植物生态学报 ›› 2010, Vol. 34 ›› Issue (6): 753-760.DOI: 10.3773/j.issn.1005-264x.2010.06.014
• 简报 • 上一篇
收稿日期:
2008-12-18
接受日期:
2009-11-24
出版日期:
2010-12-18
发布日期:
2010-06-01
通讯作者:
李俊清
作者简介:
* E-mail: lijq@bjfu.edu.cn
XIE Rui, LI Jun-Qing*(), ZHAO Xue, LI Nan
Received:
2008-12-18
Accepted:
2009-11-24
Online:
2010-12-18
Published:
2010-06-01
Contact:
LI Jun-Qing
摘要:
通过对亚高山针叶林的林下、小林窗(130 m2)、中林窗(300 m2)和大林窗(500 m2) 4种林冠环境中缺苞箭竹(Fargesia denudata)分株种群特征进行调查, 研究其生物量分配格局和克隆形态可塑性。研究结果表明: (1)分株生物量、基径、高度以及分株各构件生物量随林冠郁闭度减小均表现为先增加后减小的趋势, 在小林窗中达到最大值; (2)大林窗中, 根生物量分配和数量显著高于其他林冠环境, 随林冠郁闭度增大, 分株不断增大叶生物量分配、比叶面积和分枝百分比等地上部分投资, 以适应低光环境; (3)比茎长和比地下茎长随林冠郁闭度增大表现为先减小后增加的趋势, 在小林窗值最低, 分枝强度在小林窗和中林窗中显著高于林下和大林窗环境。结果显示, 缺苞箭竹在不同林冠环境中具有生物量分配和克隆形态的可塑性, 以利于种群对光资源的有效利用。小林窗环境是缺苞箭竹较适宜的生境, 生物量积累最多, 长势最好。
解蕊, 李俊清, 赵雪, 李楠. 林冠环境对亚高山针叶林下缺苞箭竹生物量分配和克隆形态的影响. 植物生态学报, 2010, 34(6): 753-760. DOI: 10.3773/j.issn.1005-264x.2010.06.014
XIE Rui, LI Jun-Qing, ZHAO Xue, LI Nan. Effect of different canopy conditions on biomass allocation and clonal morphology of Fargesia denudata in a subalpine coniferous forest in southwestern China. Chinese Journal of Plant Ecology, 2010, 34(6): 753-760. DOI: 10.3773/j.issn.1005-264x.2010.06.014
图1 不同林冠环境对缺苞箭竹分株生物量(A)、分株构件生物量(B)和分株构件生物量分配(C)的影响(平均值±标准误差)。 图中不同小写字母标记的值之间差异显著(p < 0.05)。Fu, 林下; Lg, 大林窗; Mg, 中林窗; Sg, 小林窗。
Fig. 1 Effects of different canopy conditions on biomass of ramet (A), biomass of modules (B) and biomass allocation to module (C) of Fargesia denudata (mean ± SE). Bars sharing different letters are significantly different at p < 0.05. Fu, forest understory; Lg, large gap; Mg, middle gap; Sg, small gap.
形态特征 Morphological characteristics | 林下 Fu | 小林窗 Sg | 中林窗 Mg | 大林窗 Lg | F值 F value |
---|---|---|---|---|---|
分株基径 Basal diameter (cm) | 0.837 ± 0.023b | 0.951 ± 0.042a | 0.809 ± 0.026b | 0.716 ± 0.023c | 10.647 |
分株高度 Ramet height (cm) | 236.1 ± 7.464b | 324.722 ± 21.972a | 294.225 ± 10.339a | 198.425 ± 9.567c | 18.763 |
比茎长 Specific stem length (cm·g-1) | 8.386 ± 0.376b | 5.248 ± 0.289d | 7.099 ± 0.308c | 9.999 ± 0.499a | 27.094 |
节数 Number of nodes | 20.900 ± 0.571a | 21.778 ± 1.089a | 22.500 ± 0.796ab | 19.900 ± 0.876b | 1.818 |
分枝节数 Number of branching nodes | 14.750 ± 0.464a | 14.944 ± 0.634a | 14.450 ± 0.609a | 11.950 ± 0.0.555b | 6.154 |
分枝百分比 Percentage of branching (%) | 70.8 ± 1.9a | 69.3 ± 1.4a | 64.3 ± 1.8b | 59.9 ± 1.0c | 10.418 |
