植物生态学报 ›› 2016, Vol. 40 ›› Issue (10): 1049-1063.DOI: 10.17521/cjpe.2016.0069
所属专题: 全球变化与生态系统; 生态系统碳水能量通量
菊花1,2, 申国珍2,,A;*(), 马明哲2, 葛结林2, 徐文婷2, 赵常明2, 张秋良1
出版日期:
2016-10-10
发布日期:
2016-11-02
通讯作者:
申国珍
基金资助:
Hua JU1,2, Guo-Zhen SHEN2,*(), Ming-Zhe MA2, Jie-Lin GE2, Wen-Ting XU2, Chang-Ming ZHAO2, Qiu- Liang ZHANG1
Online:
2016-10-10
Published:
2016-11-02
Contact:
Guo-Zhen SHEN
摘要:
弄清土地利用和降水变化对林地土壤主要温室气体(CO2、CH4和N2O)排放通量变化的影响, 是准确评估森林土壤温室气体排放能力的重要基础。该研究以常绿落叶阔叶混交林原始林、桦木(Betula luminifera)次生林和马尾松(Pinus massoniana)人工林为对象, 采用静态箱-气相色谱法研究了3种土地利用方式(常绿落叶阔叶混交林原始林、桦木次生林和马尾松人工林)和降水减少处理状况下森林土壤CO2、CH4和N2O通量排放特征, 并探讨了其环境驱动机制。研究结果表明: 原始林土壤CH4吸收通量显著高于次生林和人工林, 次生林CH4吸收通量显著高于人工林土壤。人工林土壤CO2排放通量显著高于原始林和次生林土壤。次生林土壤N2O排放通量高于原始林和人工林, 但三者间差异不显著。降水减半显著抑制了3种不同土地利用方式下林地土壤CH4吸收通量; 降水减半处理对原始林和次生林土壤CO2排放通量均具有显著的促进作用, 而对人工林土壤CO2排放通量具有显著的抑制作用; 降水减半处理促进了原始林和人工林林地土壤N2O排放而抑制了次生林林地土壤N2O排放。原始林和次生林林地土壤CH4吸收通量随土壤温度升高显著增加, CH4吸收通量与土壤温度均呈显著相关关系; 原始林、次生林和人工林土壤CO2和N2O排放通量与土壤温度均呈显著正相关关系; 土壤湿度抑制了次生林和人工林土壤CH4吸收通量, 其CH4吸收通量随土壤湿度增加显著减少; 原始林土壤CO2排放通量与土壤湿度呈显著正相关关系。自然状态下, 原始林土壤N2O排放通量与土壤湿度呈显著正相关关系, 原始林和次生林土壤N2O排放通量与硝态氮含量呈显著相关关系。研究结果表明全球气候变化(如降水变化)和土地利用方式的转变将对北亚热带森林林地土壤温室气体排放通量产生显著的影响。
菊花, 申国珍, 马明哲, 葛结林, 徐文婷, 赵常明, 张秋良. 北亚热带地带性森林土壤温室气体通量对土地利用方式改变和降水减少的响应. 植物生态学报, 2016, 40(10): 1049-1063. DOI: 10.17521/cjpe.2016.0069
Hua JU, Guo-Zhen SHEN, Ming-Zhe MA, Jie-Lin GE, Wen-Ting XU, Chang-Ming ZHAO, Qiu- Liang ZHANG. Greenhouse gas fluxes of typical northern subtropical forest soils: Impacts of land use change and reduced precipitation. Chinese Journal of Plant Ecology, 2016, 40(10): 1049-1063. DOI: 10.17521/cjpe.2016.0069
土壤因子 Factors of soil | 原始林 Primary forest | 次生林 Secondary forest | 人工林 Artificial forest |
---|---|---|---|
全氮 Total N (g·kg-1) | 3.83 ± 0.43 | 1.90 ± 0.28 | 1.35 ± 0.06 |
全磷 Total P (g·kg-1) | 801.50 ± 0.03 | 239.23 ± 37.74 | 245.47 ± 12.93 |
全钾 Total K (g·kg-1) | 6.35 ± 0.01 | 19.69 ± 0.61 | 18.06 ± 0.41 |
硝态氮 Nitrate nitrogen (g·kg-1) | 7.43 ± 0.92 | 5.06 ± 1.09 | 3.32 ± 0.5. |
铵态氮 Ammonium nitrogen (g·kg-1) | 34.32 ± 3.46 | 17.04 ± 1.42 | 13.70 ± 1.20 |
可溶性有机碳 Dissolved organic carbon (g·kg-1) | 119.80 ± 30.83 | 76.69 ± 20.54 | 92.97 ± 9.34 |
可溶性有机氮 Organic nitrogen (g·kg-1) | 22.98 ± 5.64 | 13.03 ± 3.80 | 14.18 ± 0.99 |
有机碳 Organic carbon (g·kg-1) | 57.58 ± 8.12 | 18.99 ± 3.61 | 14.46 ± 1.10 |
pH | 5.50 ± 0.02 | 5.13 ± 0.22 | 4.96 ± 0.05 |
土壤容重 Soil bulk density (g·m-1) | 1.30 ± 0.04 | 1.32 ± 0.07 | 1.47 ± 0.01 |
