植物生态学报 ›› 2017, Vol. 41 ›› Issue (6): 639-649.DOI: 10.17521/cjpe.2016.0350
所属专题: 凋落物
卢玉鹏1, 许纪元2, 张晓曦2, 王博雅3, 谢博3, 刘增文3,4,*()
收稿日期:
2017-04-05
接受日期:
2016-11-23
出版日期:
2017-06-10
发布日期:
2017-07-19
通讯作者:
刘增文
作者简介:
* 通信作者Author for correspondence (E-mail:基金资助:
Yu-Peng LU1, Ji-Yuan XU2, Xiao-Xi ZHANG2, Bo-Ya WANG3, Bo XIE3, Zeng-Wen LIU3,4,*()
Received:
2017-04-05
Accepted:
2016-11-23
Online:
2017-06-10
Published:
2017-07-19
Contact:
Zeng-Wen LIU
About author:
KANG Jing-yao(1991-), E-mail: 摘要:
林木枯落物的分解是影响养分循环和生态系统稳定的重要因素, 林药复合系统中药用植物淋出物中富含植物次生代谢物(PSM), 可能会对林木枯落物分解和土壤酶活性产生抑制作用, 检验该现象是否存在是选择林下药用植物的重要依据。该文以秦岭山区典型红桦(Betula albo-sinensis)和杜仲(Eucommia ulmoides)林及地丁草(Corydalis bungeana)、薄荷(Mentha haplocalyx)、蕺菜(又名鱼腥草) (Houttuynia cordata)、荆芥(Nepeta cataria)、绞股蓝(Gynostemma pentaphyllum)和夏枯草(Prunella vulgaris) 6种常见林下药用植物为对象, 通过以药用植物茎叶淋出物(水浸提液)定期多次喷浇林木枯落物及土壤的分解试验, 研究了药用植物淋出物对林木枯落物分解、养分(C、N和P)释放和土壤酶活性的影响。结果表明: 对于红桦枯落物,蕺菜淋出物处理后半衰期和周转期分别延长了76%和4.3倍, 并抑制了C和N的释放, 绞股蓝淋出物处理后半衰期和周转期分别延长了35%和2.7倍, 并抑制了C、N和P的释放, 两种处理均抑制了7种土壤酶(蔗糖酶、羧甲基纤维素酶、β-葡糖苷酶、脱氢酶、多酚氧化酶、蛋白酶和磷酸酶)活性; 对于杜仲枯落物, 蕺菜淋出物处理后半衰期和周转期分别延长了1.7倍和4.2倍, 绞股蓝淋出物处理后半衰期和周转期分别延长了1倍和9倍, 两种处理均抑制了C、N和P的释放以及7种土壤酶活性。由此可见, 蕺菜、绞股蓝茎叶淋出物对红桦和杜仲枯落物的分解速率、养分释放以及多种土壤酶活性均有显著抑制作用。因此, 建议在红桦和杜仲林下应尽量避免种植蕺菜和绞股蓝, 或者通过降低套种密度来减轻影响。
卢玉鹏, 许纪元, 张晓曦, 王博雅, 谢博, 刘增文. 林下药用植物淋出物对红桦和杜仲枯落物分解及土壤酶活性的影响. 植物生态学报, 2017, 41(6): 639-649. DOI: 10.17521/cjpe.2016.0350
Yu-Peng LU, Ji-Yuan XU, Xiao-Xi ZHANG, Bo-Ya WANG, Bo XIE, Zeng-Wen LIU. Effects of leachate from understory medicinal plants on litter decomposition and soil enzyme activities of Betula albo-sinensis and Eucommia ulmoides. Chinese Journal of Plant Ecology, 2017, 41(6): 639-649. DOI: 10.17521/cjpe.2016.0350
枯落物来源 Litter source | C (mg·g-1) | N (mg·g-1) | P (mg·g-1) | C/N | C/P | N/P |
---|---|---|---|---|---|---|
红桦 B. albo-sinensis | 407.69 ± 8.43a | 20.35 ± 0.87a | 8.61 ± 0.12a | 20.03 | 47.35 | 2.36 |
杜仲 E. ulmoides | 408.65 ± 4.25a | 15.52 ± 0.69b | 6.90 ± 0.15b | 26.34 | 59.19 | 2.25 |
表1 红桦与杜仲枯落物初始养分含量(平均值±标准偏差)
Table 1 Initial nutrient contents of Betula albo-sinensis and Eucommia ulmoides litters (mean ± SD)
枯落物来源 Litter source | C (mg·g-1) | N (mg·g-1) | P (mg·g-1) | C/N | C/P | N/P |
---|---|---|---|---|---|---|
红桦 B. albo-sinensis | 407.69 ± 8.43a | 20.35 ± 0.87a | 8.61 ± 0.12a | 20.03 | 47.35 | 2.36 |
