植物生态学报 ›› 2009, Vol. 33 ›› Issue (4): 812-823.DOI: 10.3773/j.issn.1005-264x.2009.04.020
收稿日期:
2008-09-01
修回日期:
2009-03-15
出版日期:
2009-09-01
发布日期:
2009-07-30
通讯作者:
王建武
作者简介:
*(wangjw@scau.edu.cn)基金资助:
FENG Yuan-Jiao, WANG Jian-Wu*(), LUO Shi-Ming
Received:
2008-09-01
Revised:
2009-03-15
Online:
2009-09-01
Published:
2009-07-30
Contact:
WANG Jian-Wu
摘要:
茉莉酸是环境胁迫下植物产生防御反应的重要信号物质, 但它发挥生理作用的时间和浓度效应以及该效应在叶片和根系中差异性并不清楚。该文以‘高油115’玉米(Zea mays)为材料, 采用4种浓度(1、2.5、5和10 mmol·L-1)的外源茉莉酸溶液涂施玉米幼苗叶片, 在3~48 h的不同时间内跟踪测定叶片和根系中的直接防御物质(丁布(DIMBOA)和总酚)含量及其合成调控基因(Bx1、Bx9和PAL)、直接防御蛋白调控基因(PR-1、PR-2a和MPI)和间接防御物质挥发物调控基因(FPS和TPS)表达的动态变化。结果表明, 外源茉莉酸处理对玉米叶和根系的化学防御反应具有显著的时间和浓度效应。茉莉酸处理玉米叶片后3~6 h就能诱导叶片中Bx9和PAL基因的表达, 使得丁布和总酚的含量显著增加, 且与处理浓度有呈正比的趋势, 随后诱导作用逐渐减弱; 茉莉酸处理还能明显诱导叶片中PR-2a和MPI基因的表达, 诱导作用分别持续到24和48 h; 在处理后3~6 h内, 高浓度茉莉酸处理对挥发物调控基因FPS表达起诱导作用, 而低浓度茉莉酸则对TPS基因的表达起诱导作用。此外, 茉莉酸处理玉米叶片还能间接影响到根系的防御反应, 但大部分检测指标表明间接诱导作用主要出现在处理后期(24~48 h)。例如, 在处理后48 h, 茉莉酸能系统增加根系中直接防御物质丁布和总酚的含量, 增强根系中防御相关基因PR-2a、MPI、FPS和TPS的表达, 并有随茉莉酸处理浓度的增加而增强的趋势。可见, 外源茉莉酸叶片涂施玉米幼苗对根系的间接诱导作用不如对叶片的直接诱导作用强; 叶片启动防御反应的时间较根系早; 随着处理浓度的增加, 茉莉酸对叶片和根系中防御反应的诱导作用有增强的趋势。
冯远娇, 王建武, 骆世明. 叶片涂施茉莉酸对玉米幼苗防御反应的时间和浓度效应. 植物生态学报, 2009, 33(4): 812-823. DOI: 10.3773/j.issn.1005-264x.2009.04.020
FENG Yuan-Jiao, WANG Jian-Wu, LUO Shi-Ming. TIMING AND CONCENTRATION EFFECTS ON THE DEFENSE RESPONSE OF ZEA MAYS SEEDLINGS AFTER APPLICATION OF JASMONIC ACID TO LEAVES. Chinese Journal of Plant Ecology, 2009, 33(4): 812-823. DOI: 10.3773/j.issn.1005-264x.2009.04.020
基因 Genes | 登陆号 Accession number | 引物 Primers | 大小 Size (bp) |
---|---|---|---|
吲哚合成酶 Indole synthase (Bx1) | AY254103 | F: 5°-ATGGCTTTCGCGCCCAAAACGTCCTC-3° R: 5°-CGTGGACCCCCGCCTCTTTCATCTCG-3° | 612 |
糖基转移酶 Glucosyltransferase (Bx9) | AF331885 | F: 5°-TCGTCACCACGCTGAACGCCAG-3° R: 5°-GGATCCTCCTTGCGCTCCTCTTTC-3° | 262 |
苯丙氨酸转氨酶 Phenylalanine ammonia-lyase (PAL) | L77912 | F: 5°-CACAAG CTGAAGCACCACCC-3° R: 5°-GAGTTCACGTCCTGGTTGTG-3° | 560 |
病程相关蛋白-1 Pathogenesis related protein-1 (PR-1) | U82200 | F: 5°-GTGGACCCGCACAACGCG-3° R: 5°-GCCGATGGCGGTGGAGTC-3° | 309 |