土壤湿度 Soil moisture (%) | 48.50 ± 1.33 | 32.54 ± 0.01 | 30.00 ± 1.79 |
表1 湖北神农架3种土地利用方式下林地表层土壤(0-20 cm)基本理化性质(平均值±标准误差)
Table 1 The woodland surface soil (0-20 cm) physicochemical properties under the three kind of land use type in Shennongjia, Hubei, China (mean ± SE)
土壤因子 Factors of soil | 原始林 Primary forest | 次生林 Secondary forest | 人工林 Artificial forest |
---|---|---|---|
全氮 Total N (g·kg-1) | 3.83 ± 0.43 | 1.90 ± 0.28 | 1.35 ± 0.06 |
全磷 Total P (g·kg-1) | 801.50 ± 0.03 | 239.23 ± 37.74 | 245.47 ± 12.93 |
全钾 Total K (g·kg-1) | 6.35 ± 0.01 | 19.69 ± 0.61 | 18.06 ± 0.41 |
硝态氮 Nitrate nitrogen (g·kg-1) | 7.43 ± 0.92 | 5.06 ± 1.09 | 3.32 ± 0.5. |
铵态氮 Ammonium nitrogen (g·kg-1) | 34.32 ± 3.46 | 17.04 ± 1.42 | 13.70 ± 1.20 |
可溶性有机碳 Dissolved organic carbon (g·kg-1) | 119.80 ± 30.83 | 76.69 ± 20.54 | 92.97 ± 9.34 |
可溶性有机氮 Organic nitrogen (g·kg-1) | 22.98 ± 5.64 | 13.03 ± 3.80 | 14.18 ± 0.99 |
有机碳 Organic carbon (g·kg-1) | 57.58 ± 8.12 | 18.99 ± 3.61 | 14.46 ± 1.10 |
pH | 5.50 ± 0.02 | 5.13 ± 0.22 | 4.96 ± 0.05 |
土壤容重 Soil bulk density (g·m-1) | 1.30 ± 0.04 | 1.32 ± 0.07 | 1.47 ± 0.01 |
土壤湿度 Soil moisture (%) | 48.50 ± 1.33 | 32.54 ± 0.01 | 30.00 ± 1.79 |
土地利用类型 Land use types | 原始林 Primary forest | 次生林 Secondary forest | 人工林 Artificial forest |
---|---|---|---|
位置 Location | 31.31° N 110.47° E | 31.33° N 110.49° E | 31.32° N 110.49° E |
海拔 Elevation (m) | 1 670 | 1 321 | 1 325 |
坡度 Slope (°) | 40° | 38° | 36° |
降水量 Precipitation (mm) | 708.8 | 637.40 | 2187.60 |
平均胸径 Mean diameter at breast height (cm) | 11.5 | 10.97 | 9.60 |
郁闭度 Canopy | 0.90 | 0.95 | 0.93 |
建群种 Constructive species | 米心水青冈 Fagus engleriana 青冈 Cyclobalanopsis glauca | 桦木 Betula luminifera 鹅耳枥 Carpinus turczaninowii | 马尾松 Pinus massoniana 短柄枹栎 Quercus glandulifera |
土壤类型 Soil type | 山地黄棕壤 Mountain yellow brown earth | 山地黄棕壤 Mountain yellow brown earth | 山地黄棕壤 Mountain yellow brown earth |
表2 湖北神农架3种土地利用方式的立地特征
Table 2 Site characteristics of three kind of land use type in Shennongjia, Hubei, China
土地利用类型 Land use types | 原始林 Primary forest | 次生林 Secondary forest | 人工林 Artificial forest |
---|---|---|---|
位置 Location | 31.31° N 110.47° E | 31.33° N 110.49° E | 31.32° N 110.49° E |
海拔 Elevation (m) | 1 670 | 1 321 | 1 325 |
坡度 Slope (°) | 40° | 38° | 36° |
降水量 Precipitation (mm) | 708.8 | 637.40 | 2187.60 |
平均胸径 Mean diameter at breast height (cm) | 11.5 | 10.97 | 9.60 |
郁闭度 Canopy | 0.90 | 0.95 | 0.93 |