杜仲 E. ulmoides | 408.65 ± 4.25a | 15.52 ± 0.69b | 6.90 ± 0.15b | 26.34 | 59.19 | 2.25 |
枯落物 Litters | 药用植物 Medicinal plants | 枯落物分解模型 Model of litter decomposition | R2 | T0.95 (a) | T0.50 (a) |
---|---|---|---|---|---|
红桦 B. albo-sinensis | 地丁草 Corydalis bungeana | R = 0.3194e-7.2672t + 0.6801e-0.2996t | 0.965β9 | 8.712β3bc | 1.028β0a |
薄荷 Mentha haplocalyx | R = 0.2870e-12.9332t + 0.7200e-0.4001t | 0.961β3 | 6.666β4bc | 0.911β4a | |
蕺菜 Houttuynia cordata | R = 0.4209e-9.7308t + 0.5834e-0.1114t | 0.935β1 | 22.054β3a | 1.384β8a | |
荆芥 Nepeta cataria | R = 0.2370e-11.4407t + 0.7674e-0.3988t | 0.952β7 | 6.848β0bc | 1.074β2a | |
绞股蓝 Gynostemma pentaphyllum | R = 0.4270e-7.2586t + 0.5936e-0.1614t | 0.937β9 | 15.329β5b | 1.065β5a | |
夏枯草 Prunella vulgaris | R = 0.1490e-13.7989t + 0.8500e-0.564t | 0.963β3 | 5.023β4bc | 0.940β8a | |
CK | R = 0.1411e-301.3496t + 0.8589e-0.6864t | 0.849β9 | 4.142β8c | 0.788β2b | |
杜仲 E. ulmoides | 地丁草 Corydalis bungeana | R = 0.1973e-558.9289t + 0.8027e-0.8954t | 0.911β5 | 3.100β2c | 0.528β7b |
薄荷 Mentha haplocalyx | R = 0.1339e-75.016t + 0.8661e-1.2611t | 0.960β3 | 2.261β5c | 0.435β6b | |
蕺菜 Houttuynia cordata | R = 0.3395e-14.7065t + 0.6613e-0.2285t | 0.950β1 | 11.300β6b | 1.223β6a | |
荆芥 Nepeta cataria | R = 0.1409e-14184.4866t + 0.8591e-1.3367t | 0.949β7 | 2.127β5c | 0.404β9b | |
绞股蓝 Gynostemma pentaphyllum | R = 0.4582e-9.5318t + 0.5494e-0.1114t | 0.953β8 | 21.515β3a | 0.848β3a | |
夏枯草 Prunella vulgaris | R = 0.1463e-24.2668t + 0.8542e-1.3354t | 0.961β7 | 2.125β3c | 0.401β1b | |
CK | R = 0.1156e-53.1005t + 0.8844e-1.3324t | 0.962β7 | 2.156β2c | 0.428β0b |
表2 不同处理对红桦和杜仲林木枯落物分解速率的影响
Table 2 Effects of different treatments on litter decomposition rates of Betula albo-sinensis and Eucommia ulmoides
枯落物 Litters | 药用植物 Medicinal plants | 枯落物分解模型 Model of litter decomposition | R2 | T0.95 (a) | T0.50 (a) |
---|---|---|---|---|---|
红桦 B. albo-sinensis | 地丁草 Corydalis bungeana | R = 0.3194e-7.2672t + 0.6801e-0.2996t | 0.965β9 | 8.712β3bc | 1.028β0a |
薄荷 Mentha haplocalyx | R = 0.2870e-12.9332t + 0.7200e-0.4001t | 0.961β3 | 6.666β4bc | 0.911β4a | |
蕺菜 Houttuynia cordata | R = 0.4209e-9.7308t + 0.5834e-0.1114t | 0.935β1 | 22.054β3a | 1.384β8a | |