酸性β-1,3-葡聚糖酶 Acidic beta-1,3-glucanase (PR-2 a) | M95407 | F: 5°-CCAACGTCTACCCCTACTTC-3° R: 5°-GGGTTGAAGAGGCCGAAGTG-3° | 394 |
玉米蛋白酶抑制剂 Maize proteinase inhibitor (MPI) | X78988 | F: 5°-ACAACCAGCAGTGCAACAAG-3° R: 5°-GAAGATGCGGACACGGTTAG-3° | 370 |
法呢烯基焦磷酸合成酶 Farnesyl pyrophosphate synthetase (FPS) | L39789 | F: 5°-GGCTGGTGCATTGAATGGCT-3° R: 5°-ATGTCCGTTCCAATCTTGCC-3° | 518 |
萜类合成酶 Terpene synthase (TPS) | AF529266 | F: 5°-GCCATGCCAGTGAAGCTGACTCCTGC-3° R: 5°-GTAGACGGTCCAATGTGGTGTAGAAG-3° | 679 |
甘油醛-3-磷酸脱氢酶 Glyceraldehyde-3-phosphate dehydrogenase (GAPc) | X07156 | F: 5°-GCTAGCTGCACCACAAACTGCCT-3° R: 5°-TAGCCCCACTCGTTGTCGTACCA-3° | 512 |
表1 实验所用的特异性引物
Table 1 The specific primers used in the experiment
基因 Genes | 登陆号 Accession number | 引物 Primers | 大小 Size (bp) |
---|---|---|---|
吲哚合成酶 Indole synthase (Bx1) | AY254103 | F: 5°-ATGGCTTTCGCGCCCAAAACGTCCTC-3° R: 5°-CGTGGACCCCCGCCTCTTTCATCTCG-3° | 612 |
糖基转移酶 Glucosyltransferase (Bx9) | AF331885 | F: 5°-TCGTCACCACGCTGAACGCCAG-3° R: 5°-GGATCCTCCTTGCGCTCCTCTTTC-3° | 262 |
苯丙氨酸转氨酶 Phenylalanine ammonia-lyase (PAL) | L77912 | F: 5°-CACAAG CTGAAGCACCACCC-3° R: 5°-GAGTTCACGTCCTGGTTGTG-3° | 560 |
病程相关蛋白-1 Pathogenesis related protein-1 (PR-1) | U82200 | F: 5°-GTGGACCCGCACAACGCG-3° R: 5°-GCCGATGGCGGTGGAGTC-3° | 309 |
酸性β-1,3-葡聚糖酶 Acidic beta-1,3-glucanase (PR-2 a) | M95407 | F: 5°-CCAACGTCTACCCCTACTTC-3° R: 5°-GGGTTGAAGAGGCCGAAGTG-3° | 394 |
玉米蛋白酶抑制剂 Maize proteinase inhibitor (MPI) | X78988 | F: 5°-ACAACCAGCAGTGCAACAAG-3° R: 5°-GAAGATGCGGACACGGTTAG-3° | 370 |
法呢烯基焦磷酸合成酶 Farnesyl pyrophosphate synthetase (FPS) | L39789 | F: 5°-GGCTGGTGCATTGAATGGCT-3° R: 5°-ATGTCCGTTCCAATCTTGCC-3° | 518 |
萜类合成酶 Terpene synthase (TPS) | AF529266 | F: 5°-GCCATGCCAGTGAAGCTGACTCCTGC-3° R: 5°-GTAGACGGTCCAATGTGGTGTAGAAG-3° | 679 |
甘油醛-3-磷酸脱氢酶 Glyceraldehyde-3-phosphate dehydrogenase (GAPc) | X07156 | F: 5°-GCTAGCTGCACCACAAACTGCCT-3° R: 5°-TAGCCCCACTCGTTGTCGTACCA-3° | 512 |
图1 不同浓度茉莉酸处理玉米叶片后不同时间对叶片和根系丁布含量的影响 A: 叶片 Leaf B: 根系 Root
Fig. 1 Effects of different concentrations of jasmonic acid to maize leaves on the content of DIMBOA in leaves and roots at different time intervals