建群种 Constructive species | 米心水青冈 Fagus engleriana 青冈 Cyclobalanopsis glauca | 桦木 Betula luminifera 鹅耳枥 Carpinus turczaninowii | 马尾松 Pinus massoniana 短柄枹栎 Quercus glandulifera |
土壤类型 Soil type | 山地黄棕壤 Mountain yellow brown earth | 山地黄棕壤 Mountain yellow brown earth | 山地黄棕壤 Mountain yellow brown earth |
图1 常绿落叶阔叶混交林原始林、桦木次生林、马尾松人工林土壤温室气体通量(平均值±标准误差)。不同大写字母表示不同土地利用方式在0.05水平上差异显著; 不同小写字母表示不同降水处理下同一土地利用方式在0.05水平上差异显著。AF, 人工林; PF, 原始林; SF, 次生林。NR, 自然降水样地; RR, 降水减半样地。
Fig. 1 Greenhouse gas fluxes of the primary forest, secondary forest and artificial forest (mean ± SE). The capital letters indicated the differences land use types in significant at 0.05 level and lowercase letters indicated the same land use types under different precipitation reduction treatments were significant at 0.05 level. AF, artificial forest; PF, primary forest; SF, secondary forest. NR, natural precipitation site; RR, precipitation reduction 50% site.
图2 CH4通量与原始林(PF)、次生林(SF)和人工林(AF) 5 cm土壤温度和土壤湿度的关系。NR, 自然降水样地; RR, 降水减半样地。a1, 虚线的斜率; a2, 实线的斜率。
Fig. 2 Relationships between the CH4 fluxes and the soil temperature at 5 cm below surface and soil moisture at the 5 cm in the primary forest (PF), secondary forest (SF) and artificial forest (AF). NR, natural precipitation site; RR, precipitation reduction 50% site. a1, slope of dash line; a2, slope of solid line.
图3 CO2通量与原始林(PF)、次生林(SF)和人工林(AF) 5 cm土壤温度和土壤湿度的关系。NR, 自然降水样地; RR, 降水减半样地。a1, 虚线的斜率; a2, 实线的斜率。
Fig. 3 Relationships between the CO2 fluxes and the soil temperature at 5 cm below surface and soil moisture at 5 cm in the primary forest (PF) , secondary forest (SF) and artificial forest (AF). NR, natural precipitation site; RR, precipitation reduction 50% site. a1, slope of dash line; a2, slope of solid line.
图4 N2O通量与原始林(PF)、次生林(SF)和人工林(AF) 5 cm土壤温度和土壤湿度的关系。NR, 自然降水样地; RR, 降水减半样地。a1, 虚线的斜率; a2, 实线的斜率。
Fig. 4 Relationships between the N2O fluxes and the soil temperature at 5 cm below surface and soil moisture at 5 cm in the primary forest (PF), secondary forest (SF) and artificial forest (AF). NR, natural precipitation site; RR, precipitation reduction 50% site. a1, slope of dash line; a2, slope of solid line.
图5 N2O通量与原始林(PF)、次生林(SF)和人工林土(AF)壤硝态氮含量的关系。NR,自然降水样地; RR, 降水减半样地。a1, 虚线的斜率; a2, 实线的斜率。
Fig. 5 Relationships between the N2O fluxes and soil nitrate nitrogen content in the primary forest (PF), secondary forest (SF) and artificial forest (AF). NR, natural precipitation site; RR, precipitation reduction 50% site. a1, slope of dash line; a2, slope of solid line.