荆芥 Nepeta cataria | R = 0.2370e-11.4407t + 0.7674e-0.3988t | 0.952β7 | 6.848β0bc | 1.074β2a | |
绞股蓝 Gynostemma pentaphyllum | R = 0.4270e-7.2586t + 0.5936e-0.1614t | 0.937β9 | 15.329β5b | 1.065β5a | |
夏枯草 Prunella vulgaris | R = 0.1490e-13.7989t + 0.8500e-0.564t | 0.963β3 | 5.023β4bc | 0.940β8a | |
CK | R = 0.1411e-301.3496t + 0.8589e-0.6864t | 0.849β9 | 4.142β8c | 0.788β2b | |
杜仲 E. ulmoides | 地丁草 Corydalis bungeana | R = 0.1973e-558.9289t + 0.8027e-0.8954t | 0.911β5 | 3.100β2c | 0.528β7b |
薄荷 Mentha haplocalyx | R = 0.1339e-75.016t + 0.8661e-1.2611t | 0.960β3 | 2.261β5c | 0.435β6b | |
蕺菜 Houttuynia cordata | R = 0.3395e-14.7065t + 0.6613e-0.2285t | 0.950β1 | 11.300β6b | 1.223β6a | |
荆芥 Nepeta cataria | R = 0.1409e-14184.4866t + 0.8591e-1.3367t | 0.949β7 | 2.127β5c | 0.404β9b | |
绞股蓝 Gynostemma pentaphyllum | R = 0.4582e-9.5318t + 0.5494e-0.1114t | 0.953β8 | 21.515β3a | 0.848β3a | |
夏枯草 Prunella vulgaris | R = 0.1463e-24.2668t + 0.8542e-1.3354t | 0.961β7 | 2.125β3c | 0.401β1b | |
CK | R = 0.1156e-53.1005t + 0.8844e-1.3324t | 0.962β7 | 2.156β2c | 0.428β0b |
图1 红桦与杜仲枯落物分解试验前期(第1个月)、中期(第2-3个月)和后期(第4-6个月)不同处理养分释放多重比较。不同小写字母表示表示显著差异(p < 0.05)。
Fig. 1 Multiple comparisons of nutrient release under different treatments were conducted in the early (first month), middle (second to third months) and late (fourth to sixth months) stages of litter decomposition of Betula albo-sinensis and Eucommia ulmoides. Different lowercase letters indicate significant differences (p < 0.05).
图2 红桦枯落物分解试验前期(第1个月)、中期(第2-3个月)和后期(第4-6个月)不同处理土壤酶活性多重比较。不同小写字母表示表示显著差异(p < 0.05)。
Fig. 2 Multiple comparisons of soil enzyme activities under different treatments were conducted in the early (first month), middle (second to third months) and late (fourth to sixth months) stages of litter decomposition of Betula albo-sinensis. Different lowercase letters indicate significant differences (p < 0.05).
图3 杜仲枯落物分解试验前期(第1个月)、中期(第2-3个月)和后期(第4-6个月)不同处理土壤酶活性多重比较。不同小写字母表示表示显著差异(p < 0.05)。
Fig. 3 Multiple comparisons of soil enzyme activities under different treatments were conducted in the early (first month), middle (second to third months) and late (fourth to sixth months) stages of litter decomposition of Eucommia ulmoides. Different lowercase letters indicate significant differences (p < 0.05).