图2 不同浓度茉莉酸处理玉米叶片后不同时间对叶片和根系丁布调控基因表达的影响 GAPc示甘油醛-3-磷酸脱氢酶, 为RT-PCR的内标下同 GAPc, internal standard of RT-PCRA、B: 同图1 See Fig. 1
Fig. 2 Effects of different concentrations of jasmonic acid to maize leaves on the expression patterns of key genes in DIMBOA biosynjournal in leaves and roots at different time intervals
图3 不同浓度茉莉酸处理玉米叶片后不同时间对叶片和根系总酚含量的影响 A、B: 同图1 See Fig. 1
Fig. 3 Effects of different concentrations of jasmonic acid to maize leaves on the content of total phenolics in leaves and roots at different time intervals
图4 不同浓度茉莉酸处理玉米叶片后不同时间对叶片和根系总酚调控基因表达的影响 图注同图1 Notes see Fig. 1
Fig. 4 Effects of different concentrations of jasmonic acid to maize leaves on the expression patterns of key genes in total phenolics biosynjournal in leaves and roots at different time intervals
图5 不同浓度茉莉酸处理玉米叶片后不同时间对叶片和根系病程相关蛋白调控基因表达的影响 图注同图1 Notes see Fig. 1
Fig. 5 Effects of different concentrations of jasmonic acid to maize leaves on the expression patterns of pathogenesis related protein genes in leaves and roots at different time intervals
图6 不同浓度茉莉酸处理玉米叶片后不同时间对叶片和根系蛋白酶抑制剂调控基因表达的影响 图注同图1 Notes see Fig. 1
Fig. 6 Effects of different concentrations of jasmonic acid to maize leaves on the expression patterns of proteinase inhibitor gene in leaves and roots at different time intervals
图7 不同浓度茉莉酸处理玉米叶片后不同时间对叶片和根系萜烯类调控基因表达的影响 图注同图1 Notes see Fig. 1
Fig. 7 Effects of different concentrations of jasmonic acid to maize leaves on the expression patterns of key genes in terpenoids biosynjournal in leaves and roots at different time intervals
[1] |
Bezemer TM, van Dam NM (2005). Linking aboveground and belowground interactions via induced plant defenses. Trends in Ecology and Evolution, 20, 617-624.
DOI URL PMID |
[2] |
Creelman RA, John EM (1997). Oligosaccharins, brassinolides, and jasmonates: nontr-aditional regulators of plant growth, development, and gene expression. Plant Cell, 9, 1211-1223.
DOI URL PMID |
[3] |
Erb M, Ton J, Degenhardt J, Turlings TCJ (2008). Interactions between arthropod-induced aboveground and belowground defenses in plants. Plant Physiology, 146, 867-874.