[1] | Adamsen A, King G (1993). Methane consumption in temperate and subarctic forest soils: Rates, vertical zonation and responses to water and nitrogen.Applied and Environmental Microbiology, 59, 485-490. |
[2] | Ball BC, McTaggart IP, Watson CA (2002). Influence of organic ley-arable management and afforestation in sandy loam to clay loam soils on fluxes of N2O and CH4 in Scotland.Agriculture, Ecosystems & Environment, 90, 305-317. |
[3] | Bodelier PL, Laanbroek HJ (2004). Nitrogen as a regulatory factor of methane oxidation in soils and sediments.FEMS Microbiology Ecology, 47, 265-277. |
[4] | Butterbach-Bahl K, Breuer L, Gasche R, Willibald G, Papen H (2002). Exchange of trace gases between soils and the atmosphere in Scots pine forest ecosystems of the northeastern German lowlands. 1. Fluxes of N2O,NO/NO2 and CH4 at forest sites with different N-deposition.Forest Ecology and Management, 167, 123-134. |
[5] | Carlisle EA, Steenwerth KL, Smart DR (2006). Effects of land use on soil respiration: Conversion of oak woodlands to vineyards.Journal of Environmental Quality, 35, 1396-1404. |
[6] | Castro MS, Steudler PA, Melillo JM, Aber JD, Bowden RD (1995). Factors controlling atmospheric methane consumption by temperate forest soils.Global Biogeochemical Cycles, 9, 1-10. |
[7] | Chang SC, Tseng KH, Hsia YJ, Wang CP, Wu JT (2008). Soil respiration in a subtropical montane cloud forest in Taiwan.Agricultural and Forest Meteorology, 148, 788-798. |
[8] | Christiansen JR, Outhwaite J, Smukler SM (2015). Comparison of CO2, CH4 and N2O soil-atmosphere exchange measured in static chambers with cavity ring-down spectroscopy and gas chromatography.Agricultural and Forest Meteorology, 211, 48-57. |
[9] | Chu JX, Zhang XQ (2006). Dynamic and fractionalization of soil respiration under three different land use/covers in the subalpine region of western Sichuan Province, China.Acta Ecologica Sinica, 26, 1693-1700.(in Chinese with English abstract)[褚金翔, 张小全 (2006). 川西亚高山林区三种土地利用方式下土壤呼吸动态及组分区分. 生态学报,26, 1693-1700.] |
[10] | Davidson EA, Ishida FY, Nepstad DC (2004). Effects of an experimental drought on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest.Global Change Biology, 10, 718-730. |
[11] | Du R, Huang JH, Wan XW, Jia YH (2004). The research on the law of greenhouse gases emissions from warm temperate forest soil in Beijing region.Chinese Journal of Environmental Science, 25, 12-16.(in Chinese with English abstract)[杜睿, 黄建辉, 万小伟, 贾月慧 (2004). 北京地区暖温带森林土壤温室气体排放规律. 环境科学,25, 12-16.] |
[12] | Flechard CR, Ambus P, Skiba U, Rees RM, Hensen A, van Amstel A, Raschi A (2007). Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe.Agriculture, Ecosystems & Environment, 121, 135-152. |
[13] | Galford GL, Melillo JM, Kicklighter DW, Cronin TW, Cerri CE, Mustard JF, Cerri CC (2010). Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon.Proceedings of the National Academy of Sciences of the United States of America, 107, 19649-19654. |
[14] | Geng SC, Chen ZJ, Zhang JH, Lou X, Wang XX, Dai GH, Han SJ, Yu DD (2013). Soil methane fluxes of three forest types in Changbai Mountain of Northeast China.Chinese Journal of Ecology, 32, 1091-1096.(in Chinese with English abstract) [耿世聪, 陈志杰, 张军辉, 娄鑫, 王秀秀, 戴冠华, 韩士杰, 于丹丹 (2013). 长白山三种主要林地土壤甲烷通量. 生态学杂志,32, 1091-1096.] |
[15] | Grünzweig JM, Sparrow SD, Chapin FS (2003). Impact of forest conversion to agriculture on carbon and nitrogen mineralization in subarctic Alaska.Biogeochemistry, 64, 271-296. |