药材植物 Medicinal plants | 化学物质 Chemicals |
---|---|
地丁草 Corydalis bungeana | 邻苯二甲酸正丁异辛酯, 叶绿醇, 1,2-环氧十八烷, β-谷甾醇, (Z)-9-十六碳烯醛 Octyl butyl phthalate, Phytol, 1,2-Epoxyoctadecan-e, β-Sitosterol, (Z)-9-Hexadecena |
薄荷 Mentha haplocalyx | 薄荷醇, 香芹酮, (1S)-(+)-10-樟脑磺哑嗪, 石竹素, 新癸酸, 邻苯二甲酸二丁酯, 绿花白千层醇, 穿心莲内酯, 喇叭茶醇, 维生素 A 醋酸酯 Menthol, DL-carvone, (1S)-(+)-(Camphorylsulfonyl)oxaziridine, Caryophylene oxide, Neodecanoic acid, Dibutyl phthalate, Himbaccol, Andrographolide,Palustrol, Retinyl acetate |
蕺菜 Houttuynia cordata | 邻苯二甲酸二丁酯, 正三十六烷, 溴代三十烷, 癸醚, 1-氯二十二烷, 正三十五烷 Dibutyl phthalate, Hexatriacontane, 1-Bromotriaco-ntane, 1-(Decyloxy)decane, 1-Chlorodocosane, N-pentatriacontane |
荆芥 Nepeta cataria | 薄荷酮, 胡薄荷酮, 邻苯二甲酸二丁酯, β-谷甾醇, 正二十一烷, 辛酸异辛酯, 棕榈酸, 邻苯二甲酸二异辛酯, 十四酸十四酯 Menthone, P-menthone, Dibutyl phthalate, β-Sitosterol, N-heneicosane, 2-Ethylhexyl octanoate, Palmitic acid, Diisoctyl phthalate, Myristyl myristate |
绞股蓝 Gynostemma pentaphyllum | 叶绿醇, 十五醛, 十二烯基丁二酸酐, 胆固醇, 油醇, 角鲨烯, 棕榈酸, 十五烷酸, 油酸酰胺, 环鸦片甾烯醇, 二十酸, 二十七烷醇, 生育酚, 亚麻酸甲酯, β-谷甾醇 Phytol, Pentadecanal, Dodeceny succinicanhydride,Cholesterol, Oleyl alcohol, Squalene, Palmitic acid, Pentadecanoic acid, Oleamide, Cyclolaudenol, Eicosanoic acid, Heptacosanol, Tocopherol, Methyl linolenate, β-Sitosterol |
夏枯草 Prunella vulgaris | 邻苯二甲酸二丁酯, 环阿屯醇, 环鸦片甾烯醇, 环桉树醇, 叶绿醇, 十五醛, 角鲨烯, β-谷甾醇, β-扶桑甾醇氧化物, 油醇, (Z)-9-十六碳烯醛, 二十七烷醇 Dibutyl phthalate, Cycloartenol, Cyclolaudenol, Cycloeucalenol, Phytol, Pentadecanal, Squalene, β-Sitosterol, β-Sitostenone, Oleyl alcohol, (Z)-9-Hexa-decena, Heptacosanol |
表3 不同药用植物淋出物检出化学物质
Table 3 Chemicals of different medicinal plants extracts
药材植物 Medicinal plants | 化学物质 Chemicals |
---|---|
地丁草 Corydalis bungeana | 邻苯二甲酸正丁异辛酯, 叶绿醇, 1,2-环氧十八烷, β-谷甾醇, (Z)-9-十六碳烯醛 Octyl butyl phthalate, Phytol, 1,2-Epoxyoctadecan-e, β-Sitosterol, (Z)-9-Hexadecena |
薄荷 Mentha haplocalyx | 薄荷醇, 香芹酮, (1S)-(+)-10-樟脑磺哑嗪, 石竹素, 新癸酸, 邻苯二甲酸二丁酯, 绿花白千层醇, 穿心莲内酯, 喇叭茶醇, 维生素 A 醋酸酯 Menthol, DL-carvone, (1S)-(+)-(Camphorylsulfonyl)oxaziridine, Caryophylene oxide, Neodecanoic acid, Dibutyl phthalate, Himbaccol, Andrographolide,Palustrol, Retinyl acetate |
蕺菜 Houttuynia cordata | 邻苯二甲酸二丁酯, 正三十六烷, 溴代三十烷, 癸醚, 1-氯二十二烷, 正三十五烷 Dibutyl phthalate, Hexatriacontane, 1-Bromotriaco-ntane, 1-(Decyloxy)decane, 1-Chlorodocosane, N-pentatriacontane |
荆芥 Nepeta cataria | 薄荷酮, 胡薄荷酮, 邻苯二甲酸二丁酯, β-谷甾醇, 正二十一烷, 辛酸异辛酯, 棕榈酸, 邻苯二甲酸二异辛酯, 十四酸十四酯 Menthone, P-menthone, Dibutyl phthalate, β-Sitosterol, N-heneicosane, 2-Ethylhexyl octanoate, Palmitic acid, Diisoctyl phthalate, Myristyl myristate |