DOI URL PMID |
[4] | Feng YJ (冯远娇), Wang JW (王建武), Luo SM (骆世明) (2007). Effects of exogenous jasmonic acid on concentrations of direct defense chemicals and expression of related genes in Bt (Bacillus thuringiensis) corn (Zea mays). Scientia Agricultura Sinica (中国农业科学), 40, 2481-2487. (in Chinese with English abstract) |
[5] | Gui LY (桂连友), Liu SS (刘树生), Chen ZM (陈宗懋) (2004). Plant resistance to insects induced by application of exogenous jasmonic acid and methyl jasmonate. Acta Entomologica Sinica (昆虫学报), 47, 507-514. (in Chinese with English abstract) |
[6] |
Halitschke R, Baldwin IT (2003). Antisense LOX expression increases herbivore performance by decreasing defense responses and inhibiting growth-related transcriptional reorganization in Nicotiana attenuate. The Plant Journal, 36, 794-807.
DOI URL PMID |
[7] |
Halitschke R, Baldwin IT (2005). Jasmonates and related compounds in plant-insect interactions. Journal of Plant Growth Regulation, 23, 238-245.
DOI URL |
[8] |
Hol WGH, Macel M, van Veen JA, van der Meijden E (2004). Root damage and aboveground herbivory change concentration and composition of pyrrolizidine alkaloids of Senecio jacobaea. Basic and Applied Ecology, 5, 253-260.
DOI URL |
[9] |
Howe GA (2005). Jasmonates as signals in the wound response. Journal of Plant Growth Regulation, 23, 223-237.
DOI URL |
[10] |
Lichtenthaler HK (1999). The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynjournal in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 47-65.
DOI URL PMID |
[11] |
Ludwig-Müller J, Schubert B, Pieper K, Ihmig S, Hilgenberg W (1997). Glucosinolate content in susceptible and resistant chinese cabbage varieties during development of clubroot disease. Phytochemistry, 44, 407-417.
DOI URL |
[12] | Lü YB (吕要斌), Liu SS (刘树生) (2004). Effects of plant responses induced by exogenous jasmonic acid on host-selection behavior of Cotesia plutellae (Hymenopters: Braconidae). Acta Entomologica Sinica (昆虫学报), 47, 206-212. (in Chinese with English abstract) |
[13] | Nie CR (聂呈荣), Luo SM (骆世明), Wang JW (王建武), Huang JH (黄京华), Zeng RS (曾任森) (2005). Change in concentration of secondary metabolites- DIMBOA and phenolic acids in leaves of Bt corn. Acta Ecologica Sinica (生态学报), 25, 814-823. (in Chinese with English abstract) |
[14] |
Omer AD, Thaler JS, Granett J, karban R (2000). Jasmonic acid induced resistance in grapevines to a root and leaf feeder. Journal of Economic Entomology, 93, 840-845.
DOI URL PMID |
[15] |
Pauw B, Memelink J (2005). Jasmonate-responsive gene expression. Journal of Plant Growth Regulation, 23, 200-210.
DOI URL |
[16] | Peña-Cortés H, Barrios P, Dorta F, Polanco V, Sánchez C, Sánchez E, Ramírez I (2005). Involvement of jasmonic acid and derivatives in plant responses to pathogens and insects and in fruit ripening. Journal of Plant Growth Regulation, 23, 246-260. |
[17] | Pozo MJ, Van Loon LC, Pieterse CMJ (2005). Jasmonates- signals in plant-microbe interactions. Journal of Plant Growth Regulation, 23, 211-222. |
[18] |
Rasmann S, Turlings TCJ (2008). First insights into specificity of belowground tritrophic interactions. Oikos, 117, 362-369.
DOI URL |
[19] |
Ryan CA (2000). The systemic signaling pathway: differential activation of plant defensive genes. Biochimica et Biophysica Acta, 1477, 112-121.
DOI URL PMID |
[20] |
Saedler R, Baldwin IT (2004). Virus-induced gene silencing of jasmonate―induced direct defences, nicotine and trypsin proteinase-inhibitors in Nicotiana attenuate. Journal of Experimental Botany, 55, 151-157.