最长节间 The longest node (cm) | 13.470 ± 0.667c | 21.106 ± 0.613a | 18.915 ± 0.646b | 12.425 ± 0.901c | 33.206 |
叶片数 Number of leaves | 272.000 ± 12.888b | 456.111 ± 58.512a | 383.000 ± 35.873a | 225 ± 26.975b | 8.285 |
单叶面积 Single leaf area (cm2) | 3.805 ± 0.111b | 4.948 ± 0.231a | 4.544 ± 0.125a | 3.447 ± 0.086b | 22.271 |
单叶生物量 single leaf biomass (g) | 0.0153 ± 0.0006b | 0.0198 ± 0.0008a | 0.0210 ± 0.0007a | 0.0170 ± 0.0006b | 13.918 |
比叶面积 Specific leaf area (cm2·g-1) | 252.300 ± 6.929a | 249.722 ± 5.068a | 218.550 ± 5.389b | 204.050 ± 3.927b | 18.930 |
表1 不同林冠环境对缺苞箭竹分株地上部分形态特征的影响(平均值±标准误差, n=20)
Table 1 Effects of different canopy conditions on morphological characteristics of above-ground modules of ramets of Fargesia denudata (mean ± SE, n=20)
形态特征 Morphological characteristics | 林下 Fu | 小林窗 Sg | 中林窗 Mg | 大林窗 Lg | F值 F value |
---|---|---|---|---|---|
分株基径 Basal diameter (cm) | 0.837 ± 0.023b | 0.951 ± 0.042a | 0.809 ± 0.026b | 0.716 ± 0.023c | 10.647 |
分株高度 Ramet height (cm) | 236.1 ± 7.464b | 324.722 ± 21.972a | 294.225 ± 10.339a | 198.425 ± 9.567c | 18.763 |
比茎长 Specific stem length (cm·g-1) | 8.386 ± 0.376b | 5.248 ± 0.289d | 7.099 ± 0.308c | 9.999 ± 0.499a | 27.094 |
节数 Number of nodes | 20.900 ± 0.571a | 21.778 ± 1.089a | 22.500 ± 0.796ab | 19.900 ± 0.876b | 1.818 |
分枝节数 Number of branching nodes | 14.750 ± 0.464a | 14.944 ± 0.634a | 14.450 ± 0.609a | 11.950 ± 0.0.555b | 6.154 |
分枝百分比 Percentage of branching (%) | 70.8 ± 1.9a | 69.3 ± 1.4a | 64.3 ± 1.8b | 59.9 ± 1.0c | 10.418 |
最长节间 The longest node (cm) | 13.470 ± 0.667c | 21.106 ± 0.613a | 18.915 ± 0.646b | 12.425 ± 0.901c | 33.206 |
叶片数 Number of leaves | 272.000 ± 12.888b | 456.111 ± 58.512a | 383.000 ± 35.873a | 225 ± 26.975b | 8.285 |
单叶面积 Single leaf area (cm2) | 3.805 ± 0.111b | 4.948 ± 0.231a | 4.544 ± 0.125a | 3.447 ± 0.086b | 22.271 |
单叶生物量 single leaf biomass (g) | 0.0153 ± 0.0006b | 0.0198 ± 0.0008a | 0.0210 ± 0.0007a | 0.0170 ± 0.0006b | 13.918 |
比叶面积 Specific leaf area (cm2·g-1) | 252.300 ± 6.929a | 249.722 ± 5.068a | 218.550 ± 5.389b | 204.050 ± 3.927b | 18.930 |
图2 不同林冠环境对缺苞箭竹地下茎长度(A)、比地下茎长(B)、地下茎基径(C)、地下茎分枝强度(D)和根的数量(E)的影响(平均值±标准误差)。 图注同图1。
Fig. 2 Effects of different canopy conditions on Rhizome length (A), specific rhizome length (B), basal diameter of rhizome (C), branching intensity of rhizome (D) and number of roots (E) of Fargesia denudata (mean ± SE). Notes see Fig. 1.
