimizing reproduction in a randomly varying environment. Journal of Theoretical Biology, 12, 119-129. |
[6] | Cohen D (1968). A general model of optimal reproduction in a randomly varying environment. Journal of Theoretical Biology, 56, 219-228. |
[7] | Dang WG (党伟光), Gao XM (高贤明), Wang JF (王瑾芳), Li AF (李爱芳) (2008). Soil seed bank traits in an area invaded by Eupatorium adenophorum. Biodiversity Science (生物多样性), 16, 126-132. (in Chinese with English abstract) |
[8] | Harper JL (1977). Population Biology of Plants. Academic Press, New York. |
[9] | Kivilaan A, Bandurski RS (1981). The one hundred year period for Dr. WJ Beal’s seed viability experiment. American Journal of Botany, 68, 1290-1292. |
[10] | McGraw JB, Vavrek MC, Bennington CC (1991). Ecolo- gical genetic variation in seed banks. I. Establishment of a time transect. Journal of Ecology, 79, 617-625. |
[11] | Onaindia M, Amezaga I (2000). Seasonal variation in the seed banks of native woodland and coniferous plantations in Northern Spain. Forest Ecology and Management, 126, 163-172. |
[12] | Philippi T (1993). Bet-hedging germination of desert annuals: beyond the first year. The American Natur- alist, 142, 474-487. |
[13] | Qiang S (强胜) (1998). The history and status of the study on crofton weed (Eupatorium adenophorum Spreng) a worst worldwide weed. Journal of Wuhan Botanical Research (武汉植物学研究), 16, 366-372. (in Chinese with English abstract) |
[14] | Rees M, Long MJ (1992). Germination biology and the ecology of annual plants. The American Naturalist, 139, 484-508. |
[15] | Rice KJ, Dyer AR (2001). Seed aging, delayed germination and reduced competitive ability in Bromus tectorum. Plant Ecology, 155, 237-243. |
[16] | Shen YX, Zhao CY, Liu WY (2011). Seed vigor and plant competitiveness resulting from seeds of Eupatorium adenophorum in a persistent soil seed bank. Flora, 206, 935-942. |
[17] | Shen YX, Liu WY, Baskin JM, Baskin CC, Cao M (2006). Persistent soil seed banks of the globally significant invasive species, Eupatorium adenophorum, in Yunnan Province, southwestern China. Seed Science Research, 16, 157-162. |
[18] | Shen YX (沈有信), Liu WY (刘文耀) (2004). Persistent soil seed bank of Eupatorium adenophorum. Acta Phytoecologica Sinica (植物生态学报), 28, 768-772. (in Chinese with English abstract) |
[19] | Telewski FW, Zeevaart JAD (2002). The 120-yr period for Dr. Beal’s seed viability experiment. American Journal of Botany, 89, 1285-1288. |
[20] | Thompson K, Grime JP (1979). Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. Journal of Ecology, 67, 893-921. |
[21] | Venable DL, Brown JS (1988). The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. The American Naturalist, 131, 360-384. |
[22] | Walck JL, Baskin JM, Baskin CC, Hidayati SN (2005). Defining transient and persistent seed banks in species with pronounced seasonal dormancy and germination patterns. Seed Science Research, 15, 189-196. |
[23] | Wang J (王俊), Bai Y (白瑜) (2006). The hot topics and perspectives of soil seed bank research. Ecology and Environment (生态环境), 15, 1372-1379. (in Chinese with English abstract) |
[24] | Wang S (王硕), Gao XM (高贤明), Wang JF (王瑾芳), Dang WG (党伟光) (2009). Characteristics of soil seed banks of crofton weed and their effects on seedlings. Chinese Journal of Plant Ecology (植物生态学报), 33, 380-38. (in Chinese with English abstract) |
[25] | Wang X (王玺), Zhao ZY (赵增煜) (1990). Studies on vigour change pattern of soybean seed in storage and effect of PEG treatment. Journal of Shenyang Agricultural University (沈阳农业大学学报), 21, 207-213. (in Chinese with English abstract) |
[26] | Xu ML (许美玲) (2006). Study on germination rule and aging for tobacco seeds. Seed (种子), 25, 9-13. (in Chinese) |
[27] | Zhang L (张玲), Li GH (李广贺), Zhang X (张旭) (2004). A review on soil seed banks study. Chinese Journal of Ecology (生态学杂志), 23, 114-120. (in Chinese with English abstract) |
[1] | 文佳 张新娜 王娟 赵秀海 张春雨. 性状调节幼苗存活率对邻体竞争和环境的响应 [J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[3] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[4] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[5] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[6] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[7] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[8] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[9] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[10] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[11] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[12] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[13] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[14] | 赵榕江, 陈焘, 董丽佳, 郭辉, 马海鲲, 宋旭, 王明刚, 薛伟, 杨强. 植物-土壤反馈及其在生态学中的研究进展[J]. 植物生态学报, 2023, 47(10): 1333-1355. |
[15] | 郝晴, 黄昌. 森林地上生物量遥感估算研究综述[J]. 植物生态学报, 2023, 47(10): 1356-1374. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19