绞股蓝 Gynostemma pentaphyllum | 叶绿醇, 十五醛, 十二烯基丁二酸酐, 胆固醇, 油醇, 角鲨烯, 棕榈酸, 十五烷酸, 油酸酰胺, 环鸦片甾烯醇, 二十酸, 二十七烷醇, 生育酚, 亚麻酸甲酯, β-谷甾醇 Phytol, Pentadecanal, Dodeceny succinicanhydride,Cholesterol, Oleyl alcohol, Squalene, Palmitic acid, Pentadecanoic acid, Oleamide, Cyclolaudenol, Eicosanoic acid, Heptacosanol, Tocopherol, Methyl linolenate, β-Sitosterol |
夏枯草 Prunella vulgaris | 邻苯二甲酸二丁酯, 环阿屯醇, 环鸦片甾烯醇, 环桉树醇, 叶绿醇, 十五醛, 角鲨烯, β-谷甾醇, β-扶桑甾醇氧化物, 油醇, (Z)-9-十六碳烯醛, 二十七烷醇 Dibutyl phthalate, Cycloartenol, Cyclolaudenol, Cycloeucalenol, Phytol, Pentadecanal, Squalene, β-Sitosterol, β-Sitostenone, Oleyl alcohol, (Z)-9-Hexa-decena, Heptacosanol |
[1] | Aderiye BI, Ogundana SK, Adesanya SA, Roberts MF (1989). The effect of β-sitosterol on spore germination and germ-tube elongation of Aspergillus niger and Botryodiplodia theobromae. International Journal of Food Microbiology, 8, 73-78. |
[2] | Aggarwal KK, Khanuja SPS, Ahmad A, Santha Kumar TR, Gupta VK, Kumar S (2002). Antimicrobial activity profiles of the two enantiomers of limonene and carvone isolated from the oils of Mentha spicata and Anethum sowa . Flavour and Fragrance Journal, 17, 59-63. |
[3] | Batish DR, Singh HP, Pandher JK, Arora V, Kohli RK (2002). Phytotoxic effect of Parthenium residues on the selected soil properties and growth of chickpea and radish. Weed Biology and Management, 2, 73-78. |
[4] | Berg B (2000). Litter decomposition and organic matter turnover in northern forest soils.Forest Ecology and Management, 133, 13-22. |
[5] | Chen ZJ, He JF, Tang DR, Li QX, Heng ZZ, Li H, Li MS, Chen DW, Luo JM, Liu WY (2002). Nutrients in forest soils of Eucommia ulmoides Oliv and its responses to fertilization in south of Shaanxi Province. Journal of Soil and Water Conservation, 16(4), 94-97. (in Chinese with English abstract)[ 陈竹君, 何景峰, 唐德瑞, 李群学, 衡智州, 李宏, 李孟生, 陈登位, 罗建民, 刘文英 (2006).陕南杜仲林地土壤营养状况及施肥效应. 水土保持学报, 16(4), 94-97.] |
[6] | Chomel M, Fernandez C, Bousquet-Mélou A, Gers C, Monnier Y, Santonja M, Gauquelin T, Gros R, Lecareux C, Baldy V (2014). Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones. Journal of Ecology, 102, 411-424. |
[7] | Chomel M, Guittonny-Larchevêque M, Fernandez C, Gallet C, DesRochers A, Paré D, Jackson BG, Baldy V (2016). Plant secondary metabolites: A key driver of litter decomposition and soil nutrient cycling.Journal of Ecology, 104, 1527-1541. |
[8] | Guo YX, Kang B, Li G, Wang DX, Yang GH, Wang DW (2011). Species composition and point pattern analysis of standing trees in secondary Betula albo-sinensis forest in Xiaolongshan of west Qinling Mountains. Chinese Journal of Applied Ecology, 22, 2574-2580. (in Chinese with English abstract)[ 郭垚鑫, 康冰, 李刚, 王德祥, 杨改河, 王大伟 (2011). 小陇山红桦次生林物种组成与立木的点格局分析. 应用生态学报, 22, 2574-2580.] |