[1] | Bazzaz FA (1991). Habitat selection in plants. The American Naturalist, 137, 116-130. |
[2] | Chen JS (陈劲松), Dong M (董鸣), Yu D (于丹), Liu Q (刘庆) (2004). Clonal architecture and ramet population characteristics of Lysimachia congestiflora growing under different light conditions. Chinese Journal of Applied Ecology (应用生态学报), 15, 1383-1388. (in Chinese with English abstract) |
[3] | de Kroon H, Hutchings MJ (1995). Morphological plasticity in clonal plants: the foraging reconsidered. Journal of Ecology, 83, 143-152. |
[4] | Dong M (董鸣) (1996). Plant clonal growth in heterogeneous habitats: risk-spreading. Acta Phytoecologica Sinica (植物生态学报), 20, 543-548. (in Chinese with English abstract) |
[5] | Dong M (董鸣), Yu FH (于飞海) (2007). Terms and concepts in clonal plant ecology. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 689-694. (in Chinese) |
[6] | He WM (何维明), Zhong ZC (钟章成) (2000). Morphological and growth responses of the climbing plant, Gynostemma pentaphyllum seedlings to varying light intensity. Acta Phytoecologica Sinica (植物生态学报), 24, 375-378. (in Chinese with English abstract) |
[7] | Hilbert DW, Canadell J (1995). Biomass partitioning and resource allocation of plants from Mediterranean-type ecosystems: possible response to elevated atmospheric CO2. In: Moreno JM ed. Global Change and Mediterranean-type Ecosystems. Springer-Verlag, New York. 76-101. |
[8] | Holz CA, Veblen TT (2006). Tree regeneration responses to Chusquea montana bamboo die-off in a subalpine Nothofagus forest in the southern Andes. Journal of Vegetation Science, 17, 19-28. |
[9] | Hutchings MJ, de Kroon H (1994). Foraging in plants: the role of morphological plasticity in resource acquisition. Advances in Ecological Research, 25, 159-238. |
[10] | Hutchings MJ (1997). Resource allocation patterns in clonal herbs and their consequences for growth. In: Bazzaz FA, Grace J eds. Plant Resource Allocation, Chapter 7. Academic Press, New York 161-189. |
[11] | Liu Q (刘庆), Wu Y (吴彦), He H (何海) (2001). Ecological problems of subalpine coniferous forest in the southwest of China. World Science-Technology Research & Development (世界科技研究与发展), 23(2), 63-69. (in Chinese with English abstract) |
[12] | Lovett LD (1987). Population dynamics and clonal specialization in a clonal perennial (Ranunculus repens). III. Responses to light and nutrient supply. Journal of Ecology, 75, 555-568. |
[13] |
Mitton JB, Garant MC, Yoshino AM (1998). Variation in allozymes and stomatal size in pinyou (Pinus edulis) associated with soil moisture. American Journal of Botany, 85, 1262-1265.
URL PMID |
[14] | Noguchi M, Yoshida T (2004). Tree regeneration in partially cut conifer-hardwood mixed forests in northern Japan: roles of establishment substrate and dwarf bamboo. Forest Ecology and Management, 190, 335-344. |
[15] |
Poorter H, Remkes C, Lambers H (1990). Carbon and nitrogen economy of twenty-four wild species differing in relative growth rate. Plant Physiology, 94, 621-627.
DOI URL PMID |
[16] | Qin ZS (秦自生), Taylor AH, Cai XS (蔡绪慎) (1993). Bamboo and Forest Dynamic Succession in the Ecological Environment of Giant Panda in Wolong (卧龙大熊猫生态环境的竹子与森林动态演替). China Forestry Publishing House, Beijing. 13, 30-60, 230-335, 340-380. (in Chinese) |
[17] | Shan BQ (单保庆), Du GZ (杜国祯), Liu ZH (刘振恒) (2000). Clonal growth of Ligularia virgaurea: morphological responses to nutritional variation. Acta Phytoecologica Sinica (植物生态学报), 24, 46-51. (in Chinese with English abstract) |
[18] | Shen GZ (申国珍), Li JQ (李俊清), Jiang SW (蒋仕伟) (2004). Structure and dynamics of subalpine forests in giant panda habitat. Acta Ecologica Sinica (生态学报), 24, 1294-1299. (in Chinese with English abstract) |
[19] | Song LX (宋立霞), Tao JP (陶建平), Wang W (王微), Xi Y (席一), Wang YJ (王永建), Ran CY (冉春燕) (2006). The ramet population structures of the clonal bamboo Fargesia nitida in different canopy conditions of subalpine dark coniferous forest in Wolong Nature Reserve, China. Acta Ecologica Sinica (生态学报), 26, 730-736. (in Chinese with English abstract) |
[20] | Song LX (宋立霞), Tao JP (陶建平), Ran CY (冉春燕), Yu XH (余小红), Wang YJ (王永建), Li Y (李媛) (2007). Clonal growth of Fargesia nitida under different canopy conditions in subalpine dark coniferous forest in Wolong nature reserve, China. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 637-644. (in Chinese with English abstract) |
[21] | Sultan ES (1987). Evolutionary implications of phenotypic plasticity in plants. Evolutionary Biology, 21, 127-178. |
[22] | Tao JP (陶建平), Song LX (宋利霞) (2006). Response of clonal plasticity of Fargesia nitida to different canopy conditions of subalpine coniferous forest. Acta Ecologica Sinica (生态学报), 26, 4019-4026. (in Chinese with English abstract) |
[23] | Taylor AH, Huang JY, Zhou SQ (2004). Canopy tree development and undergrowth bamboo dynamics in old-growth Abies-Betula forests in southwestern China: a 12-year study. Forest Ecology and Management, 200, 347-360. |
[24] |
Taylor AH, Qin ZS (1992). Tree regeneration after bamboo die-back in Chinese Abies-Betula forests. Journal of Vegetation Science, 3, 253-260.