[16] | Hiltbrunner D, Zimmermann S, Karbin S, Hagedorn F, Niklaus PA (2012). Increasing soil methane sink along a 120-year afforestation chronosequence is driven by soil moisture.Global Change Biology, 18, 3664-3671. |
[17] | Houghton RA (2003). Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000.Tellus B, 55, 378-390. |
[18] | IPCC (Intergovernmental Panel on Climate Change) (2011). Summary for policymakers. In: Edenhofer O, Pichs- Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C eds. Special Report on Renewable Energy Sources and Climate Change Mitigation of Working Group III to the 11th Session of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[19] | Ishizuka S, Tsuruta H, Murdiyarso D (2002). An intensive field study on CO2, CH4, and N2O emissions from soils at four land-use types in Sumatra, Indonesia.Global Biogeochemical Cycles, 16, 1049-1060. |
[20] | Jassal RS, Black TA, Roy R, Ethier G (2011). Effect of nitrogen fertilization on soil CH4 and N2O fluxes, and soil and bole respiration.Geoderma, 162, 182-186. |
[21] | Jin GY, Zhao XH, Kang FF, Wang JS (2013). The great rainfall effect on soil respiration of Pinus tabulaeformis plantation in Taiyue Mountain.Acta Ecologica Sinica, 33, 1832-1841.(in Chinese with English abstract)[金冠一, 赵秀海, 康峰峰, 汪金松 (2013). 太岳山油松人工林土壤呼吸对强降雨的响应. 生态学报,33, 1832-1841.] |
[22] | Li HF, Xia HP, Fu SL, Zhang XF (2009). Emission of soil greenhouse gases in response to understory removal and cassia alata addition in an eucalyptus urophylla plantation in Guangdong Province, China.Chinese Journal of Plant Ecology, 33, 1015-1022.(in Chinese with English abstract).[李海防, 夏汉平, 傅声雷, 张杏锋 (2009). 剔除林下灌草和添加翅荚决明对尾叶桉林土壤温室气体排放的影响. 植物生态学报,33, 1015-1022] |
[23] | Liu H, Zhao P, Lu P, Wang YS, Lin YB, Rao XQ (2008). Greenhouse gas fluxes from soils of different land-use types in a hilly area of South China.Agriculture, Ecosystems & Environment, 124, 125-135. |
[24] | Liu HF, Wu X, Li Y,Li ZS, Liu GH (2014). Effects of land use change on greenhouse gas fluxes from soils: A review.Chinese Journal of Ecology, 33, 1960-1968.(in Chinese with English abstract)[刘慧峰, 伍星, 李雅, 李宗善, 刘国华 (2014). 土地利用变化对土壤温室气体排放通量影响研究进展. 生态学杂志,33, 1960-1968. ] |
[25] | Liu LL, Liu YF, Wen XF, Wang YH (2008). CH4 emission flux from soil pine plantations in the Qian-Yanzhou red earth hill region of China. Jornal of Plant Ecology (Chinese Version), 32, 431-439.(in Chinese with English abstract).[刘玲玲, 刘允芬, 温学友, 王迎红 (2008). 千烟洲红壤丘陵区人工针叶林土壤CH4排放通量. 植物生态学报,32, 431-439.] |
[26] | Merino A, Pérez-Batallón P, Macı?as F (2004). Responses of soil organic matter and greenhouse gas fluxes to soil management and land use changes in a humid temperate region of southern Europe.Soil Biology & Biochemistry, 36, 917-925. |
[27] | Mo JM, Fang YT, Lin ED, Li YE (2006). Soil N2O emission and its response to simulated N deposition in the main forests of Dinghushan in subtropical China. Chinese Journal of Plant Ecology (Chinese Version), 30, 901-910.(in Chinese with English abstract)[莫江明, 方运霆, 林而达, 李玉娥 (2006). 鼎湖山主要森林土壤N2O排放及其对模拟N沉降的响应. 植物生态学报,30, 901-910.] |
[28] | Mo JM, Fang YT, Xu GL, Li DJ, Xue JH (2005). The short-term responses of soil CO2 emission and CH4 uptake to sim ula ted N deposition in nursery and forests of Dinghushan in subtropical China. Acta Ecologica Sinica, 25, 682-690.(in Chinese with English abstract)[莫江明, 方运霆, 徐国良, 李德军, 薛璟花 (2005). 鼎湖山苗圃和主要森林土壤CO2排放和CH4吸收对模拟N沉降的短期响应. 生态学报,25, 682-690.] |
[29] | Norton U, Mosier AR, Morgan JA, Derner JD, Ingram LJ, Stahl PD (2008). Moisture pulses, trace gas emissions and soil C and N in cheatgrass and native grass-dominated sagebrush- steppe in wyoming, USA.Soil Biology & Biochemistry, 40, 1421-1431. |