[9] | Hättenschwiler S, Vitousek PM (2000). The role of polyphenols in terrestrial ecosystem nutrient cycling.Trends in Ecology & Evolution, 15, 238-243. |
[10] | Hu X, Wu N, Wu Y, Zuo WQ, Guo HX, Wang JN (2012). Effects of snow cover on the decomposition and nutrient dynamics ofSibiraea angustata leaf litter in western Sichuan plateau, Southwest China. Chinese Journal of Applied Ecology, 23, 1226-1232. (in Chinese with English abstract)[ 胡霞, 吴宁, 吴彦, 左万庆, 郭海霞, 王金牛 (2012). 川西高原季节性雪被覆盖对窄叶鲜卑花凋落物分解和养分动态的影响. 应用生态学报, 23, 1226-1232.] |
[11] | Koukol O, Novák F, Hrabal R, Vosátka M (2006). Saprotrophic fungi transform organic phosphorus from spruce needle litter.Soil Biology & Biochemistry, 38, 3372-3379. |
[12] | Lin Y, Ren JY, Yue M (2008). Population structure and spatial analysis ofBetula albo-sinensis at Taibai Mountain, Northwestern China. Journal of Plant Ecology (Chinese Version), 32, 1335-1345. (in Chinese with English abstract)[ 林玥, 任坚毅, 岳明(2008).太白山红桦种群结构与空间分析. 植物生态学报, 32, 1335-1345.] |
[13] | Liu XY, Cheng S (1992). A preliminary study on the artificial forest-medicinal plant complex ecosystem.Journal of Beijing Forestry University, 14(2), 65-71. (in Chinese with English abstract)[ 刘晓鹰, 程颂 (1992). 林药人工复合生态系统的初步研究. 北京林业大学学报, 14(2), 65-71.] |
[14] | Manzoni S, Trofymow JA, Jackson RB, Porporato A (2010). Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter.Ecological Monographs, 80, 89-106. |
[15] | Mierziak J, Kostyn K, Kulma A (2014). Flavonoids as important molecules of plant interactions with the environment.Molecules, 19, 16240-16265. |
[16] | Mimica-Dukic N, Bozin B, Sokovic M, Simin N (2004). Antimicrobial and antioxidant activities of Melissa officinalis L.(Lamiaceae) essential oil. Journal of Agricultural and Food Chemistry, 52, 2485-2489. |
[17] | Niu XY, Sun XM, Chen DS, Zhang SG (2015). Soil enzyme activities of the litter inLarix kaempferi plantation. Scientia Silvae Sinicae, 51(4), 16-25. (in Chinese with English abstract)[ 牛小云, 孙晓梅, 陈东升, 张守攻 (2015). 日本落叶松人工林枯落物土壤酶活性. 林业科学, 51(4), 16-25.] |
[18] | Özer H, Sökmen M, Güllüce M, Adigüzel A, Sahin F, Sökmen A, Kiliç H, Baris Ö (2007). Chemical composition and antimicrobial and antioxidant activities of the essential oil and methanol extract of Hippomarathrum microcarpum (Bieb.) from Turkey. Journal of Agricultural and Food Chemistry, 55, 937-942. |
[19] | Purahong W, Hyde KD (2011). Effects of fungal endophytes on grass and non-grass litter decomposition rates.Fungal Diversity, 47, 1-7. |