DOI URL PMID |
[21] |
Schenk PM, Kazan K, Rusu AG, Manners JM, Maclean DJ (2005). The SEN1 gene of Arabidopsis is regulated by signals that link plant defence responses and senescence. Plant Physiology and Biochemistry, 43, 997-1005.
DOI URL PMID |
[22] |
Schmelz EA, Alborn HT, Engelberth J, Tumlinson JH (2003). Nitrogen deficiency increases volicitin-induced volatile emission, jasmonic acid accumulation, and ethylene sensitivity in maize. Plant Physiology, 133, 295-306.
DOI URL PMID |
[23] |
Soler R, Bezemer TM, Cortesero AM, van der Putten WH, Vet LEM, Harvey JA (2007). Impact of foliar herbivory on the development of a root-feeding insect and its parasitoid. Oecologia, 152, 257-264.
DOI URL |
[24] |
Stout MJ, Fidantsef AL, Duffey SS, Bostock RM (1999). Signal interactions in pathogen and insect attack: systemic plant-mediated interactions between pathogens and herbivores of the tomato,Lycopersicon esculentum. Physiological and Molecular Plant Pathology, 54, 115-130.
DOI URL |
[25] |
Stratmann JW (2003). Long distance run in the wound response-jasmonic acid is pulling ahead. Trends in Plant Science, 8, 247-250.
DOI URL PMID |
[26] |
Thaler JS, Fidantsef AL, Bostock RM (2002). Antagonism between jasmonate- and salicylate-mediated induced plant resistance: effects of concentration and timing of elicitation on defense-related proteins, herbivores, and pathogen performace in tomato. Journal of Chemical Ecology, 28, 1131-1159.
DOI URL |
[27] |
van Dam NM, Horn M, Mareš M, Baldwin IT (2001). Ontogeny constrains the systemic proteinase inhibitor response in Nicotiana attenuata. Journal of Chemical Ecology, 27, 547-568.
DOI URL |
[28] |
van Dam NM, Witjes L, Svatoš A (2004). Interactions between aboveground and belowground induction of lucosinolates in two wild Brassica species. New Phytologist, 161, 801-810.
DOI URL |
[29] |
Walters D, Cowley T, Mitchell A (2002). Methyl jasmonate alters polyamine metabolism and induces systemic protection against powdery mildew infection in barley. Journal of Experimental Botany, 53, 747-756.
DOI URL PMID |
[30] | Wang JW, Xu T, Zhang LW, Zhong ZM, Luo SM (2007). Effects of methyl jasmonate on hydroxamic acid and phenolic acid content in maize and its allelopathic activity to Echinochloa crusgalli(L.). Allelopathy Journal, 19, 161-170. |
[31] |
Wang XM, Ma QH (2005). Characterization of a jasmonate- regulated wheat protein related to a beta-glucosidase- aggregating factor. Plant Physiology and Biochemistry, 43, 185-192.
DOI URL PMID |
[32] |
Wasternack C (2005). Introductory remarks on biosynjournal and diversity in actions. Journal of Plant Growth Regulation, 23, 167-169.
DOI URL |
[33] | Xu T (徐涛), Wang JW (王建武), Luo SM (骆世明) (2005). Cloning of the key genes in maize oxylipins pathways and their roles in herbivore induced defense. Chinese Science Bulletin (科学通报), 50, 2217-2225. (in Chinese with English abstract) |
[34] | Xu T (徐涛), Zhou Q (周强), Chen W (陈威), Zhang GR (张古忍), He GF (何国锋), Gu DX (古德祥), Zhang WQ (张文庆) (2003). Involvement of jasmonate- signaling pathway in the herbivore-induced rice plant defense. Chinese Science Bulletin (科学通报), 48, 1442-1449. (in Chinese with English abstract) |
[35] |
Zavala JA, Patankar AG, Gase K, Baldwin IT (2004a). Constitutive and inducible trypsin proteinase inhibitor production incurs large fitness costs in Nicotiana attenuate. Proceedings of the National Academy of Sciences of the United States of America, 101, 1607-1612.