DOI URL |
[25] | Wang JX (王金锡), Ma ZG (马志贵) (1993). Ecological Studies on Giant Panda’s Main Food Bamboos (大熊猫主食竹生态学研究). Sichuan Scientific & Technical Press, Chengdu, China. 25-29, 58-72. (in Chinese) |
[26] | Wang KY (王开运), Yang WQ (杨万勤), Song GY (宋光煜) (2004). Processes of Subalpine Forest Ecosystem in Western Sichuan (川西亚高山森林群落生态系统过程). Sichuan Scientific & Technical Press, Chengdu, China. 16-26. (in Chinese) |
[27] | Wang W (王微), Tao JP (陶建平), Li ZF (李宗峰), Zhang WY (张炜银), Ding Y (丁易) (2004). Gap features of subalpine dark coniferous forest in Wolong Nature Reserve. Chinese Journal of Applied Ecology (应用生态学报), 15, 1989-1993. (in Chinese with English abstract) |
[28] | Wu FZ (吴福忠), Wang KY (王开运), Yang WQ (杨万勤), Ye LJ (鲁叶江) (2005). Effect of Fargesia denudata density on its biomass distribution pattern. Chinese Journal of Applied Ecology (应用生态学报), 16, 991-995. (in Chinese with English abstract) |
[29] | Zang RG (臧润国), Liu JY (刘静艳) (1999). Gap Dynamics and Forest Biodiversity (林隙动态与森林生物多样性). China Forestry Publishing House, Beijing. (in Chinese) |
[30] | Zhang SM (张淑敏), Chen YF (陈玉福), Yu FH (于飞海), Xing XR (邢雪荣), Li LH (李凌浩), Dong M (董鸣) (2003). Clonal growth and clonal morphology of Potentilla reptans var. sericophylla in forest understory and gap. Acta Phytoecologica Sinica (植物生态学报), 27, 567-57. (in Chinese with English abstract) |
[31] | Zhang SM (张淑敏), Yu FH (于飞海), Dong M (董鸣) (2007). Nutrient availability affects biomass allocation to stolons in Potentilla reptans var. sericophylla. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 652-657. (in Chinese with English abstract) |
[1] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[2] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[3] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[4] | 王娇, 关欣, 张伟东, 黄苛, 朱睦楠, 杨庆朋. 杉木幼苗生物量分配格局对氮添加的响应[J]. 植物生态学报, 2021, 45(11): 1231-1240. |
[5] | 邢磊, 段娜, 李清河, 刘成功, 李慧卿, 孙高洁. 白刺不同物候期的生物量分配规律[J]. 植物生态学报, 2020, 44(7): 763-771. |
[6] | 张娜, 朱阳春, 李志强, 卢信, 范如芹, 刘丽珠, 童非, 陈静, 穆春生, 张振华. 淹水和干旱生境下铅对芦苇生长、生物量分配和光合作用的影响[J]. 植物生态学报, 2018, 42(2): 229-239. |
[7] | 高景, 王金牛, 徐波, 谢雨, 贺俊东, 吴彦. 不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究[J]. 植物生态学报, 2016, 40(8): 775-787. |
[8] | 陈青青, 李德志. 根系隔离条件下的谷子亲缘识别[J]. 植物生态学报, 2015, 39(12): 1188-1197. |
[9] | 潘少安, 彭国全, 杨冬梅. 从叶内生物量分配策略的角度理解叶大小的优化[J]. 植物生态学报, 2015, 39(10): 971-979. |
[10] | 肖遥,陶冶,张元明. 古尔班通古特沙漠4种荒漠草本植物不同生长期的生物量分配与叶片化学计量特征[J]. 植物生态学报, 2014, 38(9): 929-940. |
[11] | 毛伟, 李玉霖, 崔夺, 赵学勇, 张铜会, 李玉强. 沙质草地不同生活史植物的生物量分配对氮素和水分添加的响应[J]. 植物生态学报, 2014, 38(2): 125-133. |
[12] | 徐波, 王金牛, 石福孙, 高景, 吴宁. 青藏高原东缘野生暗紫贝母生物量分配格局对高山生态环境的适应[J]. 植物生态学报, 2013, 37(3): 187-196. |
[13] | 吴茜, 丁佳, 闫慧, 张守仁, 方腾, 马克平. 模拟降水变化和土壤施氮对浙江古田山5个树种幼苗生长和生物量的影响[J]. 植物生态学报, 2011, 35(3): 256-267. |
[14] | 马立祥, 赵甍, 毛子军, 刘林馨, 赵溪竹. 不同氮素水平下增温及[CO2]升高综合作用对蒙古栎幼苗生物量及其分配的影响[J]. 植物生态学报, 2010, 34(3): 279-288. |
[15] | 刘长成, 魏雅芬, 刘玉国, 郭柯. 贵州普定喀斯特次生林乔灌层地上生物量[J]. 植物生态学报, 2009, 33(4): 698-705. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19