[20] | Roy RN, Laskar S, Sen SK (2006). Dibutyl phthalate, the bioactive compound produced byStreptomyces albidoflavus 321.2. Microbiological Research, 161, 121-126. |
[21] | Sellamuthu PS, Sivakumar D, Soundy P (2013). Antifungal activity and chemical composition of thyme, peppermint and citronella oils in vapor phase against avocado and peach postharvest pathogens.Journal of Food Safety, 33, 86-93. |
[22] | Tian XJ, Takeishi T (2002). Relative roles of microorganisms and soil animals on needle litter decomposition in a subalpine coniferous forest.Acta Phytoecologica Sinica, 26, 257-263. |
[23] | Wang H, Wang G, Huang YY, Chen J, Chen MM (2008). The effects of pH change on the activities of enzymes in an acid soil.Ecology and Environment, 17, 2401-2406. (in Chinese with English abstract)[ 王涵, 王果, 黄颖颖, 陈璟, 陈妹妹 (2008). pH变化对酸性土壤酶活性的影响. 生态环境, 17, 2401-2406.] |
[24] | Wang JY, Wang WQ, Liu Y (2003). Effects of tree and medicinal plant intercropping system on medicinal plants’ yield. Journal of Beijing Forestry University, 25(6), 55-59. (in Chinese with English abstract)[ 王继永, 王文全, 刘勇 (2003). 林药间作系统对药用植物产量的影响. 北京林业大学学报, 25(6), 55-59.] |
[25] | Wang ZG, Zhao XS, Xu WH, Su YP, You YM, Liu S, Hu Y, Hu YL, Zhang Y (2015). Response of microbial biomass and enzyme activities in black soil to di-n-butyl phthalate contamination. Asian Journal of Ecotoxicology, 10(6), 199-205. (in Chinese with English abstract)[ 王志刚, 赵晓松, 徐伟慧, 苏云鹏, 由义敏, 刘帅, 胡影, 胡云龙, 张颖 (2015). 黑土微生物量和酶活性对邻苯二甲酸二丁酯污染的响应. 生态毒理学报, 10(6), 199-205.] |
[26] | Wu CX, Liu SJ, Zhao GQ (2014). Isolation and identification of the potential allelochemicals in the aqueous extract of yellow sweet clover.Acta Prataculturae Sinica, 23(5), 184-192. (in Chinese with English abstract)[ 邬彩霞, 刘苏娇, 赵国琦 (2014). 黄花草木樨水浸提液中潜在化感物质的分离、鉴定. 草业学报, 23(5), 184-192.] |
[27] | Wu TG, Yu MK, Sun HJ, Li HX, Zhang C, Cheng XR (2011).Photosynthetic response to different irradiances of under-growth plants in tree-herb plantation.Chinese Journal of Eco-Agriculture, 19, 338-341. (in Chinese with English abstract)[ 吴统贵, 虞木奎, 孙海菁, 李会欣, 张翠, 成向荣 (2011).林药复合系统林下植物光合特性对生长光强的响应. 中国生态农业学报, 19, 338-341.] |
[28] | Yan HY, Gu XR, Shen H (2010). Microbial decomposition of forest litter.Chinese Journal of Ecology, 29, 1827-1835. (in Chinese with English abstract)[ 严海元, 辜夕容, 申鸿 (2010). 森林凋落物的微生物分解. 生态学杂志, 29, 1827-1835.] |