DOI URL PMID |
[36] |
Zavala JA, Patankar AG, Gase K, Hui D, Baldwin IT (2004b). Manipulation of endogenous trypsin proteinase inhibitor production inNicotiana attenuata demonstrates their function as antiherbivore defenses. Plant Physiology, 134, 1181-1190.
DOI URL PMID |
[37] |
Zhang ZP, Baldwin IT (1997). Transport of (2-14C) jasmonic acid from leaves to roots mimics wound-induced changes in endogenous jasmonic acid pools in Nicotiana sylvestris. Planta, 203, 436-441.
DOI URL |
[1] | 程可心, 杜尧, 李凯航, 王浩臣, 杨艳, 金一, 何晓青. 玉米与叶际微生物组的互作遗传机制[J]. 植物生态学报, 2024, 48(2): 215-228. |
[2] | 李义博, 宋贺, 周莉, 许振柱, 周广胜. C4植物玉米的光合-光响应曲线模拟研究[J]. 植物生态学报, 2017, 41(12): 1289-1300. |
[3] | 赵文赛, 孙永林, 刘西平. 干旱-复水-再干旱处理对玉米光合能力和生长的影响[J]. 植物生态学报, 2016, 40(6): 594-603. |
[4] | 孟凡超, 张佳华, 姚凤梅. CO2浓度升高和降水增加协同作用对玉米产量及生长发育的影响[J]. 植物生态学报, 2014, 38(10): 1064-1073. |
[5] | 王艳哲, 邵立威, 刘秀位, 张小雨, 张喜英. 小麦和玉米根系取样位置优化确定及根系分布模拟[J]. 植物生态学报, 2013, 37(4): 365-372. |
[6] | 李涛, 陈保冬. 丛枝菌根真菌通过上调根系及自身水孔蛋白基因表达提高玉米抗旱性[J]. 植物生态学报, 2012, 36(9): 973-981. |
[7] | 杨斌, 谢甫绨, 温学发, 孙晓敏, 王建林. 华北平原农田土壤蒸发δ18O的日变化特征及其影响因素[J]. 植物生态学报, 2012, 36(6): 539-549. |
[8] | 时鹏, 王淑平, 贾书刚, 高强, 孙晓强. 三种种植方式对土壤微生物群落组成的影响[J]. 植物生态学报, 2011, 35(9): 965-972. |
[9] | 王红丽, 张绪成, 宋尚有. 半干旱区旱地不同覆盖种植方式玉米田的土壤水分和产量效应[J]. 植物生态学报, 2011, 35(8): 825-833. |
[10] | 冯远娇, 金琼, 王建武. 机械损伤对Bt玉米化学防御的系统诱导效应[J]. 植物生态学报, 2010, 34(6): 695-703. |
[11] | 贾士芳, 李从锋, 董树亭, 张吉旺. 弱光胁迫影响夏玉米光合效率的生理机制初探[J]. 植物生态学报, 2010, 34(12): 1439-1447. |
[12] | 刘天学, 李潮海, 马新明, 赵霞, 刘士英. 不同基因型玉米间作对叶片衰老、籽粒产量和品质的影响[J]. 植物生态学报, 2008, 32(4): 914-921. |
[13] | 刘广才, 杨祁峰, 李隆, 孙建好. 小麦/玉米间作优势及地上部与地下部因素的相对贡献[J]. 植物生态学报, 2008, 32(2): 477-484. |
[14] | 陈小莉, 李世清, 任小龙, 强虹, 吉春容, 闫登明. 大气NH3浓度升高对不同氮效率玉米生理指标及生物量的影响[J]. 植物生态学报, 2008, 32(1): 204-211. |
[15] | 李祎君, 许振柱, 王云龙, 周莉, 周广胜. 玉米农田水热通量动态与能量闭合分析[J]. 植物生态学报, 2007, 31(6): 1132-1144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19