[30] | Qi YC, Dong YS, Geng YB, Yang XH, Liu LX, Li MF, Liu XR (2004). The comparison of the CH4 flux diurnal variation characteristics and diurnal uptake flux in different phenologies in Leymus chinense grassland in Inner Mongolia, China. Geographical Research, 23, 785-794.(in Chinese with English abstract)[齐玉春, 董云社, 耿元波, 杨小红, 刘立新, 李明峰, 刘杏认 (2004). 内蒙古羊草草原不同物候CH4通量日变化特征与日通量比较. 地理研究,23, 785-794.] |
[31] | Rustad LE, Huntington TG, Boone RD (2000). Controls on soil respiration: Implications for climate change.Biogeochemistry, 48, 1-6. |
[32] | Schaufler G, Kitzler B, Schindlbacher A, Skiba U, Sutton MA, Zechmeister-Boltenstern S (2010). Greenhouse gas emissions from European soils under different land use: Effects of soil moisture and temperature.European Journal of Soil Science, 61, 683-696. |
[33] | Sheng H, Li X, Yang ZJ, Xie JS, Chen GS, Yang YS (2010). Impact of land use/cover change on soil CO2 efflux in mid subtropical mountainous area of Southern China.Scientia Geographica Sinica, 30, 446-451.(in Chinese with English abstract)[盛浩, 李旭, 杨智杰, 谢锦升, 陈光水, 杨玉盛 (2010). 中亚热带山区土地利用变化对土壤CO2 排放的影响. 地理科学,30, 446-451.] |
[34] | Skiba UM, Sheppard LJ, MacDonald J, Fowler D (1998). Some key environmental variables controlling nitrous oxide emissions from agricultural and semi-natural soils in Scotland.Atmospheric Environment, 32, 3311-3320. |
[35] | Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2003). Exchange of greenhouse gases between soil and atmosphere: Interactions of soil physical factors and biological processes.European Journal of Soil Science, 54, 779-791. |
[36] | Steudler PA, Bowden RD, Melillo JM, Aber JD (1989). Influence of nitrogen fertilization on methane uptake in temperate forest soils.Nature, 341, 314-316. |
[37] | Steudler PA, Melillo JM, Bowden RD, Castro MS, Lugo AE (2015). The effects of natural and human disturbances on soil nitrogen dynamics and trace gas fluxes in a Puerto Rican wet forest.Biotropica, 23, 356-363. |
[38] | Stocker TF, Qin DH, Plattner GK, Tignor M, Allen SK, Boschung J, Midgley PM (2013). The Physical Science Basis. Intergovernmental Panel on Climate Change, Working Group I Contribution to the “IPCC Fifth Assessment Report”. Cambridge University Press, Cambridge, UK. 72. |
[39] | Sun XY, Xu HC (2001). Emission flux of nitrous oxide from forest soil in Beijing.Scientia Silvae Sinicae, 37(5), 57-63.(in Chinese with English abstract)[孙向阳, 徐化成 (2001). 北京低山区两种人工林土壤中N2O排放通量的研究. 林业科学,37(5), 57-63.] |
[40] | Takakai F, Morishita T, Hashidoko Y, Darung U, Kuramochi K, Dohong S, Hatano R (2006). Effects of agricultural land-use change and forest fire on N2O emission from tropical peatlands, Central Kalimantan, Indonesia.Soil Science and Plant Nutrition, 52, 662-674. |
[41] | Tang XL, Liu SG, Zhou GY, Zhang DQ, Zhou CY (2006). Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China.Global Change Biology, 12, 546-560. |
[42] | Verchot LV, Davidson EA, Cattânio H, Ackerman IL, Erickson HE, Keller M (1999). Land use change and biogeo- chemical controls of nitrogen oxide emissions from soils in eastern Amazonia.Global Biogeochemical Cycles, 13, 31-46. |
[43] | Wang Y, Wang CK, Fu MJ, Liu S, Wang XC (2009). Soil nitrous oxide emission in four temperate forests in north eastern China.Chinese Journal of Applied Ecology, 20, 1007-1012.(in Chinese with English abstract)[王颖, 王传宽, 傅民杰, 刘实, 王兴昌 (2009). 四种温带森林土壤氧化亚氮通量及其影响因子. 应用生态学报, 20, 1007-1012.] |