[29] | Yang MY, Tian J, Ma Y, Sun C, Huang JH (2012).Isolation, identification and antimicrobial activity of endophyte fungi from medicinal plant Eucommia ulmoides Oliv. in Qinling Mountains. Acta Botanica Boreali-Occidentalia Sinica, 32, 193-198. (in Chinese with English abstract)[ 杨明琰, 田稼, 马瑜, 孙超, 黄继红 (2012).杜仲内生真菌的分离鉴定及抗菌活性研究. 西北植物学报, 32, 193-198.] |
[30] | Zhang J, Salahuddin, Ji L, Yang LX, Wang HR, You LX (2016). Effects of larch (Larix gmelinii) phenolic acids on manchurian ash(Fraxinus mandshurica) soil microbial community structure. Allelopathy Journal, 37, 123-135. |
[31] | Zhang RQ, Sun ZJ, Wang C, Yuan TY (2008). Ecological process of leaf litter decomposition in tropical rainforest in Xishuangbanna, SW China. III. Enzyme dynamics. Journal of Plant Ecology (Chinese Version), 32, 622-631. (in Chinese with English abstract)[ 张瑞清, 孙振钧, 王冲, 袁堂玉 (2008). 西双版纳热带雨林凋落叶分解的生态过程. Ⅲ. 酶活性动态. 植物生态学报, 32, 622-631.] |
[32] | Zhou BL, Han L, Yin YL, Wu JX, Sun CQ, Ye XL, Bai LP (2010). Effects of allelochemicals hexadecanoic acid on soil microbial composition and biomass in rhizosphere of eggplant.Journal of Shenyang Agricultural University, 41(3), 275-278. (in Chinese with English abstract)[ 周宝利, 韩琳, 尹玉玲, 武建霞, 孙传奇, 叶雪凌, 白丽萍 (2010). 化感物质棕榈酸对茄子根际土壤微生物组成及微生物量的影响. 沈阳农业大学学报, 41, 275-278.] |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[3] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[4] | 杨德春, 胡雷, 宋小艳, 王长庭. 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响[J]. 植物生态学报, 2021, 45(12): 1314-1328. |
[5] | 解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 885-894. |
[6] | 邹瓒, 陈劲松, 李洋, 宋会兴. 光合产物传输方向对蓉城竹根际微生物过程的影响[J]. 植物生态学报, 2018, 42(8): 863-872. |
[7] | 魏翠翠, 刘小飞, 林成芳, 李先锋, 李艳, 郑裕雄. 凋落物输入改变对亚热带两种米槠次生林土壤酶活性的影响[J]. 植物生态学报, 2018, 42(6): 692-702. |
[8] | 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征[J]. 植物生态学报, 2018, 42(3): 382-396. |
[9] | 徐波, 朱忠福, 李金洋, 吴彦, 邓贵平, 吴宁, 石福孙. 九寨沟国家自然保护区4个典型树种叶片凋落物在林下及高山湖泊中的分解及养分释放特征[J]. 植物生态学报, 2016, 40(9): 883-892. |
[10] | 刘成刚, 薛建辉. 喀斯特石漠化山地不同类型人工林土壤的基本性质和综合评价[J]. 植物生态学报, 2011, 35(10): 1050-1060. |
[11] | 袁丽环, 闫桂琴. 丛枝菌根化翅果油树幼苗根际土壤微环境[J]. 植物生态学报, 2010, 34(6): 678-686. |
[12] | 蒋智林, 刘万学, 万方浩, 李正跃. 紫茎泽兰与非洲狗尾草单、混种群落土壤酶活性和土壤养分的比较[J]. 植物生态学报, 2008, 32(4): 900-907. |
[13] | 刘恩科, 赵秉强, 李秀英, 姜瑞波, 李燕婷, Hwat Bing So. 长期施肥对土壤微生物量及土壤酶活性的影响[J]. 植物生态学报, 2008, 32(1): 176-182. |
[14] | 李传荣, 许景伟, 宋海燕, 李春艳, 郑莉, 王卫东, 王月海. 黄河三角洲滩地不同造林模式的土壤酶活性[J]. 植物生态学报, 2006, 30(5): 802-809. |
[15] | 杨玉盛, 陈光水, 郭剑芬, 何宗明, 陈银秀. 杉木观光木混交林凋落物分解及养分释放的研究(英文)[J]. 植物生态学报, 2002, 26(3): 275-282. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2908
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1227
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La