[44] | Wang YD, Wang HM, Ma ZQ, Li QK, Shi LL, Xu F (2010). Review of response mechanism of soil respiration to rainfall.Chinese Journal of Plant Ecology, 34, 601-610.(in Chinese with English abstract).[王义东, 王辉民, 马泽清, 李庆康, 施蕾蕾, 徐飞 (2010). 土壤呼吸对降雨响应的研究进展. 植物生态学报,34, 601-610.] |
[45] | Weitz AM, Veldkamp E, Keller M, Neff J, Crill PM (1998). Nitrous oxide, nitric oxide, and methane fluxes from soils following clearing and burning of tropical secondary forest.Journal of Geophysical Research: Atmospheres, 103, 28047-28058. |
[46] | Werner C, Zheng X, Tang J, Xie B, Liu C, Kiese R, Butterbach-Bahl K (2006). N2O, CH4 and CO2 emissions from seasonal tropical rainforests and a rubber plantation in Southwest China.Plant and Soil, 289, 335-353. |
[47] | Willcock S, Phillips OL, Platts PJ, Swetnam RD, Balmford A, Burgess ND, Fanning E (2016). Land cover change and carbon emissions over 100 years in an African biodiversity hotspot.Global Change Biology, 22, 2787-2800. |
[48] | Xiao DM, Wang M, Ji LZ, Han SJ, Wang YS (2004). Variation characteristics of soil N2O emission flux in broad-leaved Korean pine forest of Changbai Mountain.Chinese Journal of Ecology, 23, 46-52.(in Chinese with English abstract)[肖冬梅, 王淼, 姬兰柱, 韩士杰, 王跃思 (2004). 长白山阔叶红松林土壤N2O排放通量的变化特征. 生态学杂志,23, 46-52.] |
[49] | Xu BX, Hu YG, Zhang ZS, Chen YL, Zhang P, Li G (2014). Effects of experimental warming on CO2, CH4 and N2O fluxes of biological soil crust and soil system in a desert region.Chinese Journal of Plant Ecology, 38, 809-820.(in Chinese with English abstract)[徐冰鑫, 胡宜刚, 张志山, 陈永乐, 张鹏, 李刚 (2014). 模拟增温对荒漠生物土壤结皮-土壤系统CO2、CH4和N2O通量的影响. 植物生态学报,38, 809-820.] |
[50] | Xu YL, Xue F, Lin YH (2003). Changes of surface air temperature and precipitation in China during the 21st century simulated by had CM2 under different greenhouse gas emission scenarios.Climatic and Environmental Research, 8(2), 209-217.(in Chinese with English abstract)[许吟隆, 薛峰, 林一骅 (2003). 不同温室气体排放情景下中国 21 世纪地面气温和降水变化的模拟分析. 气候与环境研究,8(2), 209-217.] |
[51] | Zhang DQ, Sun XM, Zhou GY, Yan JH, Wang YS, Liu SZ, Zhou CY, Liu JX, Tang XL (2006). Seasonal dynamics of soil CO2 effluxes with responses to environmental factors in lower subtropical forest of China.Science in China Series D: Earth Sciences, 49( Suppl. II) , 139-149. |
[52] | Zhang JT (1998). Effects of global climate change on C and N circulation in natural soils.Scientia Geographica Sinica, 18, 463-471.(in Chinese with English abstract)[张金屯 (1998). 全球气候变化对自然土壤碳, 氮循环的影响. 地理科学,18, 463-471. |
[1] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[2] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[3] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[4] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[5] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[6] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[7] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[8] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[9] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[10] | 王俐爽, 同小娟, 孟平, 张劲松, 刘沛荣, 李俊, 张静茹, 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
[11] | 黄杰, 李晓玲, 王雪松, 杨进, 黄成名. 三峡库区不同消落带下中华蚊母树群落特征及其与土壤环境因子的关系[J]. 植物生态学报, 2021, 45(8): 844-859. |
[12] | 罗明没, 陈悦, 杨刚, 胡斌, 李玮, 陈槐. 若尔盖退化泥炭地土壤原核微生物群落结构对水位恢复的短期响应[J]. 植物生态学报, 2021, 45(5): 552-561. |
[13] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[14] | 赵文芹, 席本野, 刘金强, 刘洋, 邹松言, 宋午椰, 陈立欣. 不同灌溉条件下杨树人工林蒸腾过程及环境响应[J]. 植物生态学报, 2021, 45(4): 370-382. |
[15] | 李媛媛, 张芸, 孔昭宸, 杨振京. 新疆阿尔泰红山嘴地区的表土孢粉与现代植被[J]. 植物生态学报, 2021, 45(2): 174-